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Spectral Compressive Sensing

• Compressive sensing applied to frequency-sparse signals

linear 
measurements

frequency-sparse
signal

Fourier components

[E. Candès, J. Romberg, T. Tao; D. Donoho]
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Frequency-Sparse Signals 
and the DFT Basis
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Integral frequencies
Arbitrary frequencies

Signal is sum of 10 sinusoids

Frequency-Sparse Signals 
and the DFT Basis
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The Redundant DFT Frame
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The Redundant DFT Frame

, c = 10
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Recovery 
algorithms 
operate similarly 
to “matched 
filtering”:

Dirichlet Kernel



The Redundant DFT Frame

[Candès, Needell, Eldar, Randall 2011]Sparse approximation 
algorithms fail

, c = 10



Sparse Approximation of 
Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies
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Structured Sparse Signals

• A K-sparse signal lives on 
the collection of K-dim 
subspaces aligned with 
coordinate axes

RN

�K � �K

• A K-structured sparse 
signal lives on a particular 
(reduced) collection of 
K-dimensional canonical 
subspaces

�K � �K

RN

[Baraniuk, Cevher, Duarte, Hegde 2010]



• Preserve the structure only between sparse signals that 
follow the structure model

RM

�
�x1

�x2mK K-dim planes

�K � �K

Structured Restricted 
Isometry Property (SRIP)

RN

• Random (iid Gaussian, Rademacher) matrix has the SRIP 
with high probability if 

[Blumensath, Davies; Lu, Do]



Many state-of-the-art sparse recovery algorithms 
(greedy and optimization solvers) rely on 
thresholding

RN

�K � �K

Leveraging Structure in Recovery

x

[Daubechies, Defrise, and DeMol; 
Nowak, Figueiredo, and Wright; 
Tropp and Needell; Blumensath and Davies...]

Thresholding provides the 
best approximation of 
x within �K � �K



• Modify existing approaches (optimization or greedy-based) 
to obtain structure-aware recovery algorithms: 
replace the thresholding step in IHT, CoSaMP, SP, ... with a 
best structured sparse approximation step 
that finds the closest point within union of subspaces

RN x

�K � �K

Greedy structure-aware recovery 
algorithms inherit guarantees 
of generic counterparts 
(even though feasible set may be 
nonconvex)

Structured Recovery Algorithms



• If x is K-structured frequency-sparse, then there exists a 
K-sparse vector    such that                 and the nonzeros 
in    are spaced apart from each other (band exclusion).

Structured Frequency-Sparse Signals
• A K-structured frequency-

sparse signal x consists of K 
sinusoids that are mutually 
incoherent:

RN

if
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• If x is K-structured frequency-sparse, then there exists a 
K-sparse vector    such that                 and the nonzeros 
in    are spaced apart from each other.

Structured Frequency-Sparse Signals
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• Preserve the structure only between sparse signals that 
follow the structured sparsity model

• Random (iid Gaussian, Bernoulli) matrix has the 
structured RIP with high probability if 



Structured Sparse Approximation

�K � �K
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Inputs:
• Signal vector x
• Target sparsity K
• Redundancy factor c
• Maximum coherence
Output:
• Approximation vector 

• Compute coefficients:
 
• Solve support: 

• Mask coefficients:

• Return
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

Algorithm 1:
Integer Program



Theorem: 
Assume we obtain noisy CS measurements of a 
signal                . If    has the structured RIP 
with          , then the output of the structured 
IHT algorithm obeys

CS recovery
error

signal K-term
structured sparse approximation error

noise

Recovery with Structured Sparsity

In words, instance optimality based on 
structured sparse approximation

[Baraniuk, Cevher, Duarte, Hegde 2010]



• Compute coefficients:
• Initialize:
• While    is nonzero and 

• Find max abs entry            of 
• Copy entry
• Inhibit “coherent” entries

• Return

• Mask coefficients:

Inputs:
• Signal vector x
• Target sparsity K
• Redundancy factor c
• Maximum coherence

�K � �K

RN
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Algorithm 2:
Inhibition Heuristic

Output:
• Approximation vector 

Structured Sparse Approximation



DFT Frame + Thresholding
equivalent to 
Maximum Likelihood Estimate
of amplitudes and frequencies 
for frequency-sparse signal
via Periodogram

Widely-studied problem:
Line spectral estimation

amplitudes
frequencies

Structured Sparse Approximation



Inputs:
• Signal vector x 
• Target sparsity K

Algorithm 3:
Line Spectral Estimation

Output:
• Parameter estimates

• Signal estimate 

MUSIC
Root MUSIC

ESPRIT
PHD

...

x

K

Structured Sparse Approximation



Sparse Approximation of 
Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies
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Sparse Approximation of 
Frequency-Sparse Signals

Signal is sum of 10 sinusoids at arbitrary frequencies
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Structured CS: Performance



Structured CS: Performance
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From Recovery of Sparse Signals
To Line Spectral Estimation

• Can “read” indices of nonzero DFTF coefficients to obtain 
frequencies of frequency-sparse signal components

• Equivalence: accurate recovery = accurate estimation?
• Algorithms: Alg. 3 essentially combines legacy line 

spectral estimation with CS recovery algorithms
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Interpolating the Projections
(Dirichlet Kernel)

JID:YACHA AID:879 /FLA [m3G; v 1.77; Prn:27/08/2012; 14:35] P.12 (1-19)
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Fig. 3. Approximation of windowed sinusoid’s frequency response (Dirichlet kernel) in the main lobe by a quadratic function. The Dirichlet kernel’s maxi-
mum/peak is located at ω = 1.9775 radians/second. The maximum/peak of the quadratic least-squares fit to three samples of a redundant DFT of the signal
(with N = 1024 and c = 10) around its peak is located at ω̂ = 1.9775, i.e., it is an accurate estimate of the sinusoid’s frequency with precision to four
decimals.

Algorithm 4 SIHT using line spectral estimation.
Inputs: CS matrix Φ , measurements y, line approximation algorithm Tt (·, K ).
Outputs: K -sparse approximation {ω̂k, âk}K

k=1, signal estimate x̂.
Initialize: x̂0 = 0, r = y, i = 0
while halting criterion false do

i ← i + 1
{ω̂k, âk}K

k=1 ← Tt ( x̂i−1 + ΦT (y − Φx̂i−1), K ) {obtain parameter estimates}

x̂i ← ∑K
k=1 âke(ω̂k) {form signal estimate}

end while
return x̂ ← x̂i , {ω̂k, âk}K

k=1

5. Experimental results

In this section, we perform a range of computational experiments to test the limits of SCS and validate the theoretical
guarantees developed above. We compare the performance of the SIHT algorithm variants (based on the periodogram in
Algorithm 2 and on line spectral estimation in Algorithm 4) to the standard CS recovery paradigm of [1,2] implemented
using the IHT algorithm (6). We probe the robustness of the algorithms to varying amounts of measurement noise and
varying frequency redundancy factors c. We also test the algorithms on a real-world communications signal. Throughout
this section, the two metrics of performance we use are the normalized error E = ‖x − x̂‖2/‖x‖2 and the signal to noise
ratio SNR = −20 log10 E , averaged over all independent iterations of each experiment. A Matlab toolbