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Abstract-We present ChunkStream, a system for efficient 
streaming and interactive editing of online video. Rather than 
using a specialized protocol and stream format, ChunkStream 
makes use of a generic mechanism employing chunks. Chunks 
are fixed-size arrays that contain a mixture of scalar data 
and references to other chunks. Chunks allow programmers 
to expose large, but fine· grained, data structures over the 
network. 

ChunkStream represents video clips using simple data types 
like linked lists and search trees, allowing a client to retrieve 
and work with only the portions of the clips that it needs. 
ChunkStream supports resource-adaptive playback and "live" 
streaming of real-time video as well as fast, frame-accurate 
seeking; bandwidth-efficient high·speed playback; and compi­
lation of editing decisions from a set of clips. Benchmarks 
indicate that ChunkStream uses less bandwidth than HTTP 
Live Streaming while providing better support for editing 
primitives. 

I. INTRODUCTION 

Users increasingly carry small, Internet-enabled comput­
ers with them at all times. Some of these small computers are 
highly-capable smartphones like Apple's iPhone or Google's 
Android, while others are lightweight netbooks. 

These computers are "small" in the sense that they have a 
small form factor as well as smaller than normal processing 
and storage abilities. Nonetheless, users expect the same 
functionality from them as their full-sized brethren. For ex­
ample, netbook users run full-fledged operating systems and 
applications on their machines while smartphone users may 
use full-featured applications to edit photos and spreadsheets 
directly on their phone. 

Such small machines may be computationally over­
whelmed by "big" tasks like editing video or creating 
complex documents. Luckily, many of those big tasks are 
centered around highly structured data types, giving us 
an opportunity to present large data structures in smaller 
units that impoverished clients may more easily consume 
and manipulate. At the same time, a common network 
protocol for expressing structure may allow us to share work 
between small clients and cloud-based clusters, making use 
of always-on network connections to compensate for anemic 
compute abilities. 

In this paper, we explore one way of exposing and sharing 
structured data across the Internet, in the context of cloud­
based video editing. We choose to explore video editing 
because video is highly structured-video files are organized 
into streams, which are further organized into groups of 
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pictures composed of frames-yet there is no existing proto­
col for efficient editing of remote video. Additionally, many 
video editing operations (such as special effects generation) 
are computationally intensive, and as such may benefit from 
a system where clients can offload heavy operations to a 
cluster of servers. Finally, video is already an important data 
type for mobile computing because most small computers 
include special support for high-quality video decoding, and 
now commonly even video capture. 

While our exploration focuses on video, we believe that 
our approach is generalizeable to any structured data type, 
including other kinds of user data and executable programs. 

A. Pervasive Video Editing 

Just as users capture, edit, mashup, and upload photos 
without touching a desktop computer, as video capabilities 
become more prevalent, we expect users will want to edit 
and mashup videos directly from their mobile devices. 
However, currently, video editing is a single-device affair. 
Users transfer all of their clips to their "editing" computer, 
make all edits locally, and then render and upload their 
finished work to the web. In a modern pervasive computing 
environment, users should be able edit videos "in the cloud" 
with whatever device they may have at the time, much 
as they can stream videos from anywhere to anywhere at 
anytime. 

Video editing is a much more interactive process than 
simple video streaming: whereas users of video streaming 
engage in few stream operations [1], the process of video 
editing requires extensive searching, seeking, and replaying. 
For example, a video editor making cutting decisions may 
quickly scan through most of a clip, but then stop and step 
through a particular portion of a clip frame-by-frame to find 
the best cut point. After selecting a set of cut points, the 
editor may immediately replay the new composite video to 
ensure that his chosen transitions make sense. In another 
work flow, an editor may "log" a clip by playing it back at 
a higher than normal speed and tagging specific parts of the 
video as useful or interesting. Each of these operations must 
be fast or the editor will become frustrated with the editing 
process. 

B. Internet-enabled Data Structures 

Existing streaming solutions generally assume that clients 
view a video stream at normal playback speeds from the 
beginning [2] and are ill-suited to the interactivity that video 



editing requires. A challenge to enabling pervasive video 
editing is allowing small clients to manipulate potentially 
enormous video clips. 

Two general principles guide our approach. First, we 
expose the internal structures of uploaded video clips to the 
client so that each client can make decisions about what 
parts to access and modify. Second, we offer "smaller", less 
resource-intensive proxy streams that can be manipulated in 
concert with full-sized streams. 

