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Spectral Compressive Sensing

e Compressive sensing applied to frequency-sparse signals
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Spectral Compressive Sensing

e Compressive sensing applied to frequency-sparse signals
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Frequency-Sparse Signals
and the DFT Basis
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Frequency-Sparse Signals
and the DFT Basis

— Integral frequencies
- = = Arbitrary frequencies
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Compressive Sensing for
Frequency-Sparse Signals
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Compressive Sensing for
Frequency-Sparse Signals
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The Redundant DFT Frame

N = 1024




The Redundant DFT Frame




The Redundant DFT Frame

WAV

z[n] = sin (232 x 10.5)
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The Redundant DFT Frame

Recovery
algorithms
operate similarly
to “matched _
filtering”:
p=9()x




The Redundant DFT Frame

€r = \P(C)H 9/ _ \IJ(C)T.’L'
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Sparse approximation [Candes, Needell, Eldar, Randall 2011]

algorithms fail



Normalized approx. error

Sparse Approximation of
Frequency-Sparse Signals

- = = Standard sparse approx. via DFT Basis
- = = Standard sparse approx. via DFT Frame
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Structured Sparse Signals

e A K-sparse signal lives on ¢ A K-structured sparse

the collection of K-dim signal lives on a particular

subspaces aligned with (reduced) collection of

coordinate axes K-dimensional canonical
subspaces
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[Baraniuk, Cevher, Duarte, Hegde 2010]



Structured Restricted
Isometry Property (SRIP)

e Preserve the structure only between sparse signals that

follow the structure model
e Random (iid Gaussian, Rademacher) matrix has the SRIP

with high probability if
M = O(K + logmg)
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m, K-dim planes

[Blumensath, Davies; Lu, Do]




Leveraging Structure in Recovery

Many state-of-the-art sparse recovery algorithms
(greedy and optimization solvers) rely on

thl‘EShOldil‘lg D T(:Ij’ K) [Daubechies, Defrise, and DeMol;
Nowak, Figueiredo, and Wright;
Tropp and Needell; Blumensath and Davies...]

'(n) = x(n) if |x(n)| is among K largest,
LA 0  otherwise.

Thresholding provides the
best approximation of
T within X g
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Structured Recovery Algorithms

e Modify existing approaches (optimization or greedy-based)
to obtain structure-aware recovery algorithms:
replace the thresholding step in IHT, CoSaMP, SP, ... with a

best structured sparse approximation step
that finds the closest point within union of subspaces

v’ = M(z, K) = arg min ||z — Z||>
e K

RN T

Greedy structure-aware recovery
algorithms inherit guarantees

of generic counterparts
(even though feasible set may be

nonconvex)




Structured Frequency-Sparse Signals

e A K-structured frequency-
sparse signal x consists of K
sinusoids that are mutually

RN

incoherent:
N — K
T = Z are(fr) € Tk e if
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cfx € Z, [(e(fi),e(fi))| Su vV k#k

e If x is K-structured frequency-sparse, then there exists a
K-sparse vector ¢ such that © = ¥(¢)f# and the nonzeros
in 0 are spaced apart from each other (band exclusion).




Structured Frequency-Sparse Signals

o If x is K-structured frequency-sparse, then there exists a
K-sparse vector # such that x = ¥(¢)f and the nonzeros
in @ are spaced apart from each other.

e Preserve the structure only between sparse signals that
follow the structured sparsity model

e Random (iid Gaussian, Bernoulli) matrix has the
structured RIP with high probability if

01 = 0 (1 1og (S = KD ))




Structured Sparse Approximation
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Algorithm 1: T(z,K,c, )

Integer Program

Inputs:

e Signal vector x

e Target sparsity K

e Redundancy factor ¢

e Maximum coherence u

Output:

e Approximation vector =

e Compute coefficients: § = ®(c)’
wyli] = 0i]*, i=0,...,cN —1

e Solve support:

S = arg Imax wgs
s€{0,1}eN

st. D,s<1,s"1<K
e Mask coefficients:
0] — 0O[i]s[i],i =0....,cN —1
e Return 7 = ®(¢)0

X



Recovery with Structured Sparsity

Theorem:

Assume we obtain noisy CS measurements of a
signal y = ®x + n. If ® has the structured RIP
with 6 < 0.1, then the output of the structured
IHT algorithm obeys

Y C
|z —Z||2 < Cifle — M(z, K)l2 + ¢—%|Iw — M(z, K)[[1 + Cs]|n||2
CS recovery signal K-term noise
error structured sparse approximation error

In words, instance optimality based on
structured sparse approximation

[Baraniuk, Cevher, Duarte, Hegde 2010]



Structured Sparse Approximation

RN
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Algorithm 2: T, (z, K, c, )
Inhibition Heuristic
Inputs:
e Signal vector x
e Target sparsity K
e Redundancy factor ¢
e Maximum coherence u
Output:
e Approximation vector =
e Compute coefficients: § = ®(c)’
e Initialize: Ald] =0, d=0,...,cN — 1
e While ¢ is nonzero and ||4||o < K,
e Find max abs entry |0[n,..]| of
e Copy entry O[nmax] = 0[nmax]
e Inhibit “"coherent” entries
O[n'] =0
e Return z = @(c)é



Structured Sparse Approximation

MODERN
SPECTRAL
ESTIMATION

!

