Nearly Optimal Sparse Fourier Transform

Haitham Hassanieh Piotr Indyk Dina Katabi Eric Price

MIT

2012-04-27

[""T

s

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

1/33

Outline

@ Introduction

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

12N Ge

Outline

@ Introduction

e Special case: exactly sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

o
Nearly Optimal Sparse Fourier Transform

=)

Outline

0 Introduction

e Special case: exactly sparse signals

e General case: approximately sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

Outline

0 Introduction
e Special case: exactly sparse signals
e General case: approximately sparse signals

© Experiments

u]
i}
I
ul
it
"

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform

Outline

@ Introduction

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

12N Ge

The Dicrete Fourier Transform

@ Discrete Fourier transform: given x € C”, find

Hassanieh, Indyk, Katabi, and Price (MIT)

?,' = ZXJCUI]

— Sampled Sound Data
— FFT Magnitude

Nearly Optimal Sparse Fourier Transform

T T
3000 4000

2012-04-27 4/33

The Dicrete Fourier Transform

@ Discrete Fourier transform: given x € C”, find

?,' = ZXJCUI]

— Sampled Sound Data
— FFT Magnitude

T T
3000 4000

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 4/33

The Dicrete Fourier Transform
@ Discrete Fourier transform: given x € C”, find
?,‘ = Z ijlj
X =Fx for Fj=u!

@ Fundamental tool
» Compression (audio, image, video)

15

» Signal processing

» Data analysis

- ’
@ FFT: O(nlog n) time. l

— Sampled Sound Data
— FFT Magnitude

T T
3000 4000

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 4/33

Sparse Fourier Transform

— Sampled Sound Data
— FFT Magnitude

T T U T T
0 1000 2000 3000 4000

H

@ Often the Fourier transform is dominated by a small number of
“peaks”

» Precisely the reason to use for compression.
@ If most of mass in k locations, can we compute FFT faster?

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 5/33

Sparse Fourier Transform

Time Frequency Frequency

L

@ If at most k non-zero coefficients, then “exactly k-sparse.”

@ More often well approximated by k largest coefficients:
“approximately k-sparse.”

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 6/33

Previous work

@ Boolean cube: [KM92], [GL89]. C": [Mansour92] k¢ log® n.
@ Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]
@ Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log* n.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 7133

Previous work

@ Boolean cube: [KM92], [GL89]. C": [Mansour92] k¢ log® n.
@ Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]

@ Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log* n.
» All have poor constants, many logs.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 7/33

Previous work

@ Boolean cube: [KM92], [GL89]. C": [Mansour92] k¢ log® n.
@ Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]

@ Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log* n.

» All have poor constants, many logs.
» Need n/k > 40,000 or w(log® n) to beat FFTW.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 7/33

Previous work

@ Boolean cube: [KM92], [GL89]. C": [Mansour92] k¢ log® n.
@ Long line of additional work [GGIMS02, AGS03, Iwen10, Aka10]

@ Fastest is [Gilbert-Muthukrishnan-Strauss-05]: k log* n.

» All have poor constants, many logs.
» Need n/k > 40,000 or w(log® n) to beat FFTW.
» Our goal: faster, beat FFTW for smaller n/k in theory and practice.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 7/33

Our results

@ O(klog(n/k)log n) time.
@ O(klog n) for special case: exactly k-sparse.
@ Faster than FFT when n/k = w(1).

@ Lower bounds:

» Q(klog k) for special case assuming FFT is optimal.
» For general case, Q(klog(n/k)/loglog(n/k)) samples even with
adaptive sampling.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 8/33

Our results

time.

@ Compute the k-sparse Fourier transform in O(k log(n/k)log n)

Hassanieh, Indyk, Katabi, and Price (MIT)

a
Nearly Optimal Sparse Fourier Transform

Our results

@ Compute the k-sparse Fourier transform in O(k log(n/k) log n)

time.
@ Get x’ with approximation error

X =X[3 <2 min _[X - X3
k-sparse Xk

with 3/4 probability.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform

2012-04-27

9/33

Our results

@ Compute the k-sparse Fourier transform in O(k log(n/k) log n)
time.

@ Get x’ with approximation error

X =X[3 <2 min _[X - X3
k-sparse Xk

with 3/4 probability.
@ If X is sparse, recover it exactly.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 9/33

Our results

@ Compute the k-sparse Fourier transform in O(k log(n/k) log n)
time.

