# **Tutorial on Sparse Fourier Transforms**

#### Eric Price

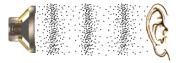
UT Austin

# The Fourier Transform

Conversion between time and frequency domains

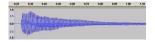
#### Time Domain

#### Frequency Domain



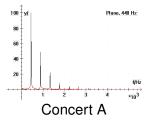
#### Fourier Transform





#### **Displacement of Air**

Eric Price



| Tutorial on Sparse Fourier Transforms | Tutorial on | Sparse | Fourier | Transforms |
|---------------------------------------|-------------|--------|---------|------------|
|---------------------------------------|-------------|--------|---------|------------|

## The Fourier Transform is Ubiquitous







Audio



Medical Imaging



Radar



GPS



**Oil Exploration** 

• How to compute  $\hat{x} = Fx$ ?

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do better?

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

- Carl Friedrich Gauss, 1805

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do much better?

- How to compute  $\hat{x} = Fx$ ?
- Naive multiplication:  $O(n^2)$ .
- Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical calculations.

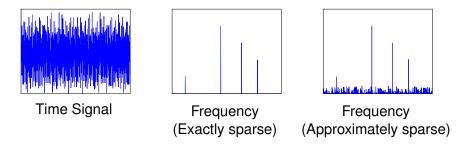
- Carl Friedrich Gauss, 1805

- By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
- Can we do much better?

When can we compute the Fourier Transform in *sublinear* time?

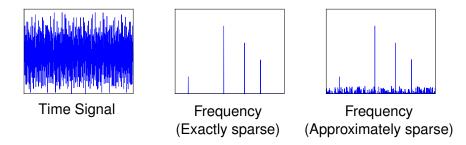
## Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:



# Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:



Sparsity is common:



Audio



Video



Medical Imaging



Radar



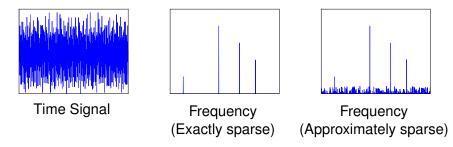
GPS



Oil Exploration

## Idea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:



Sparsity is common:

Goal of this workshop: *sparse* Fourier transforms *Faster* Fourier Transform on sparse data.

For recovering a *k*-sparse signal in *n* dimensions.

Exact sparsity, deterministic algorithm

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability
  - Compressed sensing, using Restricted Isometry Property

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability
  - Compressed sensing, using Restricted Isometry Property
  - $O(k \log^4 n)$  samples,  $O(n \log^c n)$  time.

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability
  - Compressed sensing, using Restricted Isometry Property
  - $O(k \log^4 n)$  samples,  $O(n \log^c n)$  time.
- **Today**: Approximate sparsity, 1/4 or 1/*n<sup>c</sup>* probability.

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability
  - Compressed sensing, using Restricted Isometry Property
  - $O(k \log^4 n)$  samples,  $O(n \log^c n)$  time.
- **Today**: Approximate sparsity, 1/4 or 1/*n<sup>c</sup>* probability.
  - Using hashing

- Exact sparsity, deterministic algorithm
  - Vandermonde matrix: 2k samples sufficient
  - Syndrome decoding for Reed-Solomon coding
  - Berlekamp-Massey:  $O(k^2 + k(\log \log n)^c)$  time.
- Approximate sparsity, 2<sup>-k</sup> failure probability
  - Compressed sensing, using Restricted Isometry Property
  - $O(k \log^4 n)$  samples,  $O(n \log^c n)$  time.
- **Today**: Approximate sparsity, 1/4 or 1/*n<sup>c</sup>* probability.
  - Using hashing
  - $O(k \log^c n)$  samples,  $O(k \log^c n)$  time.

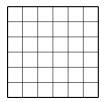


• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$

• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$

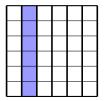


• 2*d* Fourier Transform:  $x \in \mathbb{C}^{n_1 \times n_2}$ ,  $\omega_i = e^{2\pi i/n_i}$ , want

$$\widehat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}$$

• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$

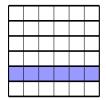


• 2*d* Fourier Transform:  $x \in \mathbb{C}^{n_1 \times n_2}$ ,  $\omega_i = e^{2\pi i/n_i}$ , want

$$\widehat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}$$

• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$

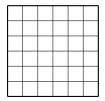


• 2*d* Fourier Transform:  $x \in \mathbb{C}^{n_1 \times n_2}$ ,  $\omega_i = e^{2\pi i/n_i}$ , want

$$\widehat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}$$

• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$



• 2*d* Fourier Transform:  $x \in \mathbb{C}^{n_1 \times n_2}$ ,  $\omega_i = e^{2\pi i/n_i}$ , want

$$\widehat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1j_1} \omega_2^{i_2j_2} x_{j_1,j_2}$$

▶ If  $n_1$ ,  $n_2$  are relatively prime, equivalent to 1 d transform of  $\mathbb{C}^{n_1 n_2}$ 

