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The Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

100 Tyf Piano, 440 Hz

Displacement of Air Concert A
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The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Oil Exploration
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Computing the Discrete Fourier Transform

o How to compute X = Fx?
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Computing the Discrete Fourier Transform

©

How to compute X = Fx?
Naive multiplication: O(r?).

© ©

Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

©

By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

©

When can we compute the Fourier
Transform in sublinear time? J
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|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)
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|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)

Sparsity is common:

Video Medical
Imaging

GPS  Oil Exploration
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|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)

Sparsity is common:

Goal of this workshop: sparse Fourier transforms
Faster Fourier Transform on sparse data. J
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Classes of sparse Fourier transform algorithms

For recovering a k-sparse signal in n dimensions.

o Exact sparsity, deterministic algorithm
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For recovering a k-sparse signal in n dimensions.

o Exact sparsity, deterministic algorithm
» Vandermonde matrix: 2k samples sufficient
» Syndrome decoding for Reed-Solomon coding
» Berlekamp-Massey: O(k? + k(loglog n)¢) time.
o Approximate sparsity, 2~ failure probability
» Compressed sensing, using Restricted Isometry Property
» O(klog* n) samples, O(nlog® n) time.
o Today: Approximate sparsity, 1/4 or 1/n° probability.
» Using hashing
» O(klog® n) samples, O(k log® n) time.
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Kinds of Fourier transform (TTTTT]

o 1d Fourier transform: x € C", w = e®>™/" want

n
?,' = Z w”xj
J=1
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Kinds of Fourier transform
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n
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Kinds of Fourier transform
o 1d Fourier transform: x € C", w = e®>™/" want
n .
X = Z wlx;
i—
o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want
?IH, Z Z w/1/1 ’2]2)(]1 b

f=1j=1

» If ny, no are relatively prime, equivalentto 1d transform of C™ ™
o Hadamard transform: x € C2%2xx2:

n

%= (1)

J
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Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
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Generic Algorithm Outline

X m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.
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Generic Algorithm Outline

~ m‘ .
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.

@ Finds “most” of signal; repeat on residual
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Talk QOutline

Q Algorithm for k = 1
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Talk QOutline

Q Algorithm for k = 1
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Talk QOutline

Q Algorithm for kK = 1

Q Reducing k to 1

@ Putting it together

Eric Price
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Talk QOutline

Q Algorithm for k = 1
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Algorithm for k = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J

o [aifi=t
=1 0 otherwise t
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We can compute a 1-sparse X in O(1) time.J %
% — a ifi=t
"7 1 0 otherwise t
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Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J %
% — a ifi=t
=) 0 otherwise t
o Then x = (a, aw!, aw?!, awd!, ..., aw (=1,
Xo=a x1 = aw!
9 Xy/Xp = wl =t
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Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J %
% — a ifi=t
=) 0 otherwise t
o Then x = (a, aw!, aw?!, awd!, ..., aw (=1,
Xo=a x1 = aw!
0 xi/x=w! = t [ |
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Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J %
5.l a ifi=t
"~ 0 otherwise t
o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw!
o x1/x =w! =t |

o (Related to OFDM, Prony’s method, matrix pencil.)
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Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
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K -
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o With exact sparsity: log n bits in a single measurement.
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Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
/\ Xe,/ Xo = W%l + noise

o With exact sparsity: log n bits in a single measurement.

o With noise: only constant number of useful bits.

@ Choose O(log n) time shifts ¢ to recover i.

@ Error correcting code with efficient recovery — lemma. [ |
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Algorithm for k = 1: Hadamard setting

Levin 93, improving upon Goldreich-Levin '89

%= Y (—1)hy

J
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)
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Algorithm for k = 1: Hadamard setting

Levin 93, improving upon Goldreich-Levin 89
X = Z(_1 ) x
)
Lemma
Suppose X is approximately 1-sparse:

X:l/]|X]l2 = 90%.

Then we can recover it with O(log n) samples and O( Iog2 n) time.

o We have sign(x;) = sign((—1){"? x;) with 9/10 probability over r.
o Therefore for any i, with 8/10 probability over r,

o~

sign(X;A(”) — sign((—1)%)

r
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Algorithm for k = 1: Hadamard setting

Levin 93, improving upon Goldreich-Levin 89
X = Z(_1 ) x
)
Lemma
Suppose X is approximately 1-sparse:

X:l/]|X]l2 = 90%.