Most streaming protocols already follow these principles 
using ad-hoc protocols and specialized data formats. For 
example, Apple's HTTP Live Streaming [3] exposes videos 
to clients as a "playlist" of short (R::lOs) video segments. 
Each segment may have individually-addressable "variants" 
that allow clients to choose between an assortment of 
streams with different resource requirements. 

While it is possible to design a specialized video editing 
protocol that adheres to these principles, we believe that the 
fine-grained interactivity required by video editing and the 
device-specific constraints imposed by each small client may 
be better served by a more generic framework that allows the 
client and server to decide, at run-time, how to export and 
access video data. To this end, rather than fixing the protocol 
operations and data formats, we explore an approach that 
uses generic protocols and data formats as a foundation for 
building video-specific network-accessible data structures. 

C. Contributions 

This paper presents ChunkStream, a system that allows 
frame-accurate video streaming and editing that is adaptive 
to varying bandwidth and device constraints. We propose 
the use of a generic primitive-individually-addressable 
"chunks"-that can be composed into larger, but still fine­
grained, data structures. ChunkStream exposes video clips 
as a series of chunks embedded in search trees that allow 
a client to quickly find frames, make edit decisions, and 
stream video. 

II. ARCHITECTURE 

ChunkStream is built on top of a single data type­
the chunk. Using chunks as a foundation, we construct 
composite data structures representing video streams and 
editing decisions. 

A. Chunks 

A chunk is a typed, ordered, fixed-sized array of fixed­
sized slots. Each slot may be empty, contain scalar data, 
or hold a reference ("link") to another chunk. Chunks are 
stored on a central server and may be requested by clients 
over the network. Chunk links are explicit and as such can 
be used to create large data structures out of networks of 
chunks. Figure I illustrates a chunk that holds some text 
and links to another chunk that contains image data. 
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Figure 1. Two chunks with a link between them. The gray bar indicates 
the start of the chunk. 

We chose chunks as our foundation data type for two 
reasons. First, since chunks contain a fixed number of fixed­
sized slots, there is a limit to the total amount of information 
that a single slot can hold as well as a limit to the number 
of chunks to which a single chunk can directly link. While 
fixed sizes may be seen as a limitation, size limits do have 
certain benefits. Small chunks force us to create fine-grained 
data structures, giving clients greater choices as to what data 
they want to access over the network. Moreover, since clients 
know the maximum sizes of the chunks they request, they 
can easily use the number of chunks in a data structure to 
account for total resource usage. Both features fit well with 
our requirements for video editing on small clients. 

Our second reason for using chunks is that they export a 
flexible, reference-based interface that can be used to build, 
link together, and optimize larger data structures one block 
at a time. For example, chunks can be used to implement 
any pointer-based data structure, subject to the constraint that 
the largest single element fits in a single chunk. At the same 
time, since the chunk interface is fixed between client and 
server, chunk-based data structures can be shared between 
the two without content format mismatches or undefined 
links. 

B. Representing Video Streams with Chunks 

Our video representation is guided by the observation that 
non-linear video editing consists of splicing and merging 
streams of audio and video together to make a new, com­
posite stream that represents the edited video. If we were to 
represent each video stream as a linked list of still frames, 
editing would be the process of creating a brand new stream 
by modifying the "next" pointer of the last frame we want 
from a particular stream to point to the first frame of the 
subsequent stream. Special effects, like a fade between two 
streams, is just a splice from the first stream to a new 
"special effect stream" to the destination stream and as such 
can be linked into our final video in the same way that any 
other stream could be. 

l) Video Streams: We represent video streams with four 
types of chunks, as illustrated in Figure 2. The underlying 
stream is represented as a doubly-linked list of "backbone" 
chunks. The backbone is doubly-linked to allow forwards 
and backwards movement within the stream. For each frame 
in the video clip, the backbone links to a "LaneMarker" 
chunk that represents the frame. 
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Figure 2. Chunk-based video stream representation used by ChunkStream. 
LaneMarker chunks represent logical frames and point to "lanes" composed 
of FrameData chunks. Each lane represents the frame in different formats, 
e.g. using HD or low-bandwidth encodings. 

A LaneMarker chunk serves two purposes. First, it links to 
metadata about a frame, such as frame number or video time 
code. Second, the LaneMarker links to "lanes" of video. A 
lane is a video sub-stream of a certain bandwidth and quality, 
similar to segment variants in HTTP Live Streaming. A 
typical LaneMarker might have three lanes: one high-quality 
HD lane for powerful devices and final output, a low-quality 
lane suitable for editing over low-bandwidth connections on 
small devices, and a thumbnail lane that acts as a stand-in 
for frames in static situations, like a timeline. ChunkStream 
requires that each lane be semantically equivalent (even if 
the decoded pictures are different) so that the client may 
choose whatever lane it deems appropriate based on its 
resources. 