• 1*d* Fourier transform:  $x \in \mathbb{C}^n$ ,  $\omega = e^{2\pi i/n}$ , want

$$\widehat{x}_i = \sum_{j=1}^n \omega^{ij} x_j$$

• 2*d* Fourier Transform:  $x \in \mathbb{C}^{n_1 \times n_2}$ ,  $\omega_i = e^{2\pi i/n_i}$ , want

$$\widehat{x}_{i_1,i_2} = \sum_{j_1=1}^{n_1} \sum_{j_2=1}^{n_2} \omega_1^{i_1 j_1} \omega_2^{i_2 j_2} x_{j_1,j_2}$$

If n<sub>1</sub>, n<sub>2</sub> are relatively prime, *equivalent* to 1*d* transform of C<sup>n<sub>1</sub>n<sub>2</sub></sup>
 Hadamard transform: x ∈ C<sup>2×2×…×2</sup>:

$$\widehat{x}_i = \sum_{j}^{n} (-1)^{\langle i,j \rangle} x_j$$

Eric Price

• Goal: given access to *x*, compute  $\overline{x} \approx \widehat{x}$ 

• Exact case:  $\hat{x}$  is *k*-sparse,  $\overline{x} = \hat{x}$  (maybe to log *n* bits of precision)

- Goal: given access to *x*, compute  $\overline{x} \approx \hat{x}$ 
  - Exact case:  $\hat{x}$  is *k*-sparse,  $\overline{x} = \hat{x}$  (maybe to log *n* bits of precision)
  - Approximate case:

$$\|\overline{x} - \widehat{x}\|_2 \leq (1 + \epsilon) \min_{k - \text{sparse } \widehat{x}_k} \|\widehat{x} - \widehat{x}_k\|_2$$

- Goal: given access to *x*, compute  $\overline{x} \approx \hat{x}$ 
  - Exact case:  $\hat{x}$  is *k*-sparse,  $\overline{x} = \hat{x}$  (maybe to log *n* bits of precision)
  - Approximate case:

$$\|\overline{x} - \widehat{x}\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse} \ \widehat{x}_k} \|\widehat{x} - \widehat{x}_k\|_2$$

With "good" probability.

- Goal: given access to x, compute  $\overline{x} \approx \widehat{x}$ 
  - Exact case:  $\hat{x}$  is *k*-sparse,  $\overline{x} = \hat{x}$  (maybe to log *n* bits of precision)
  - Approximate case:

$$\|\overline{x} - \widehat{x}\|_2 \leq (1 + \epsilon) \min_{k \text{-sparse } \widehat{x}_k} \|\widehat{x} - \widehat{x}_k\|_2$$

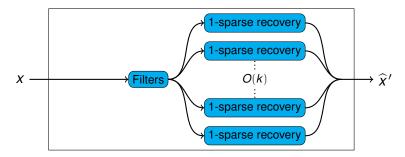
- With "good" probability.
- (1) Algorithm for k = 1 (exact or approximate)

- Goal: given access to x, compute  $\overline{x} \approx \hat{x}$ 
  - Exact case:  $\hat{x}$  is *k*-sparse,  $\overline{x} = \hat{x}$  (maybe to log *n* bits of precision)
  - Approximate case:

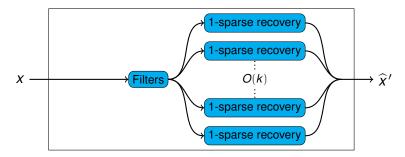
$$\|\overline{x} - \widehat{x}\|_2 \leq (1 + \epsilon) \min_{k ext{-sparse} \ \widehat{x}_k} \|\widehat{x} - \widehat{x}_k\|_2$$

- With "good" probability.
- (1) Algorithm for k = 1 (exact or approximate)
- 2 Method to reduce to k = 1 case

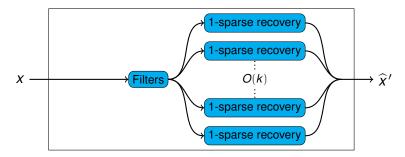
- **1** Algorithm for k = 1 (exact or approximate)
- 2 Method to reduce to k = 1 case



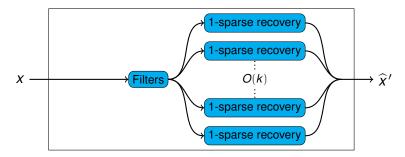
- (1) Algorithm for k = 1 (exact or approximate)
- 2 Method to reduce to k = 1 case



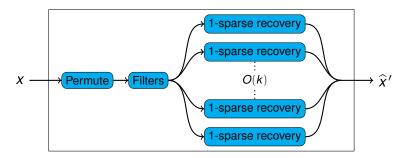
- (1) Algorithm for k = 1 (exact or approximate)
- 2 Method to reduce to k = 1 case
  - Split  $\hat{x}$  into O(k) "random" parts



- Algorithm for k = 1 (exact or approximate)
- ② Method to reduce to k = 1 case
  - Split  $\hat{x}$  into O(k) "random" parts
  - Can sample time domain of the parts.



- (1) Algorithm for k = 1 (exact or approximate)
- ② Method to reduce to k = 1 case
  - Split  $\hat{x}$  into O(k) "random" parts
  - Can sample time domain of the parts.
    - \*  $O(k \log k)$  time to get one sample from each of the k parts.