Then we can recover it with O(log n) samples and O( Iog2 n) time.

o We have sign(x;) = sign((—1){"? x;) with 9/10 probability over r.
o Therefore for any i, with 8/10 probability over r,

o~

sign( X0y = sign((—1)()
Xr
o Choose i to be the O(log n) rows of generator matrix for constant

rate and distance binary code.
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Q Reducing k to 1
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Algorithm for general k

o Reduce general kto k = 1.
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Algorithm for general k

o Reduce general kto k = 1.
o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

= v
(=1

o Random permutation

Recovers most of X:

Lemma (Partial sparse recovery)

In O(k log n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Going from finding most coordinates to findigg all

Partial k-sparse recovery

e U o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy ‘“H

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy u

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --
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Going from finding most coordinates to finging-all

Partial k-sparse recovery

e U o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
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Eric Price Tutorial on Sparse Fourier Transforms 17/27



How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

Eric Price Tutorial on Sparse Fourier Transforms 17/27



How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

Eric Price Tutorial on Sparse Fourier Transforms 17/27



How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?

Eric Price Tutorial on Sparse Fourier Transforms 17/27



How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?

o For any column Z = X, . € CY" we have in the corresponding time
domain

r
Zr=Yc

Eric Price Tutorial on Sparse Fourier Transforms 17/27



How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?
o For any column Z = X, . € CY" we have in the corresponding time

domain
Zr =y,
o With O(v/nlog n) time, get samples from time domains of all v/n
columns.

Eric Price Tutorial on Sparse Fourier Transforms 17/27



x)

How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?
o For any column Z = X, . € CY" we have in the corresponding time

domain
Zr =y,
o With O(v/nlog n) time, get samples from time domains of all v/n
columns.

o If column is 1-sparse, recover it with O(1) row FFTs

Eric Price Tutorial on Sparse Fourier Transforms 17/27



x)

How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?
o For any column Z = X, . € CY" we have in the corresponding time

domain
Zr =y,
o With O(v/nlog n) time, get samples from time domains of all v/n
columns.

o If column is 1-sparse, recover it with O(1) row FFTs
» For approximate sparsity, O(log n) row FFTs.

Eric Price Tutorial on Sparse Fourier Transforms 17/27



x)

How do filters work?

o Consider the v/n x v/n 2d setting.
o Get answer by FFT on rows, then FFT on resulting columns.

o What if | just take the FFT y" of a random row r?
o For any column Z = X, . € CY" we have in the corresponding time

domain
Zr =y,
o With O(v/nlog n) time, get samples from time domains of all v/n
columns.

o If column is 1-sparse, recover it with O(1) row FFTs
» For approximate sparsity, O(log n) row FFTs.

o If k = \/nrandom nonzeros, expect to recover most of them.
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Filters more generally

o Fourier transform switches multiplication and convolution.
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Filters more generally

o Fourier transform switches multiplication and convolution.
o Choose a filter F so both F and F are sparse
» Fis @(k)-sparse ancilt' is (approximately) O(n/k) sparse.
» Last slide: F is row, F is column
o For various r, compute k-dimensional Fourier transform of
Vi = XitrFi.
o Gives the rth time domain sample of X - shift(IA-') for k shifts of F.
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Hadamard setting: full algorithm

o F =span(A) for any A € Fy9"*°958
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Difficulty in other settings

@ Not enough filters F that are “perfect” (F and F are indicators)
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Difficulty in other settings

o Not enough filters F that are “perfect” (F and F are indicators)
o Two dimensions:

» Can look at the columns or the rows
» Some inputs will cause collisions for any projection.

@ Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

» Peeling procedure
» Still doesn’t work for 1 dimension, n = 2°.

o For worst-case inputs, need other filters
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A different style of filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spaced

LML

o Previous slides used comb filter
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o Instead, make filter so F is large on an interval.
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A different style of filter

GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

@ Previous slides used comb filter
o Instead, make filter so F is large on an interval.
o We can permute the frequencies:

’ ~ —~
X; = Xgi == Xj = Xg—1j

o This changes the coordinates in an interval (unlike in a comb).
o Allows us to convert worst case to random case.
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Talk QOutline

Q Putting it together
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How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X =X
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Algorithm for exactly sparse signals

Original signal z Goal 2
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Algorithm for exactly sparse signals
Computed F-z Filtered signal Fxz

i
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Algorithm for exactly sparse signals

F.x aliased to k terms Filtered signal Fxz

I
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Algorithm for exactly sparse signals

F.x aliased to k terms Computed samples of Fxz

M
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Algorithm for exactly sparse signals

F.x aliased to k terms Knowledge about 2

Lemma

If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.
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Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = X;w!.
o Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

o Gives partial sparse recovery: X’ such that X — x’ is k/2-sparse.

X

o Repeatk — k/2 — k/4 — - -
o O(klog n) time sparse Fourier transform. n
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State of the Art

o Algorithms based on two kinds of filters:
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o Algorithms based on two kinds of filters:
» Comb filter works for
* Hadamard transform in the worst case
* > 1 dimensional transform, or n = (pq)*, in the average case.
» Interval filter works for
* Constant dimensional transform in the worst case, n has ©(k)-sized
factors.
o Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)
» Comb filter: optimal when it works
» Interval filter: O(klog n) samples and time
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» Comb filter: optimal when it works
» Interval filter: optimal samples OR optimal time OR
log® log n-competitive mixture.
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