Each lane slot in the LaneMarker points to a FrameData 
chunk that contains the underlying encoded video data. If the 
frame data does not fit within a single chunk, the FrameData 
chunk may link to other FrameData chunks. 

Finally, in order to enable efficient, O(log n ) random 
frame seeking (where n is the total number of frames), we 
add a search tree, consisting of IndexTree chunks, that maps 
playback frame numbers to backbone chunks. 

Listing 1 shows the algorithm clients use to play a video 
clip in ChunkStream. A client first searches through the 
IndexTree for the backbone chunk containing the first frame 
to play. From the backbone chunk, the client follows a 
link to the LaneMarker for the first frame and examines its 
contents to determine which lane to play. Finally, the client 
dereferences the link for its chosen lane to fetch the actual 
frame data and decodes the frame. To play the next frame, 
the client steps to the next element in the backbone and 
repeats the process of finding frame data from the backbone 
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1 def play(tree_root ): 
2 
3 frame_num = 0 
4 # Search through the IndexTree: 
5 backbone = indextree_find_frame(tree_root, frame_num) 
6 
7 while playing: 
8 # Dereference links from the backbone down to frame data: 
9 1m_chunk = geUane_marker(backbone, frame_num) 

10 lane_num = choose_lane(lm_chunk) 
1 1  frame_data = read_lane(lm_chunk, lane_num) 
12 # Decode the data we have 
13 deocde_frame(frame_data) 
14 
15 # Advance to next frame in backbone: 
16 (backbone, frame_num) = ge,-next(backbone, frame_num) 

Listing I. Client-side playback algorithm for ChunkStream. 

chunk. 
An advantage of exposing chunks directly to the client is 

that new behaviors can be implemented without changing the 
chunk format or the client/server communication protocol. 
For example, we may extend the basic playback algorithm 
on the client with additional, editing-friendly commands 
by simply altering the order and number of frames we 
read from the backbone. In particular, a client can sup­
port reverse playback by stepping backwards through the 
backbone instead of forwards. Other operations, like high­
speed playback in either direction may be implemented by 
skipping over frames in the backbone based on how fast 
playback should proceed. 

It is also possible to implement new server-side behaviors, 
such as live streaming of real-time video. Doing so simply 
requires dynamically adding new frames to the backbone 
and lazily updating the IndexTree so that new clients can 
quickly seek to the end of the stream. 

2) Editing: Clients compile their desired cuts and splices 
into an Edit Decision List (EDL). The EDL is a doubly­
linked list of EDLClip chunks. Each EDLClip chunk ref­
erences the start frame of a clip to play and the length 
the clip should play; the order of the EDLClips in the 
linked list indicate the order in which to play the video 
clips. EDLs are lightweight since each EDLClip chunk 
references frames contained within an existing ChunkStream 
clip rather than copying frames. They are also easy to modify 
since new edit decisions can be added or existing decisions 
removed by changing the linked list. Using EDLs also allows 
ChunkStream to make video clips themselves immutable, 
aiding optimization and caching (cf. Section IT-E). 

Figure 3 illustrates an EDL and a series of shots between 
two characters engaged in a dialog. The EDL references 
video from clip 1 for 48 frames, then clip 2 for 96 frames, 
and then clip 1 again for 144 frames. To play through 
the EDL, the client loads the clip referenced by the first 
EDLClip in the EDL, seeks to the correct position in the 
clip and then plays it for the specified number of frames 
before moving to the next EDLClip chunk in the EDL and 
repeating the process. 



Figure 3. An Edit Decision List (EDL) using three portions of two clips. 

C. Editing Example 

A user that edits with ChunkStream first uploads his video 
clips to the ChunkStream server, which creates the relevant 
IndexTree and backbone structures. If possible, the server 
transcodes the clip to create less resource-intensive lanes 
for small clients. For each uploaded clip, the server returns 
a reference to root of that clip's IndexTree. In addition to 
the clips he uploaded, the user may also use other clips that 
are on the ChunkStream server. To do so, the user's client 
only needs a reference to the root of the clip's IndexTree, 
usually provided by a search feature on the server. 

