
Interactive Streaming of Structured Data

Justin Mazzola Paluska and Hubert Pham

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, U.S.A.

Abstract-We present ChunkStream, a system for efficient
streaming and interactive editing of online video. Rather than
using a specialized protocol and stream format, ChunkStream
makes use of a generic mechanism employing chunks. Chunks
are fixed-size arrays that contain a mixture of scalar data
and references to other chunks. Chunks allow programmers
to expose large, but fine· grained, data structures over the
network.

ChunkStream represents video clips using simple data types
like linked lists and search trees, allowing a client to retrieve
and work with only the portions of the clips that it needs.
ChunkStream supports resource-adaptive playback and "live"
streaming of real-time video as well as fast, frame-accurate
seeking; bandwidth-efficient high·speed playback; and compi­
lation of editing decisions from a set of clips. Benchmarks
indicate that ChunkStream uses less bandwidth than HTTP
Live Streaming while providing better support for editing
primitives.

I. INTRODUCTION

Users increasingly carry small, Internet-enabled comput­
ers with them at all times. Some of these small computers are
highly-capable smartphones like Apple's iPhone or Google's
Android, while others are lightweight netbooks.

These computers are "small" in the sense that they have a
small form factor as well as smaller than normal processing
and storage abilities. Nonetheless, users expect the same
functionality from them as their full-sized brethren. For ex­
ample, netbook users run full-fledged operating systems and
applications on their machines while smartphone users may
use full-featured applications to edit photos and spreadsheets
directly on their phone.

Such small machines may be computationally over­
whelmed by "big" tasks like editing video or creating
complex documents. Luckily, many of those big tasks are
centered around highly structured data types, giving us
an opportunity to present large data structures in smaller
units that impoverished clients may more easily consume
and manipulate. At the same time, a common network
protocol for expressing structure may allow us to share work
between small clients and cloud-based clusters, making use
of always-on network connections to compensate for anemic
compute abilities.

In this paper, we explore one way of exposing and sharing
structured data across the Internet, in the context of cloud­
based video editing. We choose to explore video editing
because video is highly structured-video files are organized
into streams, which are further organized into groups of

978-1-4244-5328-3/091$25.00 ©2009 IEEE 11

pictures composed of frames-yet there is no existing proto­
col for efficient editing of remote video. Additionally, many
video editing operations (such as special effects generation)
are computationally intensive, and as such may benefit from
a system where clients can offload heavy operations to a
cluster of servers. Finally, video is already an important data
type for mobile computing because most small computers
include special support for high-quality video decoding, and
now commonly even video capture.

While our exploration focuses on video, we believe that
our approach is generalizeable to any structured data type,
including other kinds of user data and executable programs.

A. Pervasive Video Editing

Just as users capture, edit, mashup, and upload photos
without touching a desktop computer, as video capabilities
become more prevalent, we expect users will want to edit
and mashup videos directly from their mobile devices.
However, currently, video editing is a single-device affair.
Users transfer all of their clips to their "editing" computer,
make all edits locally, and then render and upload their
finished work to the web. In a modern pervasive computing
environment, users should be able edit videos "in the cloud"
with whatever device they may have at the time, much
as they can stream videos from anywhere to anywhere at
anytime.

Video editing is a much more interactive process than
simple video streaming: whereas users of video streaming
engage in few stream operations [1], the process of video
editing requires extensive searching, seeking, and replaying.
For example, a video editor making cutting decisions may
quickly scan through most of a clip, but then stop and step
through a particular portion of a clip frame-by-frame to find
the best cut point. After selecting a set of cut points, the
editor may immediately replay the new composite video to
ensure that his chosen transitions make sense. In another
work flow, an editor may "log" a clip by playing it back at
a higher than normal speed and tagging specific parts of the
video as useful or interesting. Each of these operations must
be fast or the editor will become frustrated with the editing
process.

B. Internet-enabled Data Structures

Existing streaming solutions generally assume that clients
view a video stream at normal playback speeds from the
beginning [2] and are ill-suited to the interactivity that video

editing requires. A challenge to enabling pervasive video
editing is allowing small clients to manipulate potentially
enormous video clips.

Two general principles guide our approach. First, we
expose the internal structures of uploaded video clips to the
client so that each client can make decisions about what
parts to access and modify. Second, we offer "smaller", less
resource-intensive proxy streams that can be manipulated in
concert with full-sized streams.

Most streaming protocols already follow these principles
using ad-hoc protocols and specialized data formats. For
example, Apple's HTTP Live Streaming [3] exposes videos
to clients as a "playlist" of short (R::lOs) video segments.
Each segment may have individually-addressable "variants"
that allow clients to choose between an assortment of
streams with different resource requirements.