- (1) Algorithm for k = 1 (exact or approximate)
- Method to reduce to k = 1 case
  - Split  $\hat{x}$  into O(k) "random" parts
  - Can sample time domain of the parts.
    - \*  $O(k \log k)$  time to get one sample from each of the k parts.
- Finds "most" of signal; repeat on residual







1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

а

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

а

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$

а

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$
  $x_1 = a\omega^t$ 

а

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$
  $x_1 = a\omega^t$ 

•  $x_1/x_0 = \omega^t \implies t.$ 

а

 $\widehat{\mathbf{x}}$ :

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$
  $x_1 = a\omega^t$ 

•  $x_1/x_0 = \omega^t \implies t.$ 

а

 $\widehat{\mathbf{x}}$ :

### Lemma

We can compute a 1-sparse  $\hat{x}$  in O(1) time.

$$\widehat{x}_i = \begin{cases} a & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

• Then 
$$x = (a, a\omega^t, a\omega^{2t}, a\omega^{3t}, \dots, a\omega^{(n-1)t}).$$

$$x_0 = a$$
  $x_1 = a\omega^t$ 

•  $x_1/x_0 = \omega^t \implies t.$ 

• (Related to OFDM, Prony's method, matrix pencil.)

а

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

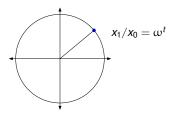
 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$ .

Then we can recover it with  $O(\log n)$  samples and  $O(\log^2 n)$  time.

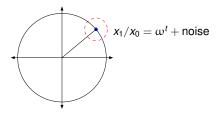


• With exact sparsity: log *n* bits in a single measurement.

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%$ .

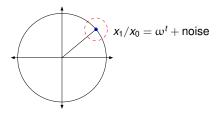


- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

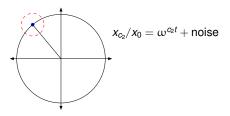


- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose  $\Theta(\log n)$  time shifts *c* to recover *i*.

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

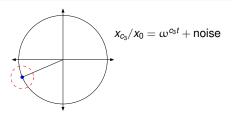


- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose  $\Theta(\log n)$  time shifts *c* to recover *i*.

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 



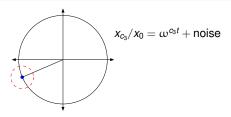
- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose  $\Theta(\log n)$  time shifts *c* to recover *i*.

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

Then we can recover it with  $O(\log n)$  samples and  $O(\log^2 n)$  time.



- With exact sparsity: log *n* bits in a single measurement.
- With noise: only constant number of useful bits.
- Choose  $\Theta(\log n)$  time shifts *c* to recover *i*.
- Error correcting code with efficient recovery  $\implies$  lemma.

Eric Price

Levin '93, improving upon Goldreich-Levin '89

$$\widehat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

Levin '93, improving upon Goldreich-Levin '89

$$\widehat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

Levin '93, improving upon Goldreich-Levin '89

$$\widehat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

Then we can recover it with  $O(\log n)$  samples and  $O(\log^2 n)$  time.

• We have sign $(\hat{x}_r) = sign((-1)^{\langle r,t \rangle} x_t)$  with 9/10 probability over r.

Levin '93, improving upon Goldreich-Levin '89

$$\widehat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

Then we can recover it with  $O(\log n)$  samples and  $O(\log^2 n)$  time.

We have sign(x̂r) = sign((−1)<sup>(r,t)</sup>xt) with 9/10 probability over r.
Therefore for any i, with 8/10 probability over r,

$$\operatorname{sign}(\frac{\widehat{x}_{i+r}}{\widehat{x}_{r}}) = \operatorname{sign}((-1)^{\langle i,t\rangle})$$

Levin '93, improving upon Goldreich-Levin '89

$$\widehat{x}_i = \sum_j (-1)^{\langle i,j \rangle} x_j$$

### Lemma

Suppose  $\hat{x}$  is approximately 1-sparse:

 $|\widehat{x}_t|/\|\widehat{x}\|_2 \ge 90\%.$ 

Then we can recover it with  $O(\log n)$  samples and  $O(\log^2 n)$  time.

We have sign(x̂r) = sign((−1)<sup>⟨r,t⟩</sup>xt) with 9/10 probability over r.
 Therefore for any i, with 8/10 probability over r,

$$\operatorname{sign}(\frac{\widehat{x}_{i+r}}{\widehat{x}_r}) = \operatorname{sign}((-1)^{\langle i,t\rangle})$$

• Choose *i* to be the *O*(log *n*) rows of generator matrix for constant rate and distance binary code.

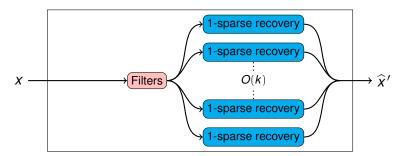
Eric Price

1 Algorithm for k = 1



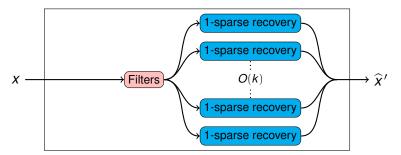
3 Putting it together

• Reduce general k to k = 1.



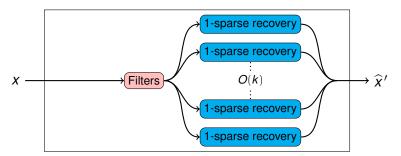
Eric Price

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.