After uploading the clips, the user scans through the 
clips he wants to use. In order to provide the user with 
an overview of each clip, the user's client runs through the 
backbone and decodes every 60th frame of a low-quality 
lane to create a filmstrip of thumbnails. After reviewing the 
thumbnail filmstrips, the user starts playing portions of each 
clip. As he marks start and stop points on the clips, his client 
compiles an EDL that points to the different parts of each 
clip that the user would like to use. Occasionally, the user 
changes the start and stop points or re-orders the clips; in 
response, his client just modifies the EDL. The EDL lives 
on the server, allowing the user to switch clients and still 
access his work. 

After running through a few iterations, the user is happy 
with his rough cut of his video and starts adding special 
effects like fades. Rather than modifying the existing clips 
to add special effects, the user's client asks the Chunk Stream 
server to create a new clip containing the special effect. The 
server creates the new clip, including all relevant IndexTrees 
and alternative lanes, and passes a reference to the new clip's 
IndexTree root. The client then integrates the special effect 
clip by modifying the EDL. 

Finally, when the user is ready to make the final cut of 
his video, the client asks the server to compile the EDL to 
a new ChunkStream clip. In order to do so, the server reads 
through the EDL and copies the relevant frames (transcoding 
them as necessary) to a new IndexTree and backbone. The 
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Figure 4. FrameContext chunks allow inter-frame compression by 
exposing the dependencies of a particular frame. The first slot in the 
FrameContext chunk always points to the I-frame that serves as the 
foundation of the dependent group of pictures and subsequent slots point to 
frames in the dependency chain between the I-frame and the current frame 
in the required decode order. 

new video can then be viewed by and shared with other 
users on the ChunkStream server. 

While editing, ChunkStream actively encourages reuse 
and referencing of already uploaded data. It is only during 
the creation of new content, such as new special effects 
or the final "playout" step that new IndexTree, backbone, 
and FrameData chunks are created. During all other steps, 
the client just refers to already existing chunks, and uses 
ChunkStream's fast seeking features to make it appear to 
the user that his edits have resulted in a brand new clip on 
the server. 

D. Codec Considerations 

In traditional video files, raw data is organized according 
to a container format such as MPEG-TS, MPEG-PS, MP4, 
or AVI. ChunkStream's IndexTrees, backbones, and Lane 
Markers serve to organize raw encoded streams and, as such, 
may be considered as a specialized container format. 

Container formats offer many advantages over raw codec 
streams. Most formats allow a single file to contain multiple 
streams, such as a video stream and one or more audio 
streams, as well as provide different features depending 
on the environment. Some formats, like MPEG-TS, include 
synchronization markers that require more bandwidth, but 
tolerate packet loss or corruption, while others are optimized 
for more reliable, random-access media. However, at its 
core, the job of the container format is to present encoded 
data in the order in which the decoder needs it. 

This is especially important for video codecs that use use 
inter-frame compression techniques because properly decod­
ing a particular frame may depend on properly decoding 
other frames in the stream. For example, the H.264 codec 
[4] includes intra frames (I-frames) that can be decoded 
independently of any other frame; predictive frames (P-



frames) that depend on the previously displayed 1- or P­
frame; and bi-predictive frames (B-frames) that depend on 
not only the previously displayed 1- or P-frame, but also the 
next 1- or P-frame to be displayed. An H.264 stream that 
is encoded using P- and B-frames is substantially smaller 
at the same quality level than a stream encoded using only 
I-frames. 

Unfortunately for video editing, using inter-frame com­
pression complicates seeking, high-speed playback, and 
inter-clip splicing because frames are no longer independent 
and instead must be considered in the context of other 
frames. For example, a client that seeks to a P- or B­
frame and displays only that frame without fetching other 
frames in its context will either not be able to decode the 
frame or decode a distorted image. Moreover, in codecs 
like H.264 with bi-predictive frames, the order in which 
frames are decoded is decoupled from the order in which 
frames are displayed, and the container format ensures that 
the decoder gets all the data it needs (including out-of­
order frames) in order to decode the current frame. In other 
words, a container format contains the raw encoded streams 
in "decode order" rather than display or "presentation" order. 

Frames in a ChunkStream backbone are always in presen­
tation order. ChunkStream uses presentation order because 
each lane in a stream may be encoded with different pa­
rameters or even different codecs, potentially forcing each 
lane to have a different decode order. Rather than complicate 
the backbone, we augment the FrameData chunks that make 
up each lane with FrameContext chunks that specify the 
dependencies of each frame. 

Each FrameContext chunk contains a link to each Frame­
Data chunk that the frame depends on, one link per chunk 
slot, in the order that the frames must be decoded. Frame­
Context chunks contain the full context for each frame, so 
that the frame can be decoded without consulting any other 
frame's FrameContext chunks. As a consequence, the first 
slot of a FrameContext chunk always points to the previous 
I-frame in presentation order. 