@ Get x’ with approximation error

X =X[3 <2 min _[X - X3
k-sparse Xk

with 3/4 probability.
@ If X is sparse, recover it exactly.
» In O(klog n) time.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 9/33

Our results

@ Compute the k-sparse Fourier transform in O(k log(n/k) log n)
time.

@ Get x’ with approximation error
IX' = X5 <2 min X — X3
k-sparse Xk
with 3/4 probability.
o If X is sparse, recover it exactly.
» In O(klog n) time.
@ Caveats:

» Additional ||x||2/n®(") error. Alternatively, X has poly(n) precision.
» nmust be a power of 2.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 9/33

Outline

e Special case: exactly sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

o
Nearly Optimal Sparse Fourier Transform

=)

Algorithm

Suppose X is k-sparse, with integer coefficients in {—n®(") ... n®M},

Theorem
We can recover X in O(k log n) time with 3/4 probability. J

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11/33

Algorithm

Suppose X is k-sparse, with integer coefficients in {—n®(") ... n®M},
Theorem

We can recover X in O(k log n) time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover X' in O(klog n) time with 3/4 probability such that
X — x' is k/2-sparse.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11/33

Algorithm

Suppose X is k-sparse, with integer coefficients in {—n®(") ... n®M},
Theorem

We can recover X in O(k log n) time with 3/4 probability.

Lemma (Weak sparse recovery)

We can recover X' in O(klog n) time with 3/4 probability such that
X — x' is k/2-sparse.

@ Then: repeat on X — x’, with k — k/2 and decreasing the error
probability. [Eppstein-Goodrich '07]

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 11/33

Inspiration: arbitrary linear measurements
Eppstein-Goodrich '07

@ Get linear measurements x; = F,.‘W of X

u]
]
I
ul
It
ihi
"
<
¢

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform

Inspiration: arbitrary linear measurements
Eppstein-Goodrich '07

@ Get linear measurements x; = F,‘W of X
@ What if we could choose arbitrary linear measurements?

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 12/33

Inspiration: arbitrary linear measurements
Eppstein-Goodrich '07

@ Get linear measurements x; = F,.‘W of x

@ What if we could choose arbitrary linear measurements?
@ Pairwise independent hash: h: [n] — [B] for B = ©(k).

n coordinates

B bins

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

12/33

Inspiration: arbitrary linear measurements
Eppstein-Goodrich '07

@ Get linear measurements x; = F,.‘W of x

@ What if we could choose arbitrary linear measurements?
@ Pairwise independent hash: h: [n] — [B] for B = ©(k).

n coordinates

B bins

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

12/33

Inspiration: arbitrary linear measurements
Eppstein-Goodrich '07

@ Get linear measurements x; = Fi‘1? of x

@ What if we could choose arbitrary linear measurements?
@ Pairwise independent hash: h: [n] — [B] for B = ©(k).

n coordinates

B bins

. . / -~
@ For each j, set i* = u;/u; and X'j» = u;.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

12/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, :Z/x,

h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, :Z/x,

h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.
@ Gives weak sparse recovery:

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, :Z/x,

h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.
@ Gives weak sparse recovery:
» If i alone in bucket h(i), recovered correctly.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe
Z Xi Z i X
h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.
@ Gives weak sparse recovery:

» If i alone in bucket h(i), recovered correctly.
» Hence i recovered correctly with 1 — k/B > 15/16 probability.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, Z/x,

h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.
@ Gives weak sparse recovery:

» If i alone in bucket h(i), recovered correctly.
» Hence i recovered correctly with 1 — k/B > 15/16 probability.
» If i recovered incorrectly, can add one spurious coordinate.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, Z/x,

h(i)=j h(i)=j

e For each j, set i* = u//u; and X'; = u;.

@ Gives weak sparse recovery:

If i alone in bucket h(i), recovered correctly.

Hence i recovered correctly with 1 — k/B > 15/16 probability.

If i recovered incorrectly, can add one spurious coordinate.
With 3/4 probability, less than k/4 such mistakes.

v

v vyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, Z/x,

h(i)=j h(i)=j

e For each j, set i* = u//u; and X'; = u;.

@ Gives weak sparse recovery:

If i alone in bucket h(i), recovered correctly.

Hence i recovered correctly with 1 — k/B > 15/16 probability.
If i recovered incorrectly, can add one spurious coordinate.
With 3/4 probability, less than k/4 such mistakes.

