
Tutorial on Sparse Fourier Transforms

Eric Price

UT Austin

Eric Price Tutorial on Sparse Fourier Transforms 1 / 27

The Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

Displacement of Air Concert A

Eric Price Tutorial on Sparse Fourier Transforms 2 / 27

The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Radar GPS Oil Exploration

Eric Price Tutorial on Sparse Fourier Transforms 3 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?

Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).

Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]

Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Tutorial on Sparse Fourier Transforms 4 / 27

Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this workshop: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Tutorial on Sparse Fourier Transforms 5 / 27

Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this workshop: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Tutorial on Sparse Fourier Transforms 5 / 27

Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this workshop: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Tutorial on Sparse Fourier Transforms 5 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm

I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability

I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient

I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability

I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding

I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability

I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability

I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability

I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability
I Compressed sensing, using Restricted Isometry Property

I O(k log4 n) samples, O(n logc n) time.
Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability
I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability
I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.

I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability
I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.
I Using hashing

I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Classes of sparse Fourier transform algorithms
For recovering a k -sparse signal in n dimensions.

Exact sparsity, deterministic algorithm
I Vandermonde matrix: 2k samples sufficient
I Syndrome decoding for Reed-Solomon coding
I Berlekamp-Massey: O(k2 + k(log log n)c) time.

Approximate sparsity, 2−k failure probability
I Compressed sensing, using Restricted Isometry Property
I O(k log4 n) samples, O(n logc n) time.

Today: Approximate sparsity, 1/4 or 1/nc probability.
I Using hashing
I O(k logc n) samples, O(k logc n) time.

Eric Price Tutorial on Sparse Fourier Transforms 6 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Kinds of Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Tutorial on Sparse Fourier Transforms 7 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)

I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)

2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts

I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Tutorial on Sparse Fourier Transforms 8 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 9 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 9 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 9 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 10 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a

x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Tutorial on Sparse Fourier Transforms 11 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt

With exact sparsity: log n bits in a single measurement.

With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.

Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc2/x0 = ωc2t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc3/x0 = ωc3t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc3/x0 = ωc3t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Tutorial on Sparse Fourier Transforms 12 / 27

Algorithm for k = 1: Hadamard setting
Levin ’93, improving upon Goldreich-Levin ’89

x̂i =
∑

j

(−1)〈i,j〉xj

Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

We have sign(x̂r) = sign((−1)〈r ,t〉xt) with 9/10 probability over r .
Therefore for any i , with 8/10 probability over r ,

sign(
x̂i+r

x̂r
) = sign((−1)〈i,t〉)

Choose i to be the O(log n) rows of generator matrix for constant
rate and distance binary code.

Eric Price Tutorial on Sparse Fourier Transforms 13 / 27

Algorithm for k = 1: Hadamard setting
Levin ’93, improving upon Goldreich-Levin ’89

x̂i =
∑

j

(−1)〈i,j〉xj

Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

We have sign(x̂r) = sign((−1)〈r ,t〉xt) with 9/10 probability over r .
Therefore for any i , with 8/10 probability over r ,

sign(
x̂i+r

x̂r
) = sign((−1)〈i,t〉)

Choose i to be the O(log n) rows of generator matrix for constant
rate and distance binary code.

Eric Price Tutorial on Sparse Fourier Transforms 13 / 27

Algorithm for k = 1: Hadamard setting
Levin ’93, improving upon Goldreich-Levin ’89

x̂i =
∑

j

(−1)〈i,j〉xj

Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

We have sign(x̂r) = sign((−1)〈r ,t〉xt) with 9/10 probability over r .

Therefore for any i , with 8/10 probability over r ,

sign(
x̂i+r

x̂r
) = sign((−1)〈i,t〉)

Choose i to be the O(log n) rows of generator matrix for constant
rate and distance binary code.

Eric Price Tutorial on Sparse Fourier Transforms 13 / 27

Algorithm for k = 1: Hadamard setting
Levin ’93, improving upon Goldreich-Levin ’89

x̂i =
∑

j

(−1)〈i,j〉xj

Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

We have sign(x̂r) = sign((−1)〈r ,t〉xt) with 9/10 probability over r .
Therefore for any i , with 8/10 probability over r ,

sign(
x̂i+r

x̂r
) = sign((−1)〈i,t〉)

Choose i to be the O(log n) rows of generator matrix for constant
rate and distance binary code.

Eric Price Tutorial on Sparse Fourier Transforms 13 / 27

Algorithm for k = 1: Hadamard setting
Levin ’93, improving upon Goldreich-Levin ’89

x̂i =
∑

j

(−1)〈i,j〉xj

Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

We have sign(x̂r) = sign((−1)〈r ,t〉xt) with 9/10 probability over r .
Therefore for any i , with 8/10 probability over r ,

sign(
x̂i+r

x̂r
) = sign((−1)〈i,t〉)

Choose i to be the O(log n) rows of generator matrix for constant
rate and distance binary code.

Eric Price Tutorial on Sparse Fourier Transforms 13 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 14 / 27

Algorithm for general k

Reduce general k to k = 1.

“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Tutorial on Sparse Fourier Transforms 15 / 27

Going from finding most coordinates to finding allx̂

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Tutorial on Sparse Fourier Transforms 16 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.

Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.

What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.

What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?

For any column ẑ = x̂∗,c ∈ C
√

n we have in the corresponding time
domain

zr = y r
c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.

If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

How do filters work?
x̂

Consider the
√

n ×
√

n 2d setting.
Get answer by FFT on rows, then FFT on resulting columns.
What if I just take the FFT y r of a random row r?
For any column ẑ = x̂∗,c ∈ C

√
n we have in the corresponding time

domain
zr = y r

c

With O(
√

n log n) time, get samples from time domains of all
√

n
columns.
If column is 1-sparse, recover it with O(1) row FFTs

I For approximate sparsity, O(log n) row FFTs.