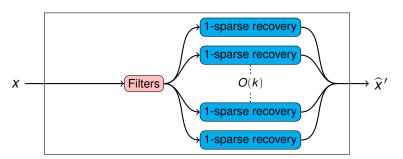
Eric Price

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.



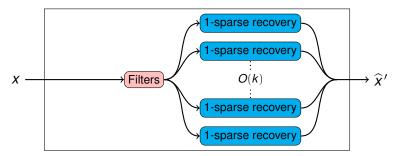
Eric Price

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.



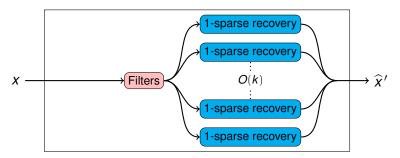
Eric Price

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.



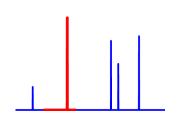
Eric Price

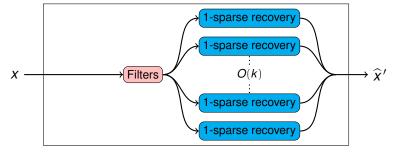
- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm



Eric Price

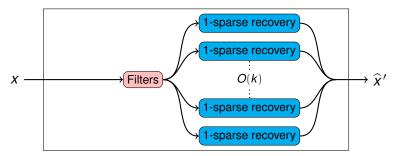
- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.





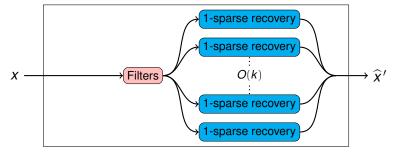
Eric Price

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.



- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

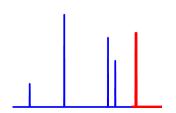


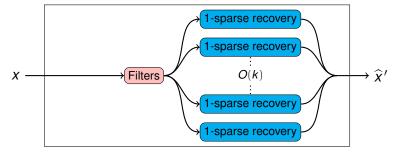


Eric Price

Tutorial on Sparse Fourier Transforms

- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.

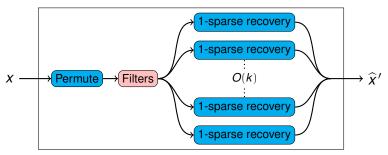


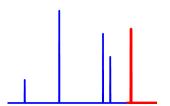


Eric Price

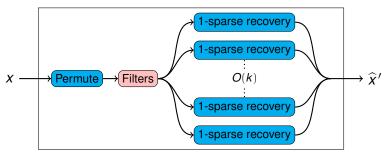
Tutorial on Sparse Fourier Transforms

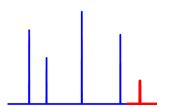
- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation



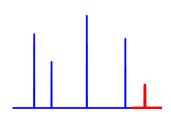


- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation





- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation





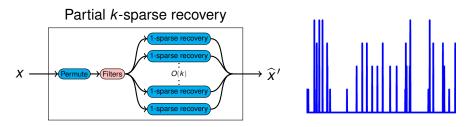
- Reduce general k to k = 1.
- "Filters": partition frequencies into O(k) buckets.
  - Sample from time domain of each bucket with O(log n) overhead.
  - Recovered by k = 1 algorithm
- Most frequencies alone in bucket.
- Random permutation



Recovers *most* of  $\hat{x}$ :

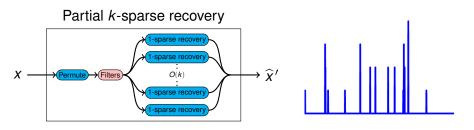
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



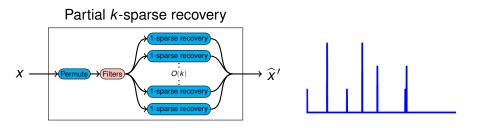
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



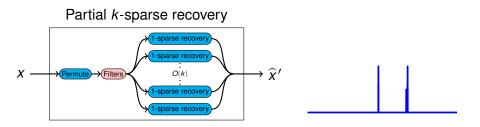
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



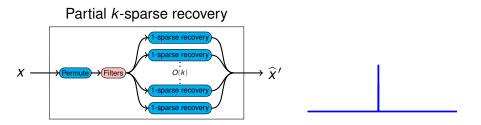
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



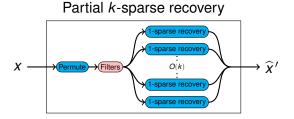
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



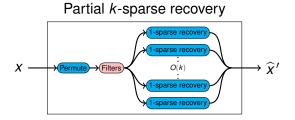
### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.

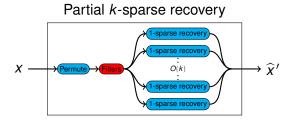
Repeat, 
$$k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$$

#### Theorem

We can compute  $\hat{x}$  in  $O(k \log n)$  expected time.

Eric Price

Tutorial on Sparse Fourier Transforms



### Lemma (Partial sparse recovery)

In  $O(k \log n)$  expected time, we can compute an estimate  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.