While it is possible to design a specialized video editing
protocol that adheres to these principles, we believe that the
fine-grained interactivity required by video editing and the
device-specific constraints imposed by each small client may
be better served by a more generic framework that allows the
client and server to decide, at run-time, how to export and
access video data. To this end, rather than fixing the protocol
operations and data formats, we explore an approach that
uses generic protocols and data formats as a foundation for
building video-specific network-accessible data structures.

C. Contributions

This paper presents ChunkStream, a system that allows
frame-accurate video streaming and editing that is adaptive
to varying bandwidth and device constraints. We propose
the use of a generic primitive-individually-addressable
"chunks"-that can be composed into larger, but still fine­
grained, data structures. ChunkStream exposes video clips
as a series of chunks embedded in search trees that allow
a client to quickly find frames, make edit decisions, and
stream video.

II. ARCHITECTURE

ChunkStream is built on top of a single data type­
the chunk. Using chunks as a foundation, we construct
composite data structures representing video streams and
editing decisions.

A. Chunks

A chunk is a typed, ordered, fixed-sized array of fixed­
sized slots. Each slot may be empty, contain scalar data,
or hold a reference ("link") to another chunk. Chunks are
stored on a central server and may be requested by clients
over the network. Chunk links are explicit and as such can
be used to create large data structures out of networks of
chunks. Figure I illustrates a chunk that holds some text
and links to another chunk that contains image data.

12

Four score and

Figure 1. Two chunks with a link between them. The gray bar indicates
the start of the chunk.

We chose chunks as our foundation data type for two
reasons. First, since chunks contain a fixed number of fixed­
sized slots, there is a limit to the total amount of information
that a single slot can hold as well as a limit to the number
of chunks to which a single chunk can directly link. While
fixed sizes may be seen as a limitation, size limits do have
certain benefits. Small chunks force us to create fine-grained
data structures, giving clients greater choices as to what data
they want to access over the network. Moreover, since clients
know the maximum sizes of the chunks they request, they
can easily use the number of chunks in a data structure to
account for total resource usage. Both features fit well with
our requirements for video editing on small clients.

Our second reason for using chunks is that they export a
flexible, reference-based interface that can be used to build,
link together, and optimize larger data structures one block
at a time. For example, chunks can be used to implement
any pointer-based data structure, subject to the constraint that
the largest single element fits in a single chunk. At the same
time, since the chunk interface is fixed between client and
server, chunk-based data structures can be shared between
the two without content format mismatches or undefined
links.

B. Representing Video Streams with Chunks

Our video representation is guided by the observation that
non-linear video editing consists of splicing and merging
streams of audio and video together to make a new, com­
posite stream that represents the edited video. If we were to
represent each video stream as a linked list of still frames,
editing would be the process of creating a brand new stream
by modifying the "next" pointer of the last frame we want
from a particular stream to point to the first frame of the
subsequent stream. Special effects, like a fade between two
streams, is just a splice from the first stream to a new
"special effect stream" to the destination stream and as such
can be linked into our final video in the same way that any
other stream could be.

l) Video Streams: We represent video streams with four
types of chunks, as illustrated in Figure 2. The underlying
stream is represented as a doubly-linked list of "backbone"
chunks. The backbone is doubly-linked to allow forwards
and backwards movement within the stream. For each frame
in the video clip, the backbone links to a "LaneMarker"
chunk that represents the frame.

Index
Tree

Backbone

Lane
Markers

lane #0
(HO)

Frame
Data

Lane #1
(Iow-bandwidth)

Figure 2. Chunk-based video stream representation used by ChunkStream.
LaneMarker chunks represent logical frames and point to "lanes" composed
of FrameData chunks. Each lane represents the frame in different formats,
e.g. using HD or low-bandwidth encodings.

A LaneMarker chunk serves two purposes. First, it links to
metadata about a frame, such as frame number or video time
code. Second, the LaneMarker links to "lanes" of video. A
lane is a video sub-stream of a certain bandwidth and quality,
similar to segment variants in HTTP Live Streaming. A
typical LaneMarker might have three lanes: one high-quality
HD lane for powerful devices and final output, a low-quality
lane suitable for editing over low-bandwidth connections on
small devices, and a thumbnail lane that acts as a stand-in
for frames in static situations, like a timeline. ChunkStream
requires that each lane be semantically equivalent (even if
the decoded pictures are different) so that the client may
choose whatever lane it deems appropriate based on its
resources.

Each lane slot in the LaneMarker points to a FrameData
chunk that contains the underlying encoded video data. If the
frame data does not fit within a single chunk, the FrameData
chunk may link to other FrameData chunks.

Finally, in order to enable efficient, O(log n) random
frame seeking (where n is the total number of frames), we
add a search tree, consisting of IndexTree chunks, that maps
playback frame numbers to backbone chunks.

