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ABSTRACT

Cloud systems differ fundamentally in how they offer and
charge for resources. While some systems provide a generic
programming abstraction at coarse granularity, e.g., a vir-
tual machine rented by the hour, others offer specialized
abstractions with fine-grained accounting on a per-request
basis. In this paper, we explore Tasklets, an abstraction for
instances of short-duration, generic computations that mi-
grate from a host requiring computation to hosts that are
willing to provide computation. Tasklets enable fine-grained
accounting of resource usage, enabling us to build infrastruc-
ture that supports trading computing resources according to
various economic models. This computation model is espe-
cially attractive in settings where mobile devices can utilize
resources in the cloud to mitigate local resource constraints.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems— Cloud Computing
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1. INTRODUCTION

Mobile cloud computing is a promising trend in mobile
systems. If an application requires more resources than what
is available on a user’s mobile device, the application offloads
computation to a cloud service running either in a private,
company-owned data center or a public, for-rent data center.

While some mobile applications, such as Apple’s Siri speech
recognizer, reside in a private data center, most applications
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Figure 1: Spectrum of cloud resources as a function
of computation unit size and unit price.

rely on publicly-available data centers. Currently, there are
two popular models for selling and accounting for use of
cloud computing resources: (1) charging per usage hour for
generic virtual machines, e.g., as in Amazon EC2 and Win-
dows Azure, and (2) charging for more fine-grained service
requests, e.g., as in Google App Engine. While the first ap-
proach of virtual machines offers maximum flexibility with
respect to the programming model, their coarse-grained ac-
counting restricts the kinds of jobs that may run. Because
virtual machines require significant initial setup, they are
best suited for large numbers of identical tasks that (1) may
be combined to amortize machine setup and maintenance,
and (2) may consume every rented minute of computation,
as unused capacity goes to waste. In contrast, the fine-
grained accounting model of Google App Engine enables
small tasks to take up only small amounts of rented time,
but requires the programmer to structure her application
around the particular fine-grained request/response inter-
faces of App Engine. Figure 1 illustrates the spectrum of
flexibility and the price.



In this paper, we argue that mobile cloud systems need
a programming model that offers the best of both worlds:
fine-grained accounting with a flexible execution environ-
ment. Such a model enables mobile applications to offload
even small amounts of computation to the cloud, or even
to each other, with little overhead. The core enabler of our
programming model is the Tasklet. A Tasklet is an abstrac-
tion of a particular thread of computation, encompassing
both the computation and any data that the computation
requires. Tasklets are supported by a Tasklet containers
that may execute Tasklets locally as well as offload Task-
lets to containers on other hosts. Tasklets are composed of
chunks, a uniform abstraction for computation, data stor-
age, and communication. Resource accounting is done by
counting chunks—the number of chunks executed, the num-
ber of chunks stored, or the number of chunks transmitted
across a network—as they are managed by a Tasklet con-
tainer. Tasklets enable generic computation at fine-grained
scales, thus filling the design space in the middle of Figure 1.

Tasklet containers may run as new cloud services (e.g.,
Tasklets as a Service), in idle time on top of existing cloud
services (e.g., as a process that takes up the remaining slack
time on an already running EC2 instance), or in idle time
on locally available computing hardware (e.g., as in resource
foraging systems). Tasklets, Tasklet containers, and the
chunk-based accounting system enable a generic economy
of computational resources. We argue that this will reduce
the amount of wasted resources in a cloud system and thus
enhance the system’s efficiency while at the same time en-
abling offload of ad-hoc tasks.

This paper proposes an overall architecture where Tasklets
serve as the abstraction of cloud computing. The Tasklet
programming model is explained in the next section. Some
possible economic models based on Tasklets are presented
thereafter. Section 4 briefly discusses related work. The
paper closes with a conclusion and outlook to future work.