For example, in Figure 4, we show a portion of an 
H.264-encoded video clip using inter-frame compression. 
Since I-frames can be decoded independently, frame 1 
has no FrameContext chunk. Frame 2 is a P-frame, and 
as such, depends on frame 1. Frame 2, therefore, has a 
FrameContext chunk that specifies that frame 1 must be 
decoded before frame 2 can be decoded. Similarly, frame 
4 has a FrameContext chunk that specifies that frame 2, and 
as a consequence, frame 1 must be decoded before it can be 
decoded.' Finally, frame 3 is a B-frame and as such depends 
on both frame 2 and frame 4, and by dependency, frame 1, 
so its FrameContext chunk lists frames 1, 2, and 4. 

1 In order to prevent circular references, H.264 does not allow P-frames 
to depend on B-frames, but only on previous P- or I-frames. As such, frame 
4 cannot depend on frame 3. 
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E. Overheads and Optimizations 

The downside of breaking up a video into small chunks 
is that each chunk must be requested individually from the 
server, leading to an explosion of requests over the network. 
There are three ways we can mitigate this explosion: (1) 
densely packed infrastructure chunks, (2) caches, and (3) 
server-side path de-referencing. 

i) Densely-packed infrastructure Chunks: IndexTree and 
backbone chunks are needed in order to create large, acces­
sible data structures out of small chunks. Since they carry 
no video information, they are pure overhead. One way to 
reduce the number of IndexTree and backbone chunks is to 
use all available slots to create n-ary search trees and linked 
lists with fat nodes. 

2) Caches: Densely-packed infrastructure chunks are par­
ticularly useful when combined with client-side caching 
because the client will need to repeatedly access the same 
infrastructure chunks as it plays through a series of frames. 
Caches are also helpful when fetching the context chunks for 
a frame, since many frames may have the same, or similar, 
contexts. 

By using a cache, the client may be able to skip many 
repeated network transfers and reduce the total load on the 
server and network connection. Moreover, ChunkStream's 
cache coherency protocol is very simple: indefinitely cache 
IndexTree, backbone, and FrameData chunks from video 
clips, since they never change after being uploaded; cache 
LaneMarker chunks with a server-specified timeout since the 
server may modify the LaneMarker to add additional lanes 
as processing time allows; and never cache EDL or EDLClip 
chunks, since they are volatile. 

3) Server-side Path De-referencing: In lines 9 and 10 of 
our playback algorithm in Listing 1, clients fetch the lane 
marker and use it to determine which lane to play. If a 
client has determined that a particular lane of a stream meets 
its requirements, it will always follow the same generic 
path from the backbone through the LaneMarkers to the 
underlying video frames. 

Since the client does not need the intermediate Lane­
Marker, except to use it to follow links to FrameData chunks, 
we may lower request overheads by giving the chunk server 
a path to de-reference locally and send the client only the 
terminal chunk of the path. Figure 5 shows a sample stream 
where the client has chosen to read the stream in the first 
lane. Rather than requesting chunk A, then B, then C, it 
may request that the server dereference the slot 1 in chunk 
A, and then dereference slot 1 in chunk B, and only return 
C, saving the transfer of chunks A and B. Server-side path 
de-referencing is beneficial because it has the potential to 
save both bandwidth and network round-trips. 

III. IMPLEMENTATION 

In order to test our ChunkStream ideas, we built a 
prototype chunk server and a chunk client library. All source 
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Figure 5. Clients using server-side path dereferencing may skip over 
LaneMarkers if they know what lane they want to use. 

code is available under a free license from http://02s.csail. 
mit.edulchunks. 

A. Server 

The server exposes chunks over HTTP and may run in any 
web server that supports CGI and Python. Our server uses a 
simple numbering scheme to name chunks both over the net­
work and within chunk links. The HTTP interface exposes a 
simple chunk protocol that allows clients to read the contents 
of chunks using standard HTTP GET requests (e.g., GET 

/chunks/01234), create chunks using HTTP POST requests, 
modify the contents of chunks using HTTP PUT requests. 
Our server also supports server-side path de-referencing. 
Clients request server-side de-referencing by adding a series 
of path segments to the end of their GET path. For example, 
a client may request chunk C from Figure 5 using GET 

/chunks/N*11*1. 
The CGI library is only required for stores that allow 

clients to change chunks, e.g., as needed by a web-based 
video editing applications, or by services that wish to make 
use of server-side path de-referencing. However, read-only 
stores that simply expose a set of pre-computed chunks could 
be equally well-served by a standard web server serving 
static chunks without needing our CGI server script. 