Hence X — X' is k/2-sparse.

v

vV v.vYyyvy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ Forj € [B], observe

Zx, Z/x,

h(i)=j h(i)=j

@ Foreach j, set i* = uj/uj and X'j- = u;.
@ Gives weak sparse recovery:

If i alone in bucket h(i), recovered correctly.

Hence i recovered correctly with 1 — k/B > 15/16 probability.
If i recovered incorrectly, can add one spurious coordinate.
With 3/4 probability, less than k/4 such mistakes.

Hence X — X' is k/2-sparse.

@ Goal: construct u, v’ from Fourier samples.

v

vV v.vYyyvy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

Inspiration: arbitrary linear measurements

@ For j € [B], observe

Zx, u=> i-X

h(i)=j h(i)=j

e For each j, set i* = u//u; and X'; = u;.
@ Gives weak sparse recovery:
If i alone in bucket h(i), recovered correctly.
Hence i recovered correctly with 1 — k/B > 15/16 probability.
If i recovered incorrectly, can add one spurious coordinate.
With 3/4 probability, less than k/4 such mistakes.
Hence X — X’ is k/2-sparse.
@ Goal: construct u, v’ from Fourier samples.
» Will be able to do this in O(Blog n) time.

v

vV v.vYyyvy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

13/33

What can you do with Fourier measurements?

Time Frequency

n-dimensional DFT:
‘ O(nlogn)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14/33

What can you do with Fourier measurements?

Time Frequency

n-dimensional DFT:
‘ O(nlogn)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14/33

What can you do with Fourier measurements?

Time Frequency

n-dimensional DFT:
O(nlog n)

n-dimensional DFT of first
B terms: O(nlog n)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14/33

What can you do with Fourier measurements?

Time Frequency

NN
i

n-dimensional DFT:
O(nlog n)

n-dimensional DFT of first
B terms: O(nlog n)

B-dimensional DFT of
first B terms: O(Blog B)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14/33

What can you do with Fourier measurements?

Time Frequency

ol
i

n-dimensional DFT:
O(nlog n)

n-dimensional DFT of first
B terms: O(nlog n)

B-dimensional DFT of
first B terms: O(Blog B)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 14/33

Framework

@ “Hashes” into B buckets in Blog B time.
@ Analogous to u; = 3= Xi-

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 15/33

Framework

@ “Hashes” into B buckets in Blog B time.
@ Analogous to u; = 3= Xi-

@ Issues:
» “Hashing” needs a random hash function

» Leakage R
» Want analog of u; = >/ Xi.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 15/33

Framework

@ “Hashes” into B buckets in Blog B time.
@ Analogous to u; = 3= Xi-
@ Issues:
» “Hashing” needs a random hash function
* Access X; = w ' Xar, SO X atsp = X [GMS05]

» Leakage R
» Want analog of u; = >/ Xi.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 15/33

Framework

@ “Hashes” into B buckets in Blog B time.
@ Analogous to u; = 3y Xi-
@ |ssues:
» “Hashing” needs a random hash function
* Access X; = w ' Xar, SO X atsp = X [GMS05]

» Leakage R
» Want analog of u; = >/ Xi.

* Time shift X = x;_1: get phase shift X =w'X.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 15/33

Framework

@ “Hashes” into B buckets in Blog B time.
@ Analogous to u; = 3y Xi-

@ |ssues:
» “Hashing” needs a random hash function
* Access X; = w P Xar, SO X arsp = Xt [GMS05]
» Leakage
> Want analog of uj = 3, i - X;.

* Time shift X = x;_1: get phase shift X =w'X.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 15/33

Leakage

1 i<B
o LetF :{ 0 otherwise
[GGIMS02,GMS05])

@ Observe

be the “boxcar” filter. (Used in

DFT(F-x, B)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 16/33

Leakage

@ LetF; = g . be the “boxcar” filter. (Used in
0 otherwise
[GGIMS02,GMS05])

@ Observe

DFT(F-x, B) = subsample(DFT(F-x, n), B)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 16/33

Leakage

@ LetF; = g . be the “boxcar” filter. (Used in
0 otherwise
[GGIMS02,GMS05])

@ Observe

DFT(F-x, B) = subsample(DFT(F-x,n),B) = subsample(lA-'*?, B).