INTRODUCTION TO
el SPECTRAL
ANALYSIS

0=T0(c) z,K)

DFT Frame + Thresholding

equivalent to
Maximum Likelihood Estimate

of amplitudes and frequencies
for frequency-sparse signal
via Periodogram

K
r = Zake(fk)+n

k=1
Lfrequencies

amplitudes

Widely-studied problem:
Line spectral estimation



Structured Sparse Approximation
Algorithm 3: T,(z, K)

MODERN Line Spectral Estimation
SPECTRAL
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LN Inputs:
CATION e Signal vector z

e Target sparsity K
Output:
e Parameter estimates aq,...,ax
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Normalized approx. error

Sparse Approximation of
Frequency-Sparse Signals

- = = Standard sparse approx. via DFT Basis
- = = Standard sparse approx. via DFT Frame
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Sparse Approximation of
Frequency-Sparse Signals
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Structured CS: Performance
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Structured CS: Performance

Average SNR, dB
N W S Ol (@)
© oS © o o

—k
&)

1
\\\\\\\\\\

|||||||
|||||||

llllll
lllll

11111
|||||||
N

=+ SIHT via Alg. 1 :
o == SIHT via Alg. 2
—&— SIHT via Root MUSIC |
Root MUSIC on M signal samples N = 1024
- = = Standard IHT via DFT (Average) K =20
"""" Standard IHT via DFT (Best/Worst)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

100

200 300 400 500
Number of measurements M



From Recovery of Sparse Signals
To Line Spectral Estimation

e Can “"read” indices of nonzero DFTF coefficients to obtain
frequencies of frequency-sparse signal components

e Equivalence: accurate recovery = accurate estimation?

o Algorithms: Alg. 3 essentially combines legacy line
spectral estimation with CS recovery algorithms
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A Root MUSIC
. - - -Standard Sparsity || ® How to change
~~~~~~~ 1 signal model
________ to further
~~~~~ improve
performance?
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Interpolating the Projections
(Dirichlet Kernel)

1400~

1200f
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— Translated Dirichlet kernel
— Quadratic approximation ||
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1.98
Frequency o

e Main lobe of Dirichlet
kernel can be well
approximated by a
quadratic polynomial
(parabola)

e Three samples
around peak are
required for
interpolation



From Discrete to Continuous Models

e Both the DFT basis and the DFT frame can be conceived
as samplings from an infinite set of signals e(f)
for a discrete set of values for the frequency f € [0, N)

_ L [ jemp/N jem2p/N j27r(N—1)f/N}
e(f) Wi {e e ... €
e Since the signal vector ¢(f) varies smoothly in each entry
as a function of f, we can represent the signal set as a
one-dimensional nonlinear manifold:

0 ; JY_>

Parameter space




From Discrete to Continuous Models

e For computational reasons, we wish to design methods
that allow us to interpolate the manifold from the
samples obtained in the DFT basis/frame to increase the
resolution of the frequency estimates.

e An interpolation-based compressive line spectral
estimation algorithm obtains projection values for sets of
manifold samples and interpolates around peak on the
rest of the manifold to get frequency estimate

Parameter space




Interpolating the Manifold:
Polar Interpolation

e All points in manifold have
equal norm; distance b/w
samples is uniform

e Manifold must be contained
within unit Euclidean ball
(hypersphere)

~ e Project signal estimates
~ into hypersphere

e Find closest point in
manifold by interpolating
from closest samples with
polar coordinates

e Integrate band exclusion to
get Band-Excluding
Interpolating SP (BISP)




Interpolating the Manifold:
Polar Interpolation

e In BISP, find closest point
in manifold by interpolating
from closest samples with
polar coordinates:

e(fo—1/c) < £ =0 — A

B(fo)HZZQO
e(fo+1/c) <> L =0+ A
T L ="

e Map back from manifold to
frequency estimates
(parameter space)

Akin to Continuous Basis Pursuit (CBP)
f [Ekanadham, Tranchina, and Simoncelli 2011]



Compressive Line Spectral Estimation:
Performance Evaluation
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Compressive Line Spectral Estimation:
Performance Evaluation (Noise)
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Compressive Line Spectral Estimation:
Computational Expense

Time (seconds)| Noiseless | Noisy
¢1-analysis | 9.5245 8.8222

SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477

BISP 5.4265 1.4060




Conclusions

e Spectral CS provides significant improvements on
frequency-sparse signal recovery

— address coherent dictionaries via structured sparsity
- simple-to-implement modifications to recovery algs
— can leverage decades of work on spectral estimation

robust to model mismatch, presence of noise

e Compressive line spectral estimation:

http:

recovery via parametric dictionaries provides
compressive parameter estimation

dictionary elements as samples from manifold models
from dictionaries to manifolds via interpolation techniques

from recovery to parameter estimation from compressive
measurements

localization, bearing estimation, radar imaging, ...

WWW.ecs.umass.edu/~mduarte mduarte@ecs.umass.edu



