Spectral Compressive Sensing

Marco F. Duarte

Portions are joint work with:

Richard G. Baraniuk (Rice University)

Hamid Dadkhahi (UMass Amherst)

Karsten Fyhn
(Aalborg University)

Spectral Compressive Sensing

• Compressive sensing applied to *frequency-sparse signals*

[E. Candès, J. Romberg, T. Tao; D. Donoho]

Spectral Compressive Sensing

Compressive sensing applied to frequency-sparse signals

Frequency-Sparse Signals and the DFT Basis

$$x = \sum_{k=1}^{K} a_k e(f_k) \qquad X(\omega) = \sum_{k=1}^{K} a_k \, \delta(\omega - \omega_k)$$

$$e(f) = \frac{1}{\sqrt{N}} \left[e^{j2\pi f/N} \, e^{j2\pi 2f/N} \, \dots \, e^{j2\pi(N-1)f/N} \right]$$

$$\theta = \Psi^{-1} x$$

$$x[n] = \sin\left(\frac{2\pi n}{N} \times 10\right)$$

$$x[n] = \sin\left(\frac{2\pi n}{N} \times 10.5\right)$$

$$N = 1024$$

$$\|\theta\|_0 = 1024,$$

$$\|\theta\|_0 = 1024,$$

$$\|\theta - \theta_2\|_2 = 0.76\|\theta\|_2$$

Frequency-Sparse Signals and the DFT Basis

Signal is sum of 10 sinusoids

Compressive Sensing for Frequency-Sparse Signals

Compressive Sensing for Frequency-Sparse Signals

$$N = 1024$$

 $\Psi(c), c = 10$

$$N = 1024$$

$$\Psi(c), c = 10$$

$$N = 1024$$

 $\Psi(c), c = 10$

Recovery algorithms operate similarly to "matched filtering":

$$p = \Psi(c)^T x$$

$$N = 1024$$

 $\Psi(c), c = 10$

$$\mu(\Psi(c)) \approx 0.98$$

Sparse approximation algorithms fail

$$\|\theta'\|_0 = 9218 = (c-1)N + 2,$$

$$\|\theta' - \theta'_2\|_2 = 0.95 \|\theta'\|_2$$

[Candès, Needell, Eldar, Randall 2011]

Sparse Approximation of Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies

Structured Sparse Signals

• A K-sparse signal lives on • A K-structured sparse the collection of K-dim subspaces aligned with coordinate axes

signal lives on a particular (reduced) collection of K-dimensional canonical subspaces

[Baraniuk, Cevher, Duarte, Hegde 2010]

Structured Restricted Isometry Property (SRIP)

- Preserve the structure only between sparse signals that follow the structure model
- Random (iid Gaussian, Rademacher) matrix has the SRIP with high probability if

$$M = \mathcal{O}(K + \log m_K)$$

Leveraging Structure in Recovery

Many state-of-the-art sparse recovery algorithms (greedy and optimization solvers) rely on

thresholding
$$x' = \mathcal{T}(x,K)$$
 [Daubechies, Defrise, and DeMol; Nowak, Figueiredo, and Wright; Tropp and Needell; Blumensath and Davies...]

$$x'(n) = \begin{cases} x(n) & \text{if } |x(n)| \text{ is among } K \text{ largest,} \\ 0 & \text{otherwise.} \end{cases}$$

Thresholding provides the best approximation of x within Σ_K

$$x' = \arg\min_{\overline{x} \in \Sigma_K} \|x - \overline{x}\|_2$$

Structured Recovery Algorithms

 Modify existing approaches (optimization or greedy-based) to obtain structure-aware recovery algorithms: replace the thresholding step in IHT, CoSaMP, SP, ... with a best structured sparse approximation step that finds the closest point within union of subspaces

$$x' = \mathbb{M}(x, K) = \arg\min_{\overline{x} \in \Omega_K} \|x - \overline{x}\|_2$$

Greedy structure-aware recovery algorithms inherit guarantees of generic counterparts (even though feasible set may be nonconvex)

Structured Frequency-Sparse Signals

• A *K*-structured frequencysparse signal *x* consists of *K* sinusoids that are mutually incoherent:

$$x = \sum_{k=1}^{K} a_k e(f_k) \in \mathcal{T}_{K,c,\mu} \quad \text{if} \quad$$

$$cf_K \in \mathbb{Z}, \ |\langle e(f_k), e(f_{k'}) \rangle| \le \mu \ \forall \ k \ne k'$$

• If x is K-structured frequency-sparse, then there exists a K-sparse vector θ such that $x = \Psi(c)\theta$ and the nonzeros in θ are spaced apart from each other (**band exclusion**).