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 16/33

Leakage

@ LetF; = g . be the “boxcar” filter. (Used in
0 otherwise
[GGIMS02,GMS05])

@ Observe
DFT(F-x, B) = subsample(DFT(F-x,n),B) = subsample(lA-'*?, B).

@ DFT F of boxcar filter is sinc, decays as 1/i.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 16/33

Leakage

@ LetF; = g . be the “boxcar” filter. (Used in
0 otherwise
[GGIMS02,GMS05])

@ Observe
DFT(F-x, B) = subsample(DFT(F-x,n),B) = subsample(lt'*?, B).

@ DFT F of boxcar filter is sinc, decays as 1/i.
@ Need a better filter F!

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 16/33

Filters

Filter (time) Filter (freq)

Given |supp(F)| = B, concentrate F.

u]
i}
I
ul
it
"

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform

Filters

Filter (time) Filter (freq)

20 0 0 EJ 00 Bin

@ Given |supp(F)| = B, concentrate F.
@ Boxcar filter: decays perfectly in time, 1/t in frequency.
» Non-trivial leakage everywhere.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 17/33

Filters

N Filter (time) Filter (freq)

y
o
o
"
.
y
.
0.2] N
]
, I Ll L]

20 0 0 EJ 00

@ Given |supp(F)| = B, concentrate F.
@ Boxcar filter: decays perfectly in time, 1/t in frequency.
» Non-trivial leakage everywhere.

@ Gaussians: decay as e~ in time and frequency.
» Non-trivial leakage to O(\/log n- \/log n) = O(log n) buckets.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 17/33

Filters

Filter (time) Filter (freq)

@ Given |supp(F)| = Blog n, concentrate F.
@ Boxcar filter: decays perfectly in time, 1/t in frequency.
» Non-trivial leakage everywhere.
@ Gaussians: decay as e~ in time and frequency
» Non-trivial leakage to O(\/log n- \/log n) = O(log n) buckets.

@ Still O(Blog n) time when |supp()| = Blogn.
» Non-trivial leakage to 0 buckets.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

17/33

Filters

Filter (time) Filter (freq)

@ Given |supp(F)| = Blog n, concentrate F.
@ Boxcar filter: decays perfectly in time, 1/t in frequency.
» Non-trivial leakage everywhere.
@ Gaussians: decay as e~ in time and frequency
» Non-trivial leakage to O(\/log n- \/log n) = O(log n) buckets.

@ Still O(Blog n) time when |supp()| = Blogn.

» Non-trivial leakage to 0 buckets.
» Trivial contribution to correct bucket.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 17/33

Filters

Filter (time) Filter (freq)

Let G be Gaussian with o = B4/logn
H be box-car filter of length n/B.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 18/33

Filters

. o 1 e rr 1
@ Let G be Gaussian with o = By/logn

@ H be box-car filter of length n/B.

@ Use F=GxH.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 18/33

Filters

o Filter (time) N Filter (freq)

@ Let G be Gaussian with o = By/logn

@ H be box-car filter of length n/B.

@ Use F = G« H.

@ Hashes correctly to one bucket, leaks to at most 1 bucket.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 18/33

Filters

o Filter (time) N Filter (freq)

@ Let G be Gaussian with o = By/logn

@ H be box-car filter of length n/B.

@ Use F = G« H.

@ Hashes correctly to one bucket, leaks to at most 1 bucket.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 18/33

Properties of filter
Filter (frequency): Gaussian * boxcar

—

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 19/33

Properties of filter
Pass region

o=

@ “Pass region” of size n/B, outside which is negligible 4.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 19/33

Properties of filter

Super-pass region

@ “Super-pass region”, where ~ 1.

@ “Pass region” of size n/B, outside which is negligible 4.

Hassanieh, Indyk, Katabi, and Price (MIT)

[m]

=
Nearly Optimal Sparse Fourier Transform

Properties of filter
Bad region

@ “Pass region” of size n/B, outside which is negligible 4.
@ “Super-pass region”, where ~ 1.
@ Small fraction (say 10%) is “bad region” with intermediate value.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 19/33

Properties of filter
Filter (time): Gaussian - sinc

@ “Pass region” of size n/B, outside which is negligible 4.

@ “Super-pass region”, where ~ 1.

@ Small fraction (say 10%) is “bad region” with intermediate value.
@ Time domain has support size O(Blog n).