Listing 1 shows the algorithm clients use to play a video
clip in ChunkStream. A client first searches through the
IndexTree for the backbone chunk containing the first frame
to play. From the backbone chunk, the client follows a
link to the LaneMarker for the first frame and examines its
contents to determine which lane to play. Finally, the client
dereferences the link for its chosen lane to fetch the actual
frame data and decodes the frame. To play the next frame,
the client steps to the next element in the backbone and
repeats the process of finding frame data from the backbone

13

1 def play(tree_root):
2
3 frame_num = 0
4 # Search through the IndexTree:
5 backbone = indextree_find_frame(tree_root, frame_num)
6
7 while playing:
8 # Dereference links from the backbone down to frame data:
9 1m_chunk = geUane_marker(backbone, frame_num)

10 lane_num = choose_lane(lm_chunk)
1 1 frame_data = read_lane(lm_chunk, lane_num)
12 # Decode the data we have
13 deocde_frame(frame_data)
14
15 # Advance to next frame in backbone:
16 (backbone, frame_num) = ge,-next(backbone, frame_num)

Listing I. Client-side playback algorithm for ChunkStream.

chunk.
An advantage of exposing chunks directly to the client is

that new behaviors can be implemented without changing the
chunk format or the client/server communication protocol.
For example, we may extend the basic playback algorithm
on the client with additional, editing-friendly commands
by simply altering the order and number of frames we
read from the backbone. In particular, a client can sup­
port reverse playback by stepping backwards through the
backbone instead of forwards. Other operations, like high­
speed playback in either direction may be implemented by
skipping over frames in the backbone based on how fast
playback should proceed.

It is also possible to implement new server-side behaviors,
such as live streaming of real-time video. Doing so simply
requires dynamically adding new frames to the backbone
and lazily updating the IndexTree so that new clients can
quickly seek to the end of the stream.

2) Editing: Clients compile their desired cuts and splices
into an Edit Decision List (EDL). The EDL is a doubly­
linked list of EDLClip chunks. Each EDLClip chunk ref­
erences the start frame of a clip to play and the length
the clip should play; the order of the EDLClips in the
linked list indicate the order in which to play the video
clips. EDLs are lightweight since each EDLClip chunk
references frames contained within an existing ChunkStream
clip rather than copying frames. They are also easy to modify
since new edit decisions can be added or existing decisions
removed by changing the linked list. Using EDLs also allows
ChunkStream to make video clips themselves immutable,
aiding optimization and caching (cf. Section IT-E).

Figure 3 illustrates an EDL and a series of shots between
two characters engaged in a dialog. The EDL references
video from clip 1 for 48 frames, then clip 2 for 96 frames,
and then clip 1 again for 144 frames. To play through
the EDL, the client loads the clip referenced by the first
EDLClip in the EDL, seeks to the correct position in the
clip and then plays it for the specified number of frames
before moving to the next EDLClip chunk in the EDL and
repeating the process.

Figure 3. An Edit Decision List (EDL) using three portions of two clips.

C. Editing Example

A user that edits with ChunkStream first uploads his video
clips to the ChunkStream server, which creates the relevant
IndexTree and backbone structures. If possible, the server
transcodes the clip to create less resource-intensive lanes
for small clients. For each uploaded clip, the server returns
a reference to root of that clip's IndexTree. In addition to
the clips he uploaded, the user may also use other clips that
are on the ChunkStream server. To do so, the user's client
only needs a reference to the root of the clip's IndexTree,
usually provided by a search feature on the server.

After uploading the clips, the user scans through the
clips he wants to use. In order to provide the user with
an overview of each clip, the user's client runs through the
backbone and decodes every 60th frame of a low-quality
lane to create a filmstrip of thumbnails. After reviewing the
thumbnail filmstrips, the user starts playing portions of each
clip. As he marks start and stop points on the clips, his client
compiles an EDL that points to the different parts of each
clip that the user would like to use. Occasionally, the user
changes the start and stop points or re-orders the clips; in
response, his client just modifies the EDL. The EDL lives
on the server, allowing the user to switch clients and still
access his work.

After running through a few iterations, the user is happy
with his rough cut of his video and starts adding special
effects like fades. Rather than modifying the existing clips
to add special effects, the user's client asks the Chunk Stream
server to create a new clip containing the special effect. The
server creates the new clip, including all relevant IndexTrees
and alternative lanes, and passes a reference to the new clip's
IndexTree root. The client then integrates the special effect
clip by modifying the EDL.

Finally, when the user is ready to make the final cut of
his video, the client asks the server to compile the EDL to
a new ChunkStream clip. In order to do so, the server reads
through the EDL and copies the relevant frames (transcoding
them as necessary) to a new IndexTree and backbone. The

14

Backbone

Lane
Markers

Lane

Frame
Context

Frame #1
(I-frame)

Frame #2
(P·frame)

Frame #3
(B-frame)

Frame #4
(P·frame)

Figure 4. FrameContext chunks allow inter-frame compression by
exposing the dependencies of a particular frame. The first slot in the
FrameContext chunk always points to the I-frame that serves as the
foundation of the dependent group of pictures and subsequent slots point to
frames in the dependency chain between the I-frame and the current frame
in the required decode order.

new video can then be viewed by and shared with other
users on the ChunkStream server.