2. TASKLETS

A Tasklet is a lightweight abstraction for a thread of com-
putation that typically represents a single task, such as ap-
plying a filter to a photo or running speech recognition on
a single utterance. We target such tasks because they can
benefit from the additional power of the data center but
would both (1) take too long to run within a single request
to, for example, Google App Engine and (2) be too short to
start a virtual machine and waste an hour of computation.
Tasklets encapsulate both code and data so that a single
Tasklet is a self-contained computation.

2.1 Chunks

Tasklets are composed of chunks [1], an abstraction we
developed for exchanging data and computation in hetero-
geneous distributed systems. Chunks are fixed-sized arrays
of fixed-sized slots. Slots may contain either scalar data
or a link to another chunk. Link slots contain location-
independent references to other chunks, allowing chunks to
migrate between hosts as necessary. The primary advantage
of chunks is that they encourage fine-grained decomposition
of computations and data structures: since chunks are of a
fixed-size, objects that overflow one chunk must be decom-
posed into a network of many chunks. This property enables
efficient migration of chunks between Tasklet containers as
well as precise accounting of resource usage.
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Figure 2: Example Tasklet computing factorial.

Tasklets represent data, code, and machine runtime state
in chunks, as shown in Figure 2. Conceptually, a Tasklet
realizes a closure and thus contains the function and the
data required for computation. The core of a Tasklet is a
Thread chunk. Threads contain a program counter and ref-
erences to the program and the environment. The program
consists of blocks of byte code whose links represent targets
of control structures, e.g., loops or conditional statements.
Program data is linked from the environment, enabling code
to operate on it and return execution results by modifying
the environment. The Tasklet virtual machine uses a stack-
based, chunk-oriented byte code to express operations. The
example in Figure 2 depicts a simple computation of facto-
rial of n, with computation paused at n = 4. In practice,
programmers develop in JavaScript or other languages and
rely on chunk-aware compilers to generate byte code.

It is possible to migrate a computation between Tasklet
containers by pausing the computation, shipping the Task-
let’s chunks to the remote container, and resuming compu-
tation with the transfered chunks. In contrast to an EC2
virtual machine that needs to be appropriately configured
before use, all Tasklet containers are “blank slates” that rely
on a Tasklet linking to all of the data and libraries that it
needs in order to execute.

2.2 Tasklet Accounting with Chunks

Proper accounting for resource usage is crucial in build-
ing an economy to utilize available capacity. The fixed-size
nature of chunks enables our Tasklet layer to account for re-
source usage by counting chunks. For example, bandwidth
consumption is measured as the number of chunks trans-
ferred between two hosts while computation consumption is
measured as the number of chunks executed. While it is
possible to account for resource consumption using multi-
ple different metrics, e.g., bytes for network transfers and
milliseconds for compute time, using a single unit to mea-
sure resource usage makes it easier to build an economy (c.f.
Section 3) since there is only one currency to trade.



The chunk-based foundation for Tasklets encourages fine-
grained accounting by encouraging the use of (1) fine-grained
and (2) single-purpose chunk structures. The fixed-sized na-
ture of chunks forces the former since any structure larger
than a single chunk must be broken apart into multiple
chunks. To achieve the latter, the Tasklet byte code only
allows branches to the beginning of chunks, forcing each ba-
sic block into its own chunk. For example, the recursive
factorial function of Figure 2 decomposes into four chunks.
With such a restriction, each chunk represents one, and only
one, part of a computation. In the figure, factorial decom-
poses into three groups of chunks: one chunk for the base
case, two chunks for the recursive case, and one chunk for the
conditional code that decides which case is currently being
computed. Similarly, the fined-grained nature of Tasklets
enables us to make use of large libraries (e.g, for image fil-
tering or speech recognition) or large data sets, but only
transfer the specific parts of the libraries or data sets neces-
sary to complete the Tasklet computation.