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 19/33

Algorithm for exactly sparse signals

Original signal = Original signal &

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 20/33

Algorithm for exactly sparse signals

Computed F-z Filtered signal Fxz

i

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 20/33

Algorithm for exactly sparse signals

F.x aliased to B terms Filtered signal Fxz

i

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 20/33

Algorithm for exactly sparse signals

F.z aliased to B terms Computed samples of Fxz

i

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 20/33

Algorithm for exactly sparse signals

F.z aliased to B terms Computed samples of Fxz

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 20/33

F.z aliased to B terms

Algorithm for exactly sparse signals

Knowledge about 2

Hassanieh, Indyk, Katabi, and Price (MIT)

[m]

=)

Nearly Optimal Sparse Fourier Transform

F.z aliased to B terms

Algorithm for exactly sparse signals

Knowledge about 2

Hassanieh, Indyk, Katabi, and Price (MIT)

[m]

=)

Nearly Optimal Sparse Fourier Transform

F.z aliased to B terms

Algorithm for exactly sparse signals

Knowledge about 2
Lemma

If i is alone in its bucket and in the “super-pass” region,
Uniiy = ?,‘.

Computing u takes O(Blog n) time.

Hassanieh, Indyk, Katabi, and Price (MIT)

Nearly Optimal Sparse Fourier Transform

Algorithm for perfectly sparse signals

Lemma
If i is alone in its bucket and in the “super-pass” region,

Un(iy = Xi-

o Time-shift x by one and repeat: uj ;) = Xw'.
@ Divide to find i.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

21/33

Permutation in time and frequency

@ Can recover coordinates that are alone in their bucket and in the
super-pass region.
@ What if coordinates are near each other?

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 22/33

Permutation in time and frequency

@ Can recover coordinates that are alone in their bucket and in the
super-pass region.

@ What if coordinates are near each other?

@ Define the “permutation”

(PapX)i = Xaiw™ ™.

Then -
(Pa,bx)a,’+b = Xj.
@ For random a and b, each i is probably “well-hashed.”

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 22/33

Permutation in time and frequency

@ Can recover coordinates that are alone in their bucket and in the
super-pass region.

@ What if coordinates are near each other?

@ Define the “permutation”

(PapX)i = Xaiw™ ™.

Then -
(Pa,bx)a,’+b = Xj.
@ For random a and b, each i is probably “well-hashed.”

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 22/33

Overall algorithm

@ Weak sparse recovery:
» Permute with random a, b.
Hash to u
Time shift by one, hash to u'.
Forj € [B]
* Choose i* by U/ /uj = w' .
* Set)/(\','* =Uu.

vYyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 23/33

Overall algorithm

@ Weak sparse recovery:
» Permute with random a, b.
Hash to u
Time shift by one, hash to u'.
For j € [B]
* Choose i* by U/ /uj = w' .
* Set)/(\','* =Uu.
@ Full sparse recovery:
> X WeakRecovery(X, k)
» k— k/2, x — (x — Xx'), repeat.

vYyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

23/33

Overall algorithm

@ Weak sparse recovery:
» Permute with random a, b.
Hash to u
Time shift by one, hash to u'.
For j € [B]
* Choose i* by U/ /uj = w' .
* Set X' = uj.
@ Full sparse recovery:
» X' WeakRecovery(X, k)
» k— k/2, x — (x — Xx'), repeat.
@ Time dominated by hash to B, = k/2" buckets in round r:
» B.logn toAhash X. R
» Hashing x’ takes O(|supp(x’)|) = O(k).

vYyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

23/33

Overall algorithm

@ Weak sparse recovery:
» Permute with random a, b.
Hash to u
Time shift by one, hash to u'.
For j € [B]
* Choose i* by U/ /uj = w' .
* Set X' = uj.
@ Full sparse recovery:
» X' WeakRecovery(X, k)
» k— k/2, x — (x — Xx'), repeat.
@ Time dominated by hash to B, = k/2" buckets in round r:
» B.logn toAhash X. R
» Hashing x’ takes O(|supp(x’)|) = O(k).

e Time (4 logn + k) = O(klog n).

vYyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

23/33

Outline

e General case: approximately sparse signals

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

Nearly sparse signals

@ What happens if only 90% of the mass lies in top k coordinates,
not 100%7?

@ Want to find most “heavy” coordinates i with [Xj|? > || xiill|3/k.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 25/33

Nearly sparse signals

@ What happens if only 90% of the mass lies in top k coordinates,
not 100%7?