Repeat, 
$$k \rightarrow k/2 \rightarrow k/4 \rightarrow \cdots$$

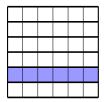
#### Theorem

We can compute  $\hat{x}$  in  $O(k \log n)$  expected time.

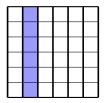
Eric Price

Tutorial on Sparse Fourier Transforms

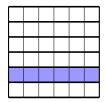
• Consider the  $\sqrt{n} \times \sqrt{n}$  2*d* setting.



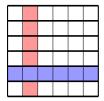
- Consider the  $\sqrt{n} \times \sqrt{n}$  2*d* setting.
- Get answer by FFT on rows, then FFT on resulting columns.



- Consider the  $\sqrt{n} \times \sqrt{n}$  2*d* setting.
- Get answer by FFT on rows, then FFT on resulting columns.

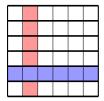


- Consider the  $\sqrt{n} \times \sqrt{n}$  2*d* setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y<sup>r</sup> of a random row r?



- Consider the  $\sqrt{n} \times \sqrt{n} \, 2d$  setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT y<sup>r</sup> of a random row r?
- For any column  $\widehat{z} = \widehat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$  we have in the corresponding time domain

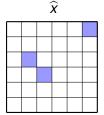
$$z_r = y_c^r$$



- Consider the  $\sqrt{n} \times \sqrt{n} \, 2d$  setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT  $y^r$  of a random row r?
- For any column  $\widehat{z} = \widehat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$  we have in the corresponding time domain

$$z_r = y_c^r$$

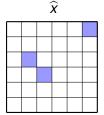
• With  $O(\sqrt{n} \log n)$  time, get samples from time domains of all  $\sqrt{n}$  columns.



- Consider the  $\sqrt{n} \times \sqrt{n} \, 2d$  setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT  $y^r$  of a random row r?
- For any column  $\widehat{z} = \widehat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$  we have in the corresponding time domain

$$z_r = y_c^r$$

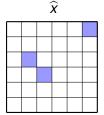
- With  $O(\sqrt{n} \log n)$  time, get samples from time domains of all  $\sqrt{n}$  columns.
- If column is 1-sparse, recover it with O(1) row FFTs



- Consider the  $\sqrt{n} \times \sqrt{n} \, 2d$  setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT  $y^r$  of a random row r?
- For any column  $\widehat{z} = \widehat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$  we have in the corresponding time domain

$$z_r = y_c^r$$

- With  $O(\sqrt{n} \log n)$  time, get samples from time domains of all  $\sqrt{n}$  columns.
- If column is 1-sparse, recover it with O(1) row FFTs
  - ► For approximate sparsity, *O*(log *n*) row FFTs.



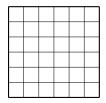
- Consider the  $\sqrt{n} \times \sqrt{n} \, 2d$  setting.
- Get answer by FFT on rows, then FFT on resulting columns.
- What if I just take the FFT  $y^r$  of a random row r?
- For any column  $\widehat{z} = \widehat{x}_{*,c} \in \mathbb{C}^{\sqrt{n}}$  we have in the corresponding time domain

$$z_r = y_c^r$$

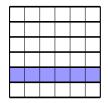
- With  $O(\sqrt{n} \log n)$  time, get samples from time domains of all  $\sqrt{n}$  columns.
- If column is 1-sparse, recover it with O(1) row FFTs
  - ► For approximate sparsity, *O*(log *n*) row FFTs.
- If  $k = \sqrt{n}$  random nonzeros, expect to recover most of them.

• Fourier transform switches multiplication and convolution.

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and  $\hat{F}$  are sparse

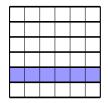


- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and  $\hat{F}$  are sparse
  - ► *F* is  $\tilde{O}(k)$ -sparse and  $\hat{F}$  is (approximately) O(n/k) sparse.



- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and  $\hat{F}$  are sparse
  - ► *F* is  $\tilde{O}(k)$ -sparse and  $\hat{F}$  is (approximately) O(n/k) sparse.
  - Last slide: F is row,  $\hat{F}$  is column

- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and  $\hat{F}$  are sparse
  - ► *F* is  $\tilde{O}(k)$ -sparse and  $\hat{F}$  is (approximately) O(n/k) sparse.
  - Last slide: F is row,  $\hat{F}$  is column



- Fourier transform switches multiplication and convolution.
- Choose a filter F so both F and  $\hat{F}$  are sparse
  - ▶ *F* is  $\tilde{O}(k)$ -sparse and  $\hat{F}$  is (approximately) O(n/k) sparse.
  - Last slide: F is row,  $\widehat{F}$  is column
- For various r, compute k-dimensional Fourier transform of y<sub>i</sub> = x<sub>i+r</sub>F<sub>i</sub>.

- Fourier transform switches multiplication and convolution.
- Choose a filter *F* so both *F* and  $\hat{F}$  are sparse
  - ► *F* is  $\tilde{O}(k)$ -sparse and  $\hat{F}$  is (approximately) O(n/k) sparse.
  - Last slide: F is row,  $\widehat{F}$  is column
- For various r, compute k-dimensional Fourier transform of y<sub>i</sub> = x<sub>i+r</sub>F<sub>i</sub>.
- Gives the *r*th time domain sample of  $\hat{x} \cdot \text{shift}(\hat{F})$  for *k* shifts of  $\hat{F}$ .