While recording runtime usage is important for simple ac-
counting, a mobile client may wish to predict costs before
making a decision to offload a Tasklet to a particular con-
tainer. We envision that either static analysis or Tasklet ex-
ecution history can help predict how much computing time
is required to compute a Tasklet. For example, for the code
in Figure 2, a static analyzer can determine an exact solu-
tion for the number of chunks executed. factorial(n) executes
two chunks for the base case of n = 1 and three chunks for
n > 1, leading to a closed form execution time of 3(n—1)+2
chunks. For computations where analysis is more difficult,
Tasklets offer graceful recovery for inaccurate analysis. For
example, if a Tasklet exhausts its share of a container’s re-
sources before completing its computation, the Tasklet may
be migrated to another container where it may resume—
rather than be killed after a certain timeout, as is done in
Google App Engine.

2.3 Federating Tasklets

Using Tasklets as a computational model requires appli-
cations to find appropriate containers to execute Tasklets
as well as to propagate their excess capacities to other ap-
plications. The core architectural model is a trading ser-
vice. In contrast to trading services introduced by Jini [2]
or CORBA [3] that trade functional components, our trad-
ing service only trades one good: the execution of Tasklets.

Figure 3 illustrates the involved components and the basic
messages. The Tasklet Trading Service (T'TS) mediates be-
tween offers and requests for computational capacity. Task-
let containers advertise their available resources, either (1)
as a Tasklet capacity, for services that are metered by re-
source usage or (2) as a time window with a deadline, e.g.,
for the termination time of an EC2 instance running a Task-
let container in the excess of its hour, as well as the cost of
using the Tasklet container. Computing capacity is denoted
in chunks and costs depend on the economic model that is
realized by the Tasklet federation (see next section). If a
Tasklet container offers execution of Tasklets on third par-
ties, capacities for the third-parties can be propagated as
well.

Figure 3 depicts the messages exchanged between the in-
volved entities. Candidate containers are represented with
enough information for applications to contact them, e.g., an
IP address and port number, along with additional informa-
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Figure 3: Tasklet Trading Service

tion like service provision contracts. An application queries

the Tasklet Trading Service in order to obtain references to

containers that can compute a Tasklet. Once the applica-

tion chooses a Tasklet container, it interacts directly with

the Tasklet container. The Tasklet container updates its ca-

pacity at the Tasklet Trading Service as it accepts Tasklets.
Below are Tasklet Trading Service messages:

1. handle = register_capacity(capacity, deadline, price)
A Tasklet container registers its Tasklet capacity and
its computing deadline to the TTS. A handle is re-
turned which is used to change the information if needed.
If the container charges for execution, a price per chunk
execution can be indicated.

2. candidates = request_capacity(capacity, cost_limit, info)
An application requests computing capacity. The ap-
plication approximates the necessary computing time
by analyzing the Tasklet’s chunks or consulting a his-
tory of prior runs. A cost-limit can be provided. Fur-
ther information, e.g., for specifying a specific Tasklet
container where a contract exists, can be provided in
the info field.

3. result = execute(Tasklet, fee)
After receiving a candidate list the application can
choose a specific container for the execution. Based
on the economic model, a fee can be provided to the
Tasklet container.

4. update(handle, capacity, deadline, price)

After capacity is consumed, in total or in part, or when
the associated time window expires, the Tasklet con-
tainer can update the information at the Tasklet Trad-
ing Service. If all the capacity is used the entry can be
deleted (by publishing 0 chunks of computing time).
Also, containers may adjust the price in order to sell
excess capacity to increase revenue.

3. TASKLET ECONOMIES

In addition to the mechanics of offloading Tasklets, an
economic model is needed to define the incentives and rules
for offering cloud resources to others. We are in the process
of implementing and analyzing different economic models
for Tasklets. In the following, we present four specifically
promising models and discuss them briefly.