While editing, ChunkStream actively encourages reuse
and referencing of already uploaded data. It is only during
the creation of new content, such as new special effects
or the final "playout" step that new IndexTree, backbone,
and FrameData chunks are created. During all other steps,
the client just refers to already existing chunks, and uses
ChunkStream's fast seeking features to make it appear to
the user that his edits have resulted in a brand new clip on
the server.

D. Codec Considerations

In traditional video files, raw data is organized according
to a container format such as MPEG-TS, MPEG-PS, MP4,
or AVI. ChunkStream's IndexTrees, backbones, and Lane
Markers serve to organize raw encoded streams and, as such,
may be considered as a specialized container format.

Container formats offer many advantages over raw codec
streams. Most formats allow a single file to contain multiple
streams, such as a video stream and one or more audio
streams, as well as provide different features depending
on the environment. Some formats, like MPEG-TS, include
synchronization markers that require more bandwidth, but
tolerate packet loss or corruption, while others are optimized
for more reliable, random-access media. However, at its
core, the job of the container format is to present encoded
data in the order in which the decoder needs it.

This is especially important for video codecs that use use
inter-frame compression techniques because properly decod­
ing a particular frame may depend on properly decoding
other frames in the stream. For example, the H.264 codec
[4] includes intra frames (I-frames) that can be decoded
independently of any other frame; predictive frames (P-

frames) that depend on the previously displayed 1- or P­
frame; and bi-predictive frames (B-frames) that depend on
not only the previously displayed 1- or P-frame, but also the
next 1- or P-frame to be displayed. An H.264 stream that
is encoded using P- and B-frames is substantially smaller
at the same quality level than a stream encoded using only
I-frames.

Unfortunately for video editing, using inter-frame com­
pression complicates seeking, high-speed playback, and
inter-clip splicing because frames are no longer independent
and instead must be considered in the context of other
frames. For example, a client that seeks to a P- or B­
frame and displays only that frame without fetching other
frames in its context will either not be able to decode the
frame or decode a distorted image. Moreover, in codecs
like H.264 with bi-predictive frames, the order in which
frames are decoded is decoupled from the order in which
frames are displayed, and the container format ensures that
the decoder gets all the data it needs (including out-of­
order frames) in order to decode the current frame. In other
words, a container format contains the raw encoded streams
in "decode order" rather than display or "presentation" order.

Frames in a ChunkStream backbone are always in presen­
tation order. ChunkStream uses presentation order because
each lane in a stream may be encoded with different pa­
rameters or even different codecs, potentially forcing each
lane to have a different decode order. Rather than complicate
the backbone, we augment the FrameData chunks that make
up each lane with FrameContext chunks that specify the
dependencies of each frame.

Each FrameContext chunk contains a link to each Frame­
Data chunk that the frame depends on, one link per chunk
slot, in the order that the frames must be decoded. Frame­
Context chunks contain the full context for each frame, so
that the frame can be decoded without consulting any other
frame's FrameContext chunks. As a consequence, the first
slot of a FrameContext chunk always points to the previous
I-frame in presentation order.

For example, in Figure 4, we show a portion of an
H.264-encoded video clip using inter-frame compression.
Since I-frames can be decoded independently, frame 1
has no FrameContext chunk. Frame 2 is a P-frame, and
as such, depends on frame 1. Frame 2, therefore, has a
FrameContext chunk that specifies that frame 1 must be
decoded before frame 2 can be decoded. Similarly, frame
4 has a FrameContext chunk that specifies that frame 2, and
as a consequence, frame 1 must be decoded before it can be
decoded.' Finally, frame 3 is a B-frame and as such depends
on both frame 2 and frame 4, and by dependency, frame 1,
so its FrameContext chunk lists frames 1, 2, and 4.

1 In order to prevent circular references, H.264 does not allow P-frames
to depend on B-frames, but only on previous P- or I-frames. As such, frame
4 cannot depend on frame 3.

15

E. Overheads and Optimizations

The downside of breaking up a video into small chunks
is that each chunk must be requested individually from the
server, leading to an explosion of requests over the network.
There are three ways we can mitigate this explosion: (1)
densely packed infrastructure chunks, (2) caches, and (3)
server-side path de-referencing.

i) Densely-packed infrastructure Chunks: IndexTree and
backbone chunks are needed in order to create large, acces­
sible data structures out of small chunks. Since they carry
no video information, they are pure overhead. One way to
reduce the number of IndexTree and backbone chunks is to
use all available slots to create n-ary search trees and linked
lists with fat nodes.

2) Caches: Densely-packed infrastructure chunks are par­
ticularly useful when combined with client-side caching
because the client will need to repeatedly access the same
infrastructure chunks as it plays through a series of frames.
Caches are also helpful when fetching the context chunks for
a frame, since many frames may have the same, or similar,
contexts.