Structured Frequency-Sparse Signals

• If x is K-structured frequency-sparse, then there exists a K-sparse vector θ such that $x=\Psi(c)\theta$ and the nonzeros in θ are spaced apart from each other.

- Preserve the structure only between sparse signals that follow the structured sparsity model
- Random (iid Gaussian, Bernoulli) matrix has the structured RIP with high probability if

$$M = \mathcal{O}\left(K\log\left(\frac{c(N - KD_N^{-1}(\mu N))}{K}\right)\right)$$

Algorithm 1: $\mathbb{T}(x, K, c, \mu)$

Integer Program

Inputs:

- Signal vector x
- Target sparsity K
- ullet Redundancy factor c
- ullet Maximum coherence μ

Output:

- ullet Approximation vector \widehat{x}
- Compute coefficients: $\theta = \Phi(c)^T x$ $w_{\theta}[i] = \theta[i]^2, i = 0, ..., cN - 1$
- Solve support:

$$s = \arg \max_{s \in \{0,1\}^{cN}} w_{\theta}^T s$$

s.t. $D_{\mu} s \leq \mathbf{1}, s^T \mathbf{1} \leq K$

Mask coefficients:

$$\widehat{\theta}[i] \leftarrow \theta[i]s[i], i = 0, \dots, cN-1$$

• Return $\widehat{x} = \Phi(c)\widehat{\theta}$

Recovery with Structured Sparsity

Theorem:

Assume we obtain noisy CS measurements of a signal $y = \Phi x + n$. If Φ has the structured RIP with $\delta < 0.1$, then the output of the structured IHT algorithm obeys

In words, instance optimality based on structured sparse approximation

[Baraniuk, Cevher, Duarte, Hegde 2010]

Algorithm 2: $\mathbb{T}_h(x, K, c, \mu)$ Inhibition Heuristic

Inputs:

- Signal vector x
- Target sparsity K
- Redundancy factor c
- ullet Maximum coherence μ

Output:

- ullet Approximation vector \widehat{x}
- Compute coefficients: $\theta = \Phi(c)^T x$
- Initialize: $\widehat{\theta}[d] = 0, \ d = 0, \dots, cN-1$
- While θ is nonzero and $\|\widehat{\theta}\|_0 \leq K$,
 - ullet Find max abs entry $| heta[n_{
 m max}]|$ of heta
 - Copy entry $\widehat{\theta}[n_{\max}] = \theta[n_{\max}]$
 - Inhibit "coherent" entries $\theta[n'] = 0$
- Return $\widehat{x} = \Phi(c)\widehat{\theta}$

$$\overline{\theta} = \mathcal{T}(\Psi(c)^T x, K)$$

DFT Frame + Thresholding equivalent to

Maximum Likelihood Estimate of amplitudes and frequencies for frequency-sparse signal via Periodogram

$$x = \sum_{k=1}^{K} a_k e(f_k) + n$$
 frequencies amplitudes

Widely-studied problem: Line spectral estimation

Algorithm 3: $\mathbb{T}_l(x,K)$ Line Spectral Estimation *Inputs:*

- Signal vector x
- ullet Target sparsity K

Output:

• Parameter estimates $\widehat{a}_1,\dots,\widehat{a}_K$ • Signal estimate \widehat{x}

 $x \to \begin{bmatrix} \text{MUSIC} \\ \text{Root MUSIC} \\ \text{ESPRIT} \\ \text{PHD} \end{bmatrix} \to \widehat{f}_{1},$

$$\mathbb{T}_l(x,K) \longrightarrow \widehat{x} = \sum_{k=1}^K \widehat{a}_k e(\widehat{f}_k)$$

Sparse Approximation of Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies

Sparse Approximation of Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies

Structured CS: Performance

Structured CS: Performance

From Recovery of Sparse Signals To Line Spectral Estimation

- Can "read" indices of nonzero DFTF coefficients to obtain frequencies of frequency-sparse signal components
- Equivalence: accurate recovery = accurate estimation?
- Algorithms: Alg. 3 essentially combines legacy line spectral estimation with CS recovery algorithms

 How to change signal model to further improve performance?