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

- $F = \operatorname{span}(A)$  for any  $A \in \mathbb{F}_2^{\log n \times \log B}$
- For any  $r \in \text{span}(A)^{\perp}$ , compute Hadamard transform of

 $y_i = x_{Ai+r}$ 

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

• For any  $r \in \text{span}(A)^{\perp}$ , compute Hadamard transform of

$$y_i = x_{Ai+r}$$

• Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

• For any  $r \in \text{span}(A)^{\perp}$ , compute Hadamard transform of

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If *A* is chosen randomly, then any two *i*, *j* land in same coset with probability 1/*B*.

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

• For any  $r \in \text{span}(A)^{\perp}$ , compute Hadamard transform of

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.
- For B = O(k), expect to recover "most" coordinates.

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.
- For B = O(k), expect to recover "most" coordinates.
- Takes  $O(k \log(n/k))$  samples and  $O(k \log(n/k) \log k)$  time

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.
- For B = O(k), expect to recover "most" coordinates.
- Takes  $O(k \log(n/k))$  samples and  $O(k \log(n/k) \log k)$  time
- Repeat with  $k \rightarrow k/2 \rightarrow k/4 \rightarrow \ldots$

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

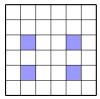
- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.
- For B = O(k), expect to recover "most" coordinates.
- Takes  $O(k \log(n/k))$  samples and  $O(k \log(n/k) \log k)$  time
- Repeat with  $k \rightarrow k/2 \rightarrow k/4 \rightarrow \ldots$
- Gives  $O(k \log(n/k))$  total samples and  $O(k \log(n/k) \log k)$  time

• 
$$F = \operatorname{span}(A)$$
 for any  $A \in \mathbb{F}_2^{\log n \times \log B}$ 

$$y_i = x_{Ai+r}$$

- Gives *r*th time domain sample of  $\hat{x}$  restricted to all *B* cosets of  $A^{\perp}$ .
- If A is chosen randomly, then any two i, j land in same coset with probability 1/B.
- Each coordinate is alone with probability 1 k/B.
- Take log(n/k) different *r* to solve the 1-sparse problem on coset.
- For B = O(k), expect to recover "most" coordinates.
- Takes  $O(k \log(n/k))$  samples and  $O(k \log(n/k) \log k)$  time
- Repeat with  $k \rightarrow k/2 \rightarrow k/4 \rightarrow \ldots$
- Gives  $O(k \log(n/k))$  total samples and  $O(k \log(n/k) \log k)$  time

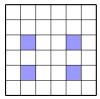
# • Not enough filters F that are "perfect" (F and $\hat{F}$ are indicators)



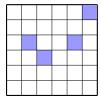
Not enough filters F that are "perfect" (F and F are indicators)
 Two dimensions:



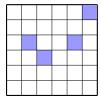
- Not enough filters F that are "perfect" (F and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows



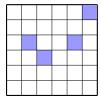
- Not enough filters F that are "perfect" (F and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows
  - Some inputs will cause collisions for any projection.



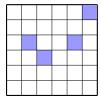
- Not enough filters F that are "perfect" (F and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows
  - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]



- Not enough filters F that are "perfect" (F and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows
  - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
  - Peeling procedure



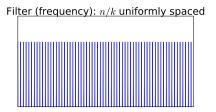
- Not enough filters F that are "perfect" (F and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows
  - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
  - Peeling procedure
  - Still doesn't work for 1 dimension,  $n = 2^{\ell}$ .



- Not enough filters *F* that are "perfect" (*F* and  $\hat{F}$  are indicators)
- Two dimensions:
  - Can look at the columns or the rows
  - Some inputs will cause collisions for any projection.
- Works if you assume coordinates randomly distributed [GHIKPS, Pawar-Ramchandran]
  - Peeling procedure
  - Still doesn't work for 1 dimension,  $n = 2^{\ell}$ .
- For worst-case inputs, need other filters

GMS05, HIKP12, IKP14, IK14

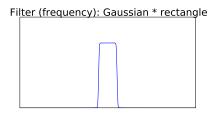
| Filter (time): k uniformly spaced |  |  |  |
|-----------------------------------|--|--|--|
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |
|                                   |  |  |  |



• Previous slides used comb filter

GMS05, HIKP12, IKP14, IK14

| Filter (time): Gaussian · sinc                                                                                  | _ |
|-----------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                 |   |
|                                                                                                                 |   |
| _ <b>_</b>                                                                                                      |   |
|                                                                                                                 |   |
| The second se |   |
|                                                                                                                 |   |
|                                                                                                                 |   |



- Previous slides used comb filter
- Instead, make filter so  $\widehat{F}$  is large on an *interval*.