By using a cache, the client may be able to skip many
repeated network transfers and reduce the total load on the
server and network connection. Moreover, ChunkStream's
cache coherency protocol is very simple: indefinitely cache
IndexTree, backbone, and FrameData chunks from video
clips, since they never change after being uploaded; cache
LaneMarker chunks with a server-specified timeout since the
server may modify the LaneMarker to add additional lanes
as processing time allows; and never cache EDL or EDLClip
chunks, since they are volatile.

3) Server-side Path De-referencing: In lines 9 and 10 of
our playback algorithm in Listing 1, clients fetch the lane
marker and use it to determine which lane to play. If a
client has determined that a particular lane of a stream meets
its requirements, it will always follow the same generic
path from the backbone through the LaneMarkers to the
underlying video frames.

Since the client does not need the intermediate Lane­
Marker, except to use it to follow links to FrameData chunks,
we may lower request overheads by giving the chunk server
a path to de-reference locally and send the client only the
terminal chunk of the path. Figure 5 shows a sample stream
where the client has chosen to read the stream in the first
lane. Rather than requesting chunk A, then B, then C, it
may request that the server dereference the slot 1 in chunk
A, and then dereference slot 1 in chunk B, and only return
C, saving the transfer of chunks A and B. Server-side path
de-referencing is beneficial because it has the potential to
save both bandwidth and network round-trips.

III. IMPLEMENTATION

In order to test our ChunkStream ideas, we built a
prototype chunk server and a chunk client library. All source

Backbone

Lane
Markers

#0

Lanes

#1

Figure 5. Clients using server-side path dereferencing may skip over
LaneMarkers if they know what lane they want to use.

code is available under a free license from http://02s.csail.
mit.edulchunks.

A. Server

The server exposes chunks over HTTP and may run in any
web server that supports CGI and Python. Our server uses a
simple numbering scheme to name chunks both over the net­
work and within chunk links. The HTTP interface exposes a
simple chunk protocol that allows clients to read the contents
of chunks using standard HTTP GET requests (e.g., GET

/chunks/01234), create chunks using HTTP POST requests,
modify the contents of chunks using HTTP PUT requests.
Our server also supports server-side path de-referencing.
Clients request server-side de-referencing by adding a series
of path segments to the end of their GET path. For example,
a client may request chunk C from Figure 5 using GET

/chunks/N*11*1.
The CGI library is only required for stores that allow

clients to change chunks, e.g., as needed by a web-based
video editing applications, or by services that wish to make
use of server-side path de-referencing. However, read-only
stores that simply expose a set of pre-computed chunks could
be equally well-served by a standard web server serving
static chunks without needing our CGI server script.

B. Client Library

Our client code includes utilities for transcoding and cre­
ating ChunkStreams from standard H.264 video clips as well
as libraries to aid navigation and playback from a Chunk­
based server. The client playback library also implements
our server-side path de-referencing extension and includes
an optional chunk cache.

IV. EVALUATION

In order to show that our approach is useful, we must
show that ChunkStream is competitive with other approaches
in the resources that it uses. In particular, we hypothesize
(1) that video streaming over ChunkStream is no worse than

16

Streaming Overhead
14

12

�

I� HTTP

J � Infrastructure

_ Video Stream
.-

CD 10
� .-

� 8 f- .-
Q)
1ii
<::

� 6
..
iii
0

4

2

Figure 6. Data transferred streaming a video using Chunk Stream, standard
downloading, and HTIP Live Streaming. The horizontal line is the size of
the raw video stream.

existing solutions and (2) that interactive editing operations
under ChunkStream perform better than existing solutions.

To provide context for our benchmarks, we compare
ChunkStream to two other approaches: downloading full
files via HTTP and HTTP Live Streaming. For the
ChunkStream tests, we use our server and client libraries.
Our HTTP Live Streaming benchmarks use a custom Python
library that parses HTTP Live Streaming .m3u8 play list files
and queues relevant files for download. In all benchmarks,
HTTP traffic passes through an instrumented version of
Python 2.6's urllib2 standard library module that allows us
to capture the number of bytes transferred by each client.

For all of our tests, we used the first minute of the
nOx405 24 frame/second H.264-encoded version of Ele­

phants Dream [5] as the source video. We chose Elephants

Dream for its permissive Creative Commons Attribution
license and high-definition source videos. We removed the
audio tracks from the video in order to concentrate solely
on video streaming performance.

Scripts to replicate our benchmark tests are available with
the ChunkStream source code.

A. Streaming Performance

In order to evaluate how efficiently ChunkStream streams
video, we measure the total amount of data transferred by
the client (both upstream and downstream) as it streams
our sample video. We do not make time-based streaming
measurements because our benchmark assumes that the
client has sufficient bandwidth to stream the video without
dropping frames.