B. Client Library 

Our client code includes utilities for transcoding and cre­
ating ChunkStreams from standard H.264 video clips as well 
as libraries to aid navigation and playback from a Chunk­
based server. The client playback library also implements 
our server-side path de-referencing extension and includes 
an optional chunk cache. 

IV. EVALUATION 

In order to show that our approach is useful, we must 
show that ChunkStream is competitive with other approaches 
in the resources that it uses. In particular, we hypothesize 
(1) that video streaming over ChunkStream is no worse than 
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Figure 6. Data transferred streaming a video using Chunk Stream, standard 
downloading, and HTIP Live Streaming. The horizontal line is the size of 
the raw video stream. 

existing solutions and (2) that interactive editing operations 
under ChunkStream perform better than existing solutions. 

To provide context for our benchmarks, we compare 
ChunkStream to two other approaches: downloading full 
files via HTTP and HTTP Live Streaming. For the 
ChunkStream tests, we use our server and client libraries. 
Our HTTP Live Streaming benchmarks use a custom Python 
library that parses HTTP Live Streaming .m3u8 play list files 
and queues relevant files for download. In all benchmarks, 
HTTP traffic passes through an instrumented version of 
Python 2.6's urllib2 standard library module that allows us 
to capture the number of bytes transferred by each client. 

For all of our tests, we used the first minute of the 
nOx405 24 frame/second H.264-encoded version of Ele­

phants Dream [5] as the source video. We chose Elephants 

Dream for its permissive Creative Commons Attribution 
license and high-definition source videos. We removed the 
audio tracks from the video in order to concentrate solely 
on video streaming performance. 

Scripts to replicate our benchmark tests are available with 
the ChunkStream source code. 

A. Streaming Performance 

In order to evaluate how efficiently ChunkStream streams 
video, we measure the total amount of data transferred by 
the client (both upstream and downstream) as it streams 
our sample video. We do not make time-based streaming 
measurements because our benchmark assumes that the 
client has sufficient bandwidth to stream the video without 
dropping frames. 

Figure 6 shows the total amount of data transferred using 
ChunkStream, HTTP download, and HTTP Live Streaming. 



We classify the bytes transferred into three categories. The 
first category, "Video Stream", represents the video as en­
coded and streamed by the system. Next, "Infrastructure" 
represents bytes dedicated to infrastructure concerns, such 
as playlists in HTTP Live Streaming or IndexTrees and 
backbones in ChunkStream. Finally, "HTTP" represents 
bytes that are solely due to the HTTP protocol exclusive 
of HTTP bodies, such as request and response headers. 

In Figure 6, the first three ChunkStream bars show results 
using 1 KB-sized chunks (containing 32 slots of 32 bytes 
each); the next three show measurements using 4 KB-sized 
chunks (64 slots of 64 bytes each). In this particular case, 
4 KB chunks have lower overhead than 1 KB chunks since 
the client must download fewer chunks and because the 
backbone chunks may contain more outgoing links per 
chunk. 

Within each size category of chunks, we show measure­
ments with our cache (bars marked "cache") and server­
side path de-referencing (bars marked "SSP") optimizations 
turned on. Caching reduces both the Infrastructure and 
HTTP overheads by reducing the number of Infrastructure 
chunks that must be read in order to play the video. 
The cache is useful because backbone chunks are densely 
packed and contain many pointers to LaneMarkers and 
would otherwise be read over the network repeatedly. Server­
side path de-referencing allows the client to avoid reading 
LaneMarkers. With both caching and server-side path de­
referencing enabled, Infrastructure overheads weigh in at 
about 40 KB, negligible compared to the size of the video. 

HTTP Download is the best case scenario since the 
downloaded file is simply a small MP4 wrapper around 
the raw H.264 stream. Unfortunately, a file in such a 
format typically cannot be viewed until it is completely 
downloaded. HTTP Live Streaming uses MPEG-TS as its 
container format. MPEG-TS is optimized for lossy channels 
like satellite or terrestrial broadcast and includes protections 
for lost or damaged packets. Unfortunately, such protections 
are unnecessary for TCP-based protocols like HTTP and 
lead to a 20-25% overhead compared to the raw video. 
In the optimized case with caching and server-side path 
de-referencing enabled, ChunkStream carries 15% overhead 
compared to the raw video, which is better than HTTP Live 
Streaming and acceptable for consumer applications. 