GMS05, HIKP12, IKP14, IK14

| Filter (time): Gaussian · sinc |
|--------------------------------|
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |

| Fil | lter (frequency): Gaussian * rectangle |
|-----|----------------------------------------|
|     |                                        |
|     |                                        |
|     |                                        |
|     |                                        |
|     |                                        |

- Previous slides used comb filter
- Instead, make filter so  $\hat{F}$  is large on an *interval*.
- We can permute the frequencies:

$$x'_i = x_{\sigma i} \implies \widehat{x}_i = \widehat{x}_{\sigma^{-1}i}$$

GMS05, HIKP12, IKP14, IK14

| Fil | ter (time): Gaussian · sinc |
|-----|-----------------------------|
|     |                             |
|     |                             |
|     |                             |
| T   |                             |
|     |                             |
|     |                             |

| Fi | lter (frequency): Gaussian * rectangle | Э |
|----|----------------------------------------|---|
|    |                                        |   |
|    |                                        |   |
|    |                                        |   |
|    |                                        |   |
|    |                                        |   |

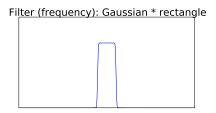
- Previous slides used comb filter
- Instead, make filter so  $\widehat{F}$  is large on an *interval*.
- We can permute the frequencies:

$$x_i' = x_{\sigma i} \implies \widehat{x}_i = \widehat{x}_{\sigma^{-1}i}$$

• This changes the coordinates in an interval (unlike in a comb).

GMS05, HIKP12, IKP14, IK14

| Filter (time): Gaussian sinc | _ |
|------------------------------|---|
|                              |   |
|                              |   |
|                              |   |
|                              | 1 |
|                              |   |
|                              |   |
|                              |   |



- Previous slides used comb filter
- Instead, make filter so  $\widehat{F}$  is large on an *interval*.
- We can permute the frequencies:

$$x_i' = x_{\sigma i} \implies \widehat{x}_i = \widehat{x}_{\sigma^{-1}i}$$

- This changes the coordinates in an interval (unlike in a comb).
- Allows us to convert worst case to random case.