Figure 6 shows the total amount of data transferred using
ChunkStream, HTTP download, and HTTP Live Streaming.

We classify the bytes transferred into three categories. The
first category, "Video Stream", represents the video as en­
coded and streamed by the system. Next, "Infrastructure"
represents bytes dedicated to infrastructure concerns, such
as playlists in HTTP Live Streaming or IndexTrees and
backbones in ChunkStream. Finally, "HTTP" represents
bytes that are solely due to the HTTP protocol exclusive
of HTTP bodies, such as request and response headers.

In Figure 6, the first three ChunkStream bars show results
using 1 KB-sized chunks (containing 32 slots of 32 bytes
each); the next three show measurements using 4 KB-sized
chunks (64 slots of 64 bytes each). In this particular case,
4 KB chunks have lower overhead than 1 KB chunks since
the client must download fewer chunks and because the
backbone chunks may contain more outgoing links per
chunk.

Within each size category of chunks, we show measure­
ments with our cache (bars marked "cache") and server­
side path de-referencing (bars marked "SSP") optimizations
turned on. Caching reduces both the Infrastructure and
HTTP overheads by reducing the number of Infrastructure
chunks that must be read in order to play the video.
The cache is useful because backbone chunks are densely
packed and contain many pointers to LaneMarkers and
would otherwise be read over the network repeatedly. Server­
side path de-referencing allows the client to avoid reading
LaneMarkers. With both caching and server-side path de­
referencing enabled, Infrastructure overheads weigh in at
about 40 KB, negligible compared to the size of the video.

HTTP Download is the best case scenario since the
downloaded file is simply a small MP4 wrapper around
the raw H.264 stream. Unfortunately, a file in such a
format typically cannot be viewed until it is completely
downloaded. HTTP Live Streaming uses MPEG-TS as its
container format. MPEG-TS is optimized for lossy channels
like satellite or terrestrial broadcast and includes protections
for lost or damaged packets. Unfortunately, such protections
are unnecessary for TCP-based protocols like HTTP and
lead to a 20-25% overhead compared to the raw video.
In the optimized case with caching and server-side path
de-referencing enabled, ChunkStream carries 15% overhead
compared to the raw video, which is better than HTTP Live
Streaming and acceptable for consumer applications.

B. Editing Operation Petjormance

Next, we measure how interactive editing operations under
ChunkStream compare to existing solutions. In this section,
for the ChunkStream tests, we use 4 KB chunks with server­
side path de-referencing and caching enabled.

J) Frame-accurate Seeking: Figure 7 shows the amount
of time it takes to seek to a specified frame in a the video
clip using a cold cache. To mirror the network environment
small devices may encounter, we use trickle [6] to simulate
the optimal 2Mbitls bandwidth of wireless 3G networks.

17

1.0

0.8

�
Q)
E 0.6
F
-"
Q)
Q)

(f)
0.4

0.2

Mean Seek Time

ChunkStream (conteX1=none)

ChunkStream (conteX1=full)

HTTP Live Streaming (1s segments)

12 24 36 48 60 72 84 96 108 120
Frame Number

Figure 7. Mean seek time to seek to a random position in the stream. The
clients are on a network limited to wireless 3G-like speeds of 2Mbitls.

We measure ChunkStream seek times under two different
conditions: fetching only the sought-after frame without
context (context=none) and fetching the entire context to
accurately decode the sought-after frame (context=full). For
HTTP Live Streaming, we test with 1 s segments, since
those can be quickly downloaded. We do not show HTTP
Download as that requires downloading the entire file, which
takes many minutes.

Seek time for ChunkStream is, in general, lower than
HTTP Live Streaming. The seek times for ChunkStream and
HTTP Live Streaming both form periodic sawtooth curves.
The period of the HTTP Live Streaming curve is equal
to the segment size of the stream, in this case 1 s, or 24
frames. The curve is a sawtooth because frames in an HTTP
Live Streaming MPEG-2 Transport Stream are of variable
size so a client must scan through the segment to find the
frame it needs, rather than requesting specific byte ranges
from the server. The period of the ChunkStream curves is
set by the frequency of I-frames in the underlying H.264
stream. Elephants Dream is encoded with an I-frame every
12 frames, which shows up as spikes in the context=none
measurements. The sawtooth of the context=full measure­
ments comes from having to fetch all frames between the
I-frame and the sought-after frame.

Note that HTTP Live Streaming is much more efficient in
the first second (first 24 frames) of video. This is because
the first second of Elephants Dream is composed of only
black frames, making the first HTTP Live Segment only
5 KB in length and a very quick download. Subsequent
segments are much larger, and as a consequence, it takes
much more time to seek within the HTTP Live Stream. In
contrast, ChunkStream results are fairly consistent because
ChunkStream fetches a more constant number of chunks to
reach any frame in the video.