Interpolating the Projections (Dirichlet Kernel)

- Main lobe of Dirichlet kernel can be well approximated by a quadratic polynomial (parabola)
- Three samples around peak are required for interpolation

From Discrete to Continuous Models

• Both the DFT basis and the DFT frame can be conceived as **samplings** from an **infinite set** of signals e(f) for a discrete set of values for the frequency $f \in [0, N)$

$$e(f) = \frac{1}{\sqrt{N}} \left[e^{j2\pi f/N} \ e^{j2\pi 2f/N} \ \dots \ e^{j2\pi (N-1)f/N} \right]$$

• Since the signal vector e(f) varies smoothly in each entry as a function of f, we can represent the signal set as a one-dimensional **nonlinear manifold**:

From Discrete to Continuous Models

- For computational reasons, we wish to design methods that allow us to *interpolate* the manifold from the samples obtained in the DFT basis/frame to increase the resolution of the frequency estimates.
- An interpolation-based compressive line spectral estimation algorithm obtains projection values for sets of manifold samples and interpolates around peak on the rest of the manifold to get frequency estimate

Interpolating the Manifold: Polar Interpolation

- All points in manifold have equal norm; distance b/w samples is uniform
- Manifold must be contained within unit Euclidean ball (hypersphere)
- Project signal estimates into hypersphere
- Find closest point in manifold by *interpolating* from closest samples with polar coordinates
- Integrate band exclusion to get *Band-Excluding Interpolating SP* (BISP)

Interpolating the Manifold: Polar Interpolation

 In BISP, find closest point in manifold by interpolating from closest samples with polar coordinates:

$$e(f_0 - 1/c) \leftrightarrow \angle = \theta_0 - \Delta$$
$$e(f_0) \leftrightarrow \angle = \theta_0$$
$$e(f_0 + 1/c) \leftrightarrow \angle = \theta_0 + \Delta$$
$$\widehat{x} \leftrightarrow \angle = ?$$

 Map back from manifold to frequency estimates (parameter space)

Akin to Continuous Basis Pursuit (CBP) [Ekanadham, Tranchina, and Simoncelli 2011]

Compressive Line Spectral Estimation: Performance Evaluation

N = 100, K = 4, $c = 5, \Delta f = 0.2 \text{ Hz}$ BOMP [Fannjiang and Liao 2012] SDP: Atomic Norm Minimization [Tang, Rhaskar, Shah, Recht 2012]

Compressive Line Spectral Estimation: Performance Evaluation (Noise)

$$N = 100, K = 4, M = 50, c = 5, \Delta f = 0.2 \text{ Hz}$$

Compressive Line Spectral Estimation: Computational Expense

Time (seconds)	Noiseless	Noisy
ℓ_1 -analysis	9.5245	8.8222
SIHT	0.2628	0.1499
SDP	8.2355	9.9796
BOMP	0.0141	0.0101
CBP	46.9645	40.3477
BISP	5.4265	1.4060

Conclusions

- Spectral CS provides significant improvements on frequency-sparse signal recovery
 - address coherent dictionaries via structured sparsity
 - simple-to-implement modifications to recovery algs
 - can leverage decades of work on spectral estimation
 - robust to model mismatch, presence of noise
- Compressive line spectral estimation:
 - recovery via parametric dictionaries provides compressive parameter estimation
 - dictionary elements as samples from manifold models
 - from dictionaries to manifolds via interpolation techniques
 - from recovery to parameter estimation from compressive measurements
 - localization, bearing estimation, radar imaging, ...