If k =
√

n random nonzeros, expect to recover most of them.

Eric Price Tutorial on Sparse Fourier Transforms 17 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse

I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse

I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse
I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.

I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse
I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse
I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse
I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Filters more generally

Fourier transform switches multiplication and convolution.

Choose a filter F so both F and F̂ are sparse
I F is Õ(k)-sparse and F̂ is (approximately) O(n/k) sparse.
I Last slide: F is row, F̂ is column

For various r , compute k -dimensional Fourier transform of
yi = xi+r Fi .

Gives the r th time domain sample of x̂ · shift(F̂) for k shifts of F̂ .

Eric Price Tutorial on Sparse Fourier Transforms 18 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.

If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.

Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.

Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.

For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.

Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time

Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset with
probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Hadamard setting: full algorithm

F = span(A) for any A ∈ Flog n×log B
2

For any r ∈ span(A)⊥, compute Hadamard transform of

yi = xAi+r

Gives r th time domain sample of x̂ restricted to all B cosets of A⊥.
If A is chosen randomly, then any two i , j land in same coset
with probability 1/B.
Each coordinate is alone with probability 1 − k/B.
Take log(n/k) different r to solve the 1-sparse problem on coset.
For B = O(k), expect to recover “most” coordinates.
Takes O(k log(n/k)) samples and O(k log(n/k) log k) time
Repeat with k → k/2→ k/4→ . . .

Gives O(k log(n/k)) total samples and O(k log(n/k) log k) time

Eric Price Tutorial on Sparse Fourier Transforms 19 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)

Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows

I Some inputs will cause collisions for any projection.
Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure

I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

Difficulty in other settings

Not enough filters F that are “perfect” (F and F̂ are indicators)
Two dimensions:

I Can look at the columns or the rows
I Some inputs will cause collisions for any projection.

Works if you assume coordinates randomly distributed [GHIKPS,
Pawar-Ramchandran]

I Peeling procedure
I Still doesn’t work for 1 dimension, n = 2`.

For worst-case inputs, need other filters

Eric Price Tutorial on Sparse Fourier Transforms 20 / 27

A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spacedFilter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Previous slides used comb filter

Instead, make filter so F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

This changes the coordinates in an interval (unlike in a comb).
Allows us to convert worst case to random case.

Eric Price Tutorial on Sparse Fourier Transforms 21 / 27

A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spacedFilter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Previous slides used comb filter
Instead, make filter so F̂ is large on an interval.

We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

This changes the coordinates in an interval (unlike in a comb).
Allows us to convert worst case to random case.

Eric Price Tutorial on Sparse Fourier Transforms 21 / 27

A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spacedFilter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Previous slides used comb filter
Instead, make filter so F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

This changes the coordinates in an interval (unlike in a comb).
Allows us to convert worst case to random case.

Eric Price Tutorial on Sparse Fourier Transforms 21 / 27

A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spacedFilter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Previous slides used comb filter
Instead, make filter so F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

This changes the coordinates in an interval (unlike in a comb).

Allows us to convert worst case to random case.

Eric Price Tutorial on Sparse Fourier Transforms 21 / 27

A different style of filter
GMS05, HIKP12, IKP14, IK14

Filter (time): k uniformly spaced Filter (frequency): n/k uniformly spacedFilter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Previous slides used comb filter
Instead, make filter so F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

This changes the coordinates in an interval (unlike in a comb).
Allows us to convert worst case to random case.

Eric Price Tutorial on Sparse Fourier Transforms 21 / 27

Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

Eric Price Tutorial on Sparse Fourier Transforms 22 / 27

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Tutorial on Sparse Fourier Transforms 23 / 27

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).

Algorithm for exactly sparse signals
Original signal x Goal x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
Computed F ·x Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Tutorial on Sparse Fourier Transforms 24 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .

I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .
Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·

O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Tutorial on Sparse Fourier Transforms 25 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for

F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for

F Constant dimensional transform in the worst case, n has Θ(k)-sized
factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for

F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for

F Constant dimensional transform in the worst case, n has Θ(k)-sized
factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case

F > 1 dimensional transform, or n = (pq)`, in the average case.
I Interval filter works for

F Constant dimensional transform in the worst case, n has Θ(k)-sized
factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for

F Constant dimensional transform in the worst case, n has Θ(k)-sized
factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for

F Constant dimensional transform in the worst case, n has Θ(k)-sized
factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.

Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works

I Interval filter: O(k log n) samples and time
Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works

I Interval filter: optimal samples OR optimal time OR
logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You

Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

State of the Art
Algorithms based on two kinds of filters:

I Comb filter works for
F Hadamard transform in the worst case
F > 1 dimensional transform, or n = (pq)`, in the average case.

I Interval filter works for
F Constant dimensional transform in the worst case, n has Θ(k)-sized

factors.
Exactly sparse: “optimal” is O(k) samples and O(k log k) time
(and log(n/k) factor larger for Hadamard)

I Comb filter: optimal when it works
I Interval filter: O(k log n) samples and time

Approximately sparse: “optimal” is O(k log(n/k)) samples and
O(k log(n/k) log n) time

I Comb filter: optimal when it works
I Interval filter: optimal samples OR optimal time OR

logc log n-competitive mixture.

Thank You
Eric Price Tutorial on Sparse Fourier Transforms 26 / 27

Eric Price Tutorial on Sparse Fourier Transforms 27 / 27

Eric Price Tutorial on Sparse Fourier Transforms 27 / 27

	Algorithm for k=1
	Reducing k to 1
	Putting it together
	Appendix