@ Want to find most “heavy” coordinates i with [Xj|? > || xiill|3/k.

Lemma

Each i is “well-hashed” with large constant probability over the
permutation (a, b). If i is well-hashed, then with time shift c we have

Un(iy = Xw® +1
so that for random c, the noise n is bounded by

Elln[°] < I1xtaill3/B

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 25/33

Recovering well-hashed i

A

A

wC’X,'

\/

@ With good probability over ¢, get up(y = Xiw® () + n with
Il < [x;]/10.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 26/33

Recovering well-hashed i

A

\/

@ With good probability over ¢, get up(y = Xiw® () + n with
Il < [x;]/10.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 26/33

Recovering well-hashed i

A

\/

@ With good probability over ¢, get up(y = Xiw® () + n with
Il < [x;]/10.
@ Phase error |6 < sin‘1(‘|—)’%||) <0.11.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 26/33

Recovering well-hashed i

A

\/

@ With good probability over ¢, get up(y = Xiw® () + n with

n| < [xi|/10.
@ Phase error |6 < sin‘%%) <0.11.

@ True for random c. For a fixed ~, run on ¢ and ¢ + ~ to observe

0

to within 0.22.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform

Recovering well-hashed i

w!

observation

@ Find i from n/k possibilities in bucket.
@ Choose any v, then observe w"’ to within +0.1 radians.
@ Constant number of bits, so hope for ©(log(n/k)) observations.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 27/33

Recovering well-hashed i

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 28/33

Recovering well-hashed i

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 28/33

Recovering well-hashed i

observation

w!

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

28/33

Recovering well-hashed i

observation

w!

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

28/33

Recovering well-hashed i

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 28/33

Recovering well-hashed i

@ We know / to within R.
@ Setv = [n/R].
@ Restrict and repeat, log(n/k) times.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 28/33

Problem: constant failure probability per measurement

A
W

observation

\/

@ We only estimate w”’ well with 90% probability.
@ Some of the log(n/k) restrictions will go awry.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 29/33

Problem: constant failure probability per measurement

A

w!

\/

@ We only estimate w”’ well with 90% probability.
@ Some of the log(n/k) restrictions will go awry.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 29/33

Problem: constant failure probability per measurement

A

w!

\/

@ We only estimate w”’ well with 90% probability.
@ Some of the log(n/k) restrictions will go awry.

@ Two options:
» Median of O(loglog(n/k)) estimates.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 29/33

Problem: constant failure probability per measurement

A

w!

\/

@ We only estimate w”’ well with 90% probability.
@ Some of the log(n/k) restrictions will go awry.

@ Two options:

» Median of O(loglog(n/k)) estimates.
» Can avoid the loss: learn log log(n/k) bits at a time.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 29/33

Hassanieh, Indyk, Katabi, and Price (MIT)

General k-sparse algorithm

@ Shown how to find most heavy hitters.

[m]

=)

Nearly Optimal Sparse Fourier Transform

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

o Gives “weak sparse recovery”: k-sparse x’ such that x — x’ is
k/2-sparse.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

o Gives “weak sparse recovery”: k-sparse x’ such that x — x’ is
k/2-sparse.
» With a little additional noise [Gilbert-Li-Porat-Strauss '10]

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27

30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

o Gives “weak sparse recovery”: k-sparse x’ such that x — x’ is
k/2-sparse.
» With a little additional noise [Gilbert-Li-Porat-Strauss '10]

@ Repeat on x — x', with k — k/2.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

@ Gives “weak sparse recovery”: k-sparse x' such that x — x' is
k/2-sparse.
» With a little additional noise [Gilbert-Li-Porat-Strauss '10]
@ Repeat on X — X, with k — kj/2.
@ Takes O((Bjlog n+ k)log(n/B;)) time in round i, with B; buckets.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

@ Gives “weak sparse recovery”: k-sparse x' such that x — x' is
k/2-sparse.
» With a little additional noise [Gilbert-Li-Porat-Strauss ’10]
@ Repeat on X — X, with k — kj/2.
@ Takes O((Bjlog n+ k)log(n/B;)) time in round i, with B; buckets.
» Previous recursion: B; < k; < k/2' gives

klognlogk > nlogn

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 30/33

General k-sparse algorithm

@ Shown how to find most heavy hitters.
@ Straightforward to estimate their value.