3.1 Capacity as a Free Good

The simplest economical model for sharing capacity is to
give resources away for free. Although this may not look
feasible at first, there are a number of settings where the
model may lead to better utilization of resources. First, in
a private cloud setting one can assume that resources will
not be monopolized by users. Second, even in public cloud
settings the overall system can benefit from free resource
sharing. In settings where users do not typically require
all the local resources, e.g., due to their usage pattern or
time zone differences, Tasklets can help smooth bursts of
computation. As long as bursts are not clustered, users gain
a better overall system experience.

Clearly, the free goods model does not provide a means to
cope with free riders that extensively use other users’ capaci-
ties and do not share their resources. To reduce the damage,
users can secure their resources by simply running the Task-
let container with a low priority. Still, more sophisticated
solutions for avoiding free riding is desirable.

3.2 Reciprocal Sharing Of Capacity

Experiences in file sharing show that free riders (e.g., in
Gnutella [4]) do exist. In file sharing, upload/download
ratios were introduced in order to force users to share re-
sources. The easiest way to enforce cooperation is to intro-
duce a simple counter that represents the number of Tasklets
that were executed for another user. In order to provide an
incentive, a user may offload tasks to other containers so
long as she reciprocates accordingly. More precisely, Task-
lets of a user u are only allowed to be executed at a remote
Tasklet container if the ratio between the Tasklets that u’s
container has executed on behalf of other users, o, and the
Tasklets that u has remotely executed, r, is greater than a
threshold, t. In other words, if o/r > ¢ holds the user may
execute Tasklets with other users’ containers.

Clearly, local storage and manipulation of o and r can
allow tampering by users. However, since the execution of
Tasklets is mediated by the Tasklet Trading Service, it can
take the role of a trusted third party and calculate and sign
o and 7.

A disadvantage of this approach is that application can
only request external computing capacity if their contribu-
tion ratio is above the threshold. If an application encoun-
ters the need for additional computation it has no chance to
increase the ratio and thus cannot benefit from the Tasklet
federation.

3.3 Capacity Sharing Based on Virtual Cur-
rency

The previous approach can be extended by introducing a
virtual currency. Rather than track the number of locally
and remotely executed Tasklets for a given user, the TTS
can instead manage a virtual currency. For every execution
of a remote Tasklet, the Tasklet container receives a virtual
currency c. ¢ can be simply increased for each Tasklet ex-
ecution, or it could reflect more finely grained models, e.g.,
the number of executed chunks of a Tasklet. Instead of in-
creasing the contribution ratio, an application can “save” the
received ¢’s and use them for later remote execution.

Still this extension suffers from two problems. First, if
container i executes a Tasklet for container j the currency
¢; that i receives is a debt from j. Thus, without further con-
ventions, no other container will accept ¢; but container j.

Second, if an application can only execute Tasklets remotely
up to its savings this is a restriction. If there is need for ad-
ditional computing power without enough savings, remote
Tasklet computation cannot be used. An obvious extension
is the use of ¢ as currency. If a Tasklet container k accepts
¢; for executing a Tasklet from an application i # j, ¢ starts
to resemble a currency. If applications can spend more c
than they earned to far, credits are introduced in the sys-
tem. This can be done in a simple, trust based model or real
economies can be established, e.g., including interest rates
and checking for creditworthiness.

3.4 Capacity Sharing Based on Real Currency

Mapping virtual currency to real currency enables new
business cases. For example, one possible case is a class
of generic services where providers host Tasklet containers
offering Tasklet execution as a fine grained computational
model. Other models are specific services, like the image
processing or speech recognition services mentioned earlier.

4. RELATED WORK

Cloud computing has gained much attention over the past
years, from academia as well as from service providers. Be-
low, we discuss different cost and execution models previ-
ously proposed.