B. Editing Operation Petjormance 

Next, we measure how interactive editing operations under 
ChunkStream compare to existing solutions. In this section, 
for the ChunkStream tests, we use 4 KB chunks with server­
side path de-referencing and caching enabled. 

J) Frame-accurate Seeking: Figure 7 shows the amount 
of time it takes to seek to a specified frame in a the video 
clip using a cold cache. To mirror the network environment 
small devices may encounter, we use trickle [6] to simulate 
the optimal 2Mbitls bandwidth of wireless 3G networks. 
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Figure 7. Mean seek time to seek to a random position in the stream. The 
clients are on a network limited to wireless 3G-like speeds of 2Mbitls. 

We measure ChunkStream seek times under two different 
conditions: fetching only the sought-after frame without 
context (context=none) and fetching the entire context to 
accurately decode the sought-after frame (context=full). For 
HTTP Live Streaming, we test with 1 s segments, since 
those can be quickly downloaded. We do not show HTTP 
Download as that requires downloading the entire file, which 
takes many minutes. 

Seek time for ChunkStream is, in general, lower than 
HTTP Live Streaming. The seek times for ChunkStream and 
HTTP Live Streaming both form periodic sawtooth curves. 
The period of the HTTP Live Streaming curve is equal 
to the segment size of the stream, in this case 1 s, or 24 
frames. The curve is a sawtooth because frames in an HTTP 
Live Streaming MPEG-2 Transport Stream are of variable 
size so a client must scan through the segment to find the 
frame it needs, rather than requesting specific byte ranges 
from the server. The period of the ChunkStream curves is 
set by the frequency of I-frames in the underlying H.264 
stream. Elephants Dream is encoded with an I-frame every 
12 frames, which shows up as spikes in the context=none 
measurements. The sawtooth of the context=full measure­
ments comes from having to fetch all frames between the 
I-frame and the sought-after frame. 

Note that HTTP Live Streaming is much more efficient in 
the first second (first 24 frames) of video. This is because 
the first second of Elephants Dream is composed of only 
black frames, making the first HTTP Live Segment only 
5 KB in length and a very quick download. Subsequent 
segments are much larger, and as a consequence, it takes 
much more time to seek within the HTTP Live Stream. In 
contrast, ChunkStream results are fairly consistent because 
ChunkStream fetches a more constant number of chunks to 
reach any frame in the video. 
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Figure 8. Data transferred streaming a video at various play speeds. The 
horizontal line is the size of the raw video stream. 

2) High-speed Playback: Figure 8 shows the bandwidth 
consumed as an editor fast-forwards through a stream at 
2-, 4-, 8-, and 16-times real time. We show HTTP Live 
Streaming for comparison, even though the client must 
download entire segments before fast forwarding and accord­
ingly behaves as it is playing as normal speed. The amount 
of bandwidth consumed by ChunkStream falls in proportion 
to the number of frames skipped. The fall-off is most 
dramatic when ChunkStream ignores context (context=none 
in Figure 8). However, ignoring context leads to distorted 
frames. In contrast, fetching all context frames (context=full) 
shows a slow falloff for low playback speeds since the client 
must fetch almost all frames to fill in context. When the 
playback speed is greater than the frequency of I-frames, we 
are able to skip I-frames. In our case, we see a steep fall­
off in bandwidth consumption at the 16X playback speed, 
the first playback step greater than the I-frame period of 12 
frames. 

A reasonable compromise is to fetch only the I-frames in 
a context during high-speed playback, since I-frames contain 
the most information, can be decoded without distortion, and 
are found easily in a ChunkStream by following the first slot 
of a FrameContext chunk. Such a strategy has reasonable 
fall-off as playback speed increases (shown by the context=I­
frame bars), allowing editors to efficiently scan through long 
clips without having to download everything. 

V. RELATED WORK 

ChunkStream is inspired by existing work in video 
streaming protocols, analysis of user behavior for streaming 
systems, video editing, and network-enabled object systems. 

A. Video Streaming 

Video streaming solutions fit into three general categories: 
streaming, downloading, and pseudo-streaming [7]. Two 
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common streaming solutions are IETF's RTPIRTSP suite [8], 
[9] and Adobe's RTMP [10]. RTPIRTSP uses a combination 
of specially "hinted" files, TCP control streams, and UDP 
data streams to give users frame-accurate playback over both 
live and pre-recorded streams. RTPIRTSP offers no way to 
modify videos in place. Adobe's RTMP [10] is a specialized 
protocol for streaming Flash-based audio and video over 
TCP. Unlike RTPIRTSP, RTMP multiplexes a single TCP 
connection, allowing it to more easily pass through firewalls 
and NATs at the cost of the complexity of multiplexing and 
prioritizing substreams within the TCP connection. Clients 
have some control over the stream and may seek to particular 
timestamps. 