High-speed Playback Streaming Overhead
12 �TI'-IT---'TI-'�--�����

c:::::J HTTP
c:::::J Infrastructure

10 _ Video Stream

Figure 8. Data transferred streaming a video at various play speeds. The
horizontal line is the size of the raw video stream.

2) High-speed Playback: Figure 8 shows the bandwidth
consumed as an editor fast-forwards through a stream at
2-, 4-, 8-, and 16-times real time. We show HTTP Live
Streaming for comparison, even though the client must
download entire segments before fast forwarding and accord­
ingly behaves as it is playing as normal speed. The amount
of bandwidth consumed by ChunkStream falls in proportion
to the number of frames skipped. The fall-off is most
dramatic when ChunkStream ignores context (context=none
in Figure 8). However, ignoring context leads to distorted
frames. In contrast, fetching all context frames (context=full)
shows a slow falloff for low playback speeds since the client
must fetch almost all frames to fill in context. When the
playback speed is greater than the frequency of I-frames, we
are able to skip I-frames. In our case, we see a steep fall­
off in bandwidth consumption at the 16X playback speed,
the first playback step greater than the I-frame period of 12
frames.

A reasonable compromise is to fetch only the I-frames in
a context during high-speed playback, since I-frames contain
the most information, can be decoded without distortion, and
are found easily in a ChunkStream by following the first slot
of a FrameContext chunk. Such a strategy has reasonable
fall-off as playback speed increases (shown by the context=I­
frame bars), allowing editors to efficiently scan through long
clips without having to download everything.

V. RELATED WORK

ChunkStream is inspired by existing work in video
streaming protocols, analysis of user behavior for streaming
systems, video editing, and network-enabled object systems.

A. Video Streaming

Video streaming solutions fit into three general categories:
streaming, downloading, and pseudo-streaming [7]. Two

18

common streaming solutions are IETF's RTPIRTSP suite [8],
[9] and Adobe's RTMP [10]. RTPIRTSP uses a combination
of specially "hinted" files, TCP control streams, and UDP
data streams to give users frame-accurate playback over both
live and pre-recorded streams. RTPIRTSP offers no way to
modify videos in place. Adobe's RTMP [10] is a specialized
protocol for streaming Flash-based audio and video over
TCP. Unlike RTPIRTSP, RTMP multiplexes a single TCP
connection, allowing it to more easily pass through firewalls
and NATs at the cost of the complexity of multiplexing and
prioritizing substreams within the TCP connection. Clients
have some control over the stream and may seek to particular
timestamps.

On the other hand, many clients "stream" video by down­
loading a complete video file over HTTP. HTTP download­
ing is simple, but does not allow efficient seeking in content
that has not yet been downloaded, nor can it adapt to varying
bandwidth constraints. Pseudo-streaming is an extension of
the download model that allows clients to view content as
it is downloaded. Recently, Pantos's work on HTTP Live
Streaming [3] extends the HTTP pseudo-streaming model by
chunking long streams into smaller files that are individually
downloaded. A streaming client first downloads a "playlist"
that contains the list of video segments and how long
each segment lasts. The client then streams each segment
individually. The HTTP Live Streaming play list may contain
"variant" streams, allowing a client to switch to a, e.g., lower
bandwidth, stream as conditions warrant. Seeking is still
awkward, as the client must download an entire segment
before seeking is possible.

Of the three categories, streaming is the most bandwidth­
efficient, but pseudo-streaming and downloading are the
most widely implemented, likely because of implementation
simplicity [7].

B. Client Interactivity

Costa et al. [I] studied four streaming workloads and
found that almost all video clients start at the beginning of
the clip and have a single interaction with the video: pause.
All of the protocols mentioned above are optimized for the
case where clients "tune in" to a stream and watch it without
jumping to other parts of the video. In fact, most scalable
streaming formats fail to scale when clients are interactive
[2]. This is a problem for video editing because the editing
process is highly interactive.

C. Video Editing

Professional video editors use heavy-weight software like
Avid [11], Adobe Premiere [12], or Apple Final Cut Pro [13]
running on relatively well-equipped workstations. All three
programs assume that media is accessible through some
file system, scaling from local disks to networked petabyte
storage arrays. Most consumers use simpler software like
iMovie [14] to mix and mash up videos.

The Leitch BrowseCutter [15] is perhaps the first remote
non-linear editing system. BrowseCutter allows users to
work on laptops completely disconnected from the main
store of high-quality video. In order to do so, each user
downloads complete, highly-compressed sets of low-quality
video to their local machine and use standard editing tools
to generate an edit decision list (EDL) of cut points for all of
the relevant clips in the final video. When the user is done,
the user sends the EDL back to the server, which applies
the edits to the high-quality video. ChunkStream borrows
BrowseCutter's EDL concept, but gives the client complete
control over what data to download, cache, and manipulate.