4.1 The Cost of the Cloud

One of the refreshing aspects of cloud computing, in con-
trast to privately-run data centers, is that operational costs
are well-known, documented, and studied. For example, the
CloudCmp Project [5] analyzes four different cloud providers
in an attempt to guide consumers to the correct provider.
Goiri et al. [6] derive profit equations for cloud providers
that take into account fixed private cloud resources (that
can be shut down or “insourced”/rented to others) and pub-
lic cloud resources used at a specific cost rate. Given certain
assumptions on power and costs, Goiri and co-authors find
it better to under-provision fixed resources, use the cloud for
bursts, and then insource when the fixed cluster of nodes is
not busy.

Briscoe and Marinos argue for a Community Cloud [7]
made out of P2P nodes to avoid “necessary evils” like vendor
lock-in, cloud downtime, and privacy problems. Their work
includes an idea of “community currencies” where nodes trade
resources in terms of a fungible currency. A node may run
a surplus, which it can then spend against nodes that run a
deficit.

Durkee [8] argues that while the competition between cloud
providers may reduce the cost of cloud computing, cloud
computing will never be zero-cost. Cloud vendors operate
in a environment of perfect competition (like cellphone ven-
dors and airlines), so they have to make their profit by ob-
scuring details (e.g., performance, SLAs) or costs (incoming
bandwidth costs). Durkee makes the point that enterprise
systems need more reliability and performance guarantees,
and predicts that we will likely end up with a Cloud 2.0 that
gives more value, albeit at a higher unit cost. Our work may
be seen as one step towards a Cloud 2.0 charging model.

4.2 Execution Model

In contrast to recent projects like MAUI [9] and Clone-
Cloud [10] and older work in mobile code systems [11] that
concentrate on offloading code from smartphones to cloud



servers for execution speed, our work concentrates on cre-
ating an accounting system to expand the available pro-
gramming models in the cloud. Adaptive mobile systems,
like Odyssey [12], Puppeteer [13], and Chroma [14] out-
line the various ways an application may be decomposed
in a client/server system; such work influences how we may
decompose an application into Tasklets. Flinn et al. pro-
pose [15] methods for choosing when to offload code. A node
in a Tasklet system may use such information as an input
to its own economic policy.

Our work may make use of cloudlets [16] to offload Task-
lets to local compute resources rather than directly to the
cloud. However, Tasklets are much lighter weight than the
proposed cloudlet implementation of copying virtual ma-
chines between mobile nodes and cloudlet nodes [17].

Mesos [18] enables sharing of data center resources among
different frameworks (e.g., MPI, Dryad, MapReduce, or Ha-
doop). Mesos works by offering each toolkit resources and
incentivizes the framework to accept only the resources it
needs. Our work may benefit from the incentive structures
that Mesos introduces.

Finally, Google App Engine and Amazon EC2 are expand-
ing offerings from the pure models we mention in Figure 1.
EC2 Spot Instances [19] enable users to bid on excess capac-
ity that would otherwise be wasted by Amazon, providing a
way of lowering the cost of EC2 VMs. Similarly, App En-
gine offers Task Queues [20] for long running tasks that do
not fit in a request/response format. Both offerings speak
to the need for additional cloud computing models, of which
Tasklets is one alternative.

5. CONCLUSION AND NEXT STEPS

In this paper, we proposed a lightweight computation model
for using cloud resources. We developed Tasklets that form
a closure of computation containing byte code as well as an
interoperable representation of data required for computa-
tion and passing results. Tasklets are comprised of chunks
to enable migration between containers as well as to allow
for simple accounting.

We have implemented Tasklet containers in both Python
and JavaScript, enabling support for a wide range of plat-
forms. Currently, we are building a prototype Tasklet Trad-
ing Service to start integrating several of the economic mod-
els outlined in Section 3. We plan to explore how different
applications, including computationally intensive interactive
tasks like photo editing work in a Tasklet-based environ-
ment in contrast to a strict client/server or client-only en-
vironment. Our next steps are to explore the suitability of
Tasklets in modeling and implementing applications as well
as the effect of the economic models on resource utilization.
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