On the other hand, many clients "stream" video by down­
loading a complete video file over HTTP. HTTP download­
ing is simple, but does not allow efficient seeking in content 
that has not yet been downloaded, nor can it adapt to varying 
bandwidth constraints. Pseudo-streaming is an extension of 
the download model that allows clients to view content as 
it is downloaded. Recently, Pantos's work on HTTP Live 
Streaming [3] extends the HTTP pseudo-streaming model by 
chunking long streams into smaller files that are individually 
downloaded. A streaming client first downloads a "playlist" 
that contains the list of video segments and how long 
each segment lasts. The client then streams each segment 
individually. The HTTP Live Streaming play list may contain 
"variant" streams, allowing a client to switch to a, e.g., lower 
bandwidth, stream as conditions warrant. Seeking is still 
awkward, as the client must download an entire segment 
before seeking is possible. 

Of the three categories, streaming is the most bandwidth­
efficient, but pseudo-streaming and downloading are the 
most widely implemented, likely because of implementation 
simplicity [7]. 

B. Client Interactivity 

Costa et al. [I] studied four streaming workloads and 
found that almost all video clients start at the beginning of 
the clip and have a single interaction with the video: pause. 
All of the protocols mentioned above are optimized for the 
case where clients "tune in" to a stream and watch it without 
jumping to other parts of the video. In fact, most scalable 
streaming formats fail to scale when clients are interactive 
[2]. This is a problem for video editing because the editing 
process is highly interactive. 

C. Video Editing 

Professional video editors use heavy-weight software like 
Avid [11], Adobe Premiere [12], or Apple Final Cut Pro [13] 
running on relatively well-equipped workstations. All three 
programs assume that media is accessible through some 
file system, scaling from local disks to networked petabyte 
storage arrays. Most consumers use simpler software like 
iMovie [14] to mix and mash up videos. 



The Leitch BrowseCutter [15] is perhaps the first remote 
non-linear editing system. BrowseCutter allows users to 
work on laptops completely disconnected from the main 
store of high-quality video. In order to do so, each user 
downloads complete, highly-compressed sets of low-quality 
video to their local machine and use standard editing tools 
to generate an edit decision list (EDL) of cut points for all of 
the relevant clips in the final video. When the user is done, 
the user sends the EDL back to the server, which applies 
the edits to the high-quality video. ChunkStream borrows 
BrowseCutter's EDL concept, but gives the client complete 
control over what data to download, cache, and manipulate. 

Sites like JayCut [16] enable simple video editing within 
a web browser. JayCut's video editor is an Adobe Flash 
application that presents a multi-track timeline and allows 
users to place transitions between videos in each track. 
JayCut does not offer a real-time preview of edits-if the 
user wants to view a series of edits, she must wait for JayCut 
to construct, transcode, and stream a brand new Flash video. 
In contrast, ChunkStream lets clients immediately review 
new content. 

There is already a market for video editing applications on 
smart phones. Apple's iPhone 3GS includes a simple video 
editing application that can trim videos. Nexvio's ReelDirec­
tor [17] iPhone application provides a more comprehensive 
video editor with some special effects. In both cases, the 
video clips to be edited must be present on the user's iPhone. 

D. Chunks 

Chunks share properties with network-enabled persistent 
programming systems [18], [19], [20]. Persistent program­
ming systems provide a hybrid programming model that 
offers the persistence of storage systems, but the computa­
tion model of object-oriented programming languages. Our 
chunk model differs from the persistent programming model 
in that chunks place an explicit limit on the amount of data 
a single chunk can hold, forcing us to make more granular 
data structures. We believe that starting with fine-grained 
data structures forces us to create data structures that are 
more accessible to small clients. 

VI. CONCLUSIONS AND FUTURE WORK 

Rather than using an ad-hoc protocol and data format 
specially designed for video editing, ChunkStream uses 
generic chunks as a foundation for building larger data 
structures that specifically address the requirements of video 
editing. Chunks are of fixed size, offering many of the the 
implementation advantages enjoyed by blocked streaming 
protocols while exposing the video-specific structure ignored 
by conventional streaming. 

Although this paper uses video editing as a driving exam­
ple, using chunks to build application-specific data structures 
is a generalizable technique. We believe that chunks may 
allow interchange of streamed data as well as open up data 
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structures to more applications. Our future work will focus 
on other applications and deriving general principles for 
using chunks in network-enabled applications. 
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