Sites like JayCut [16] enable simple video editing within
a web browser. JayCut's video editor is an Adobe Flash
application that presents a multi-track timeline and allows
users to place transitions between videos in each track.
JayCut does not offer a real-time preview of edits-if the
user wants to view a series of edits, she must wait for JayCut
to construct, transcode, and stream a brand new Flash video.
In contrast, ChunkStream lets clients immediately review
new content.

There is already a market for video editing applications on
smart phones. Apple's iPhone 3GS includes a simple video
editing application that can trim videos. Nexvio's ReelDirec­
tor [17] iPhone application provides a more comprehensive
video editor with some special effects. In both cases, the
video clips to be edited must be present on the user's iPhone.

D. Chunks

Chunks share properties with network-enabled persistent
programming systems [18], [19], [20]. Persistent program­
ming systems provide a hybrid programming model that
offers the persistence of storage systems, but the computa­
tion model of object-oriented programming languages. Our
chunk model differs from the persistent programming model
in that chunks place an explicit limit on the amount of data
a single chunk can hold, forcing us to make more granular
data structures. We believe that starting with fine-grained
data structures forces us to create data structures that are
more accessible to small clients.

VI. CONCLUSIONS AND FUTURE WORK

Rather than using an ad-hoc protocol and data format
specially designed for video editing, ChunkStream uses
generic chunks as a foundation for building larger data
structures that specifically address the requirements of video
editing. Chunks are of fixed size, offering many of the the
implementation advantages enjoyed by blocked streaming
protocols while exposing the video-specific structure ignored
by conventional streaming.

Although this paper uses video editing as a driving exam­
ple, using chunks to build application-specific data structures
is a generalizable technique. We believe that chunks may
allow interchange of streamed data as well as open up data

19

structures to more applications. Our future work will focus
on other applications and deriving general principles for
using chunks in network-enabled applications.

VII. ACKNOWLEDGEMENTS

This work is sponsored by the T-Party Project, a Jomt
research program between MIT and Quanta Computer Inc.,
Taiwan. The authors would like to thank Steve Ward and Tim
Shepard for their comments on the paper and the approach
ChunkStream takes.

REFERENCES

[1] C. P. Costa, I. S. Cunha, A. Borges, C. V. Ramos, M. M.
Rocha, J. M. Almeida, and B. Ribeiro-Neto, "Analyzing client
interactivity in streaming media," in WWW, 2004.

[2] M. Rocha, M. Maia, ftalo Cunha, J. Almeida, and S. Campos,
"Scalable media streaming to interactive users," in ACM
Multimedia, 2005.

[3] R. P antos, "HT TP live streaming," IETF, Intemet Draft draft­
pantos-http-live-streaming-Ol, Jun. 2009.

[4] "Advanced video coding for generic audiovisual services,"
Intemational Telecommunication Union, Recommendation
H.264, May 2003. http://www.itu.intlrecrr-REC-H.264

[5] B. Kurdali, "Elephants dream," 2006. http://orange.blender.
org/

[6] M. A. Eriksen, "Trickle: A userland bandwidth shaper for
unix-like systems," in FREEN IX, 2005.

[7] L. Guo, S. Chen, Z. Xiao, and X. Zhang, "Analysis of mul­
timedia workloads with implications for intemet streaming,"
in WWW, 2005.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jackson,
"RTP: a transport protocol for Real-Time applications," IETF,
RFC 1889, 1996.

[9] H. Schulzrinne, A. Rao, and R. Lanphier, "Real time stream­
ing protocol (RTSP)," IETF, RFC 2326, Apr. 1998.

[10] "RTMP specification," Adobe Systems Inc., Adobe Developer
Connection, 2009. http://www.adobe.comldevnetlrtmp/

[11] "Avid media composer software." http://www.avid.coml
products/Media-Composer -Software/index. asp

[12] "Adobe premiere." http://www.adobe.comlproducts/premiere/
[13] "Final cut pro." http://www.apple.comlfinalcutstudio/

finalcutpro/
[14] "iMovie." http://www.apple.comlilife/imovie/
[15] R. S. Rowe, "Remote non-linear video editing," SMPTE

Journal, vol. 109, no. 1, pp. 23-25, 2000.
[16] "JayCut - online video editing." http://jaycut.com
[17] "Nexvio ReelDirector." http://www.nexvio.comlproductl

ReelDirector.aspx
[18] V. Cahill, P. Nixon, B. Tangney, and F. Rabhi, "Object models

for distributed or persistent programming," The Computer
Journal, vol. 40, no. 8, pp. 513-527, Aug. 1997.

[19] J. E. B. Moss, "Design of the mneme persistent object store,"
ACM Transactions on Information Systems, vol. 8, no. 2, pp.
103-139, 1990.

[20] C. Tang, D. Chen, S. Dwarkadas, and M. Scott, "Integrating
remote invocation and distributed shared state," in IPDPS,
2004.