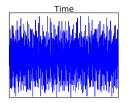
Eric Price

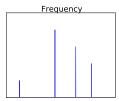
# Talk Outline

1 Algorithm for k = 1

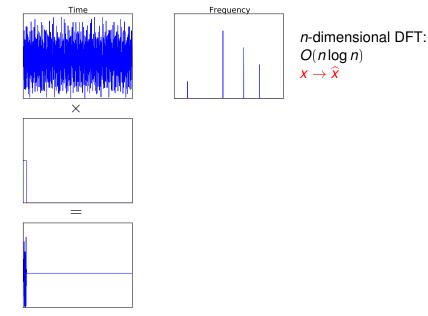
2 Reducing k to 1

3 Putting it together



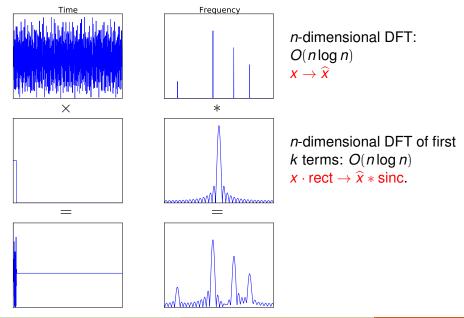


*n*-dimensional DFT:  $O(n \log n)$  $x \to \hat{x}$ 



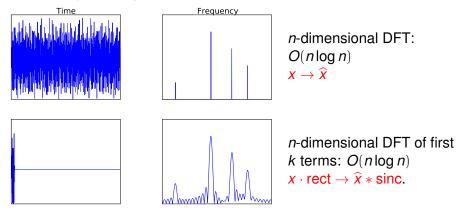
Eric Price

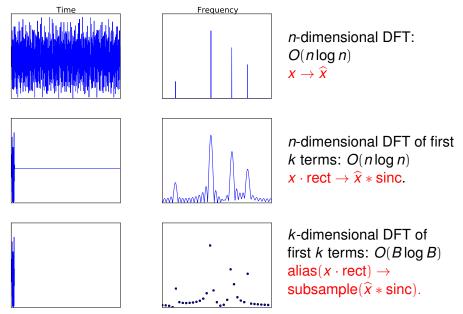
Tutorial on Sparse Fourier Transforms

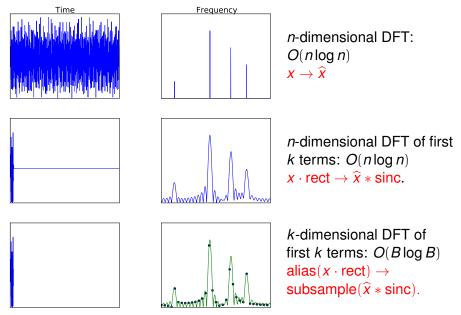


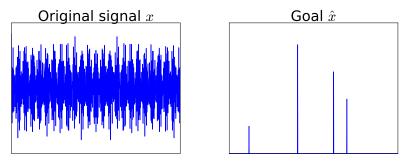
Eric Price

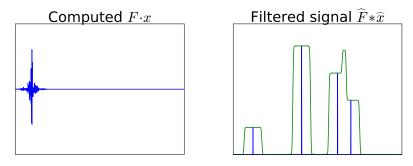
Tutorial on Sparse Fourier Transforms

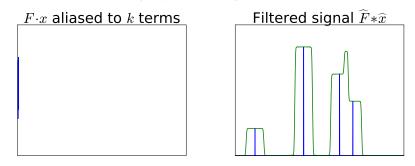


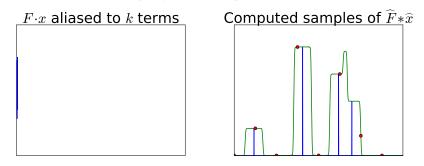


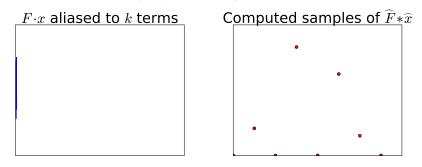


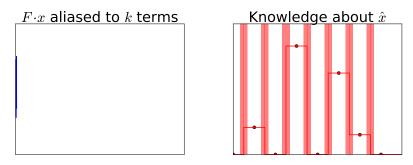


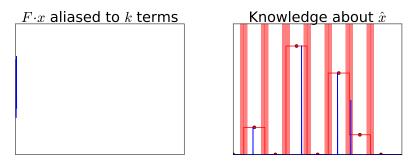


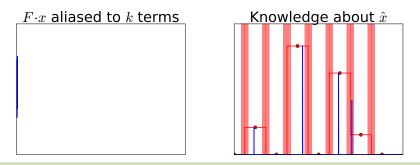












#### Lemma

If t is isolated in its bucket and in the "super-pass" region, the value b we compute for its bucket satisfies

$$b = \widehat{x}_t$$
.

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

## Algorithm

#### Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

## Algorithm

#### Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift x by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $\dot{b}'/b = \omega^t$

#### Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift *x* by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $b'/b = \omega^t \implies$  can compute *t*.

#### Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift x by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $b'/b = \omega^t \implies$  can compute *t*.
  - ► Just like our 1-sparse recovery algorithm,  $x_1/x_0 = \omega^t$ .

#### Lemma

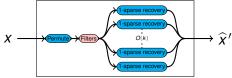
For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift *x* by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $b'/b = \omega^t \implies$  can compute *t*.
  - ► Just like our 1-sparse recovery algorithm,  $x_1/x_0 = \omega^t$ .

• Gives partial sparse recovery:  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



#### Lemma

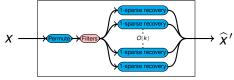
For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift *x* by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $b'/b = \omega^t \implies$  can compute *t*.
  - ► Just like our 1-sparse recovery algorithm,  $x_1/x_0 = \omega^t$ .

• Gives partial sparse recovery:  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



• Repeat  $k \to k/2 \to k/4 \to \cdots$ 

#### Lemma

For most t, the value b we compute for its bucket satisfies

 $b = \hat{x}_t$ .

Computing the b for all O(k) buckets takes  $O(k \log n)$  time.

- Time-shift x by one and repeat:  $b' = \hat{x}_t \omega^t$ .
- Divide to get  $b'/b = \omega^t \implies$  can compute *t*.
  - ► Just like our 1-sparse recovery algorithm,  $x_1/x_0 = \omega^t$ .

• Gives partial sparse recovery:  $\hat{x}'$  such that  $\hat{x} - \hat{x}'$  is k/2-sparse.



- Repeat  $k \to k/2 \to k/4 \to \cdots$
- *O*(*k* log *n*) time sparse Fourier transform.

Eric Price

Algorithms based on two kinds of filters:

- Algorithms based on two kinds of filters:
  - Comb filter works for

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - \* Hadamard transform in the worst case

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - \* Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - \* Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - \* Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, *n* has  $\Theta(k)$ -sized factors.

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works
  - Interval filter: O(k log n) samples and time

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works
  - ► Interval filter: *O*(*k* log *n*) samples and time
- Approximately sparse: "optimal" is O(k log(n/k)) samples and O(k log(n/k) log n) time

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works
  - Interval filter:  $O(k \log n)$  samples and time
- Approximately sparse: "optimal" is O(k log(n/k)) samples and O(k log(n/k) log n) time
  - Comb filter: optimal when it works

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works
  - ► Interval filter: *O*(*k* log *n*) samples and time
- Approximately sparse: "optimal" is O(k log(n/k)) samples and O(k log(n/k) log n) time
  - Comb filter: optimal when it works
  - Interval filter: optimal samples OR optimal time OR log<sup>c</sup> log n-competitive mixture.

- Algorithms based on two kinds of filters:
  - Comb filter works for
    - ★ Hadamard transform in the worst case
    - ★ > 1 dimensional transform, or  $n = (pq)^{\ell}$ , in the average case.
  - Interval filter works for
    - ★ Constant dimensional transform in the worst case, n has  $\Theta(k)$ -sized factors.
- Exactly sparse: "optimal" is O(k) samples and O(k log k) time (and log(n/k) factor larger for Hadamard)
  - Comb filter: optimal when it works
  - Interval filter:  $O(k \log n)$  samples and time
- Approximately sparse: "optimal" is O(k log(n/k)) samples and O(k log(n/k) log n) time
  - Comb filter: optimal when it works
  - Interval filter: optimal samples OR optimal time OR log<sup>c</sup> log n-competitive mixture.

# Thank You

Eric Price

Eric Price

Tutorial on Sparse Fourier Transforms

Eric Price

Tutorial on Sparse Fourier Transforms