@ Gives “weak sparse recovery”: k-sparse x' such that x — x' is
k/2-sparse.
» With a little additional noise [Gilbert-Li-Porat-Strauss ’10]
@ Repeat on X — X, with k — kj/2.
@ Takes O((Bjlog n+ k)log(n/B;)) time in round i, with B; buckets.
» Previous recursion: B; < k; < k/2' gives

klognlogk > nlogn
» Instead: B; < k/i®"), k; < k/i! gives

klog nlog(n/k)

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 30/33

Outline

© Experiments

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

12N Ge

Empirical performance of exact sparse algorithm

Run Time vs Signal Size (k=50) Run Time vs Signal Sparsity (N=2%2)
10
[SFFT 3.0 (Exact) 10
FETW TR »
TP aarFTos -
o 1
T o1} o A <
4 . @
& - 8
© e o 01
g oo1 | o 3
= 3 [
c c
S o001 | " S 0.01
o 1 1 et o . o SFFT 3.0 (Exact)
00001 |t [—
g 0.001 AAFFT 0.9
1e05 [
20 g1 1 g1 SN 15 16 g7 g 18 W g2 g2 pm a7 g8 g9 g N g2 M g 5 g6 g7 g
Signal Size (n) Sparsity (K)

@ Compare to FFTW, previous best sublinear algorithm (AAFFT).
@ Faster than FFTW for k/n < 3%.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 32/33

Conclusions and Future Work

@ O(klog n) for exactly sparse X
@ O(klog £ log n) for approximation.
@ Beats FFTW for k/n < 3% (in the exact case).
@ Open problems:
» Can we get k log n for approximate recovery?
Hadamard matrix / FFT over finite fields?
n not a power of 27
Higher probability of success without log(1/§) slowdown?

Stronger approximation guarantee, like £../¢2?
Better recovery of off-grid frequencies?

vV vy vVvYVvYyy

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 33/33

Hassanieh, Indyk, Katabi, and Price (MIT)

=] =
Nearly Optimal Sparse Fourier Transform

12N Ge

SODA empirical Performance: runtime

Run Time vs Signal Size (k=50) Run Time vs Signal Sparsity (n=2?)
10 SFFT1.0 e
SFFT2.0 o 10
pced
1 FFTW OPT
I AAFFT 0.9 . T
] 8 +
g o 2 .
E E
[F :
c c
.01
200 £ o1 SFFT1.0
sFFT 2.0
o N
0.001 FFTW OPT
AAFFT 09
0.01 .
PR L R SR I SR Y gy 3 » 7 » 2 10 oM 2
Signal Size (n) Sparsity (K)

@ Compare to FFTW, previous best sublinear algorithm (AAFFT).

e Offer a heuristic that improves time to O(n'/3k%/3).

» Filter from [Mansour '92].
» Can’t rerandomize, might miss elements.

@ Faster than FFTW for n/k > 2,000.
@ Faster than AAFFT for n/k < 1,000,000.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 35/33

SODA empirical Performance: noise

vs SNR (n=2%, k=50)

SFFT L0
1 SFFT 20
> AAFFT 0.9
€ 01
I
g oo
5
5 o001
-
g
© 0.0001
<3
S
3
2 1e0s
<
1e-06
1e-07

-20 0 20 40 60 80 100
SNR (dB)

@ Just like in Count-Sketch, algorithm is noise tolerant.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 36/33

Saving a loglog(n/k) factor

@ Could use only log(n/k) samples by taking random ~:

» For 7/ # 7, w?(™'=7) uniform over circle.

» Hence w™ probably far from the observations.

» Distinguish among n/k possibilities with log(n/k) samples.
@ Takes n/klog(n/k) time to test all possibilities.
@ |dea: mix the two approaches.

» Split region into log(n/k) subregions of size w.

» Choose random v € [5%, 75 -

» Small enough that subregions remain local.

» Large enough that far subregions roughly uniform.

» ldentify subregion exhaustively: loglog(n/k) measurements and

log(n/k)loglog(n/k) time.
> Repeat 10g,,4(n/x)(1/K) times to identify 7.
» Total log(n/k) measurements, log®(n/k) time.

Hassanieh, Indyk, Katabi, and Price (MIT) Nearly Optimal Sparse Fourier Transform 2012-04-27 37/33

	Introduction
	Special case: exactly sparse signals
	General case: approximately sparse signals
	Experiments
	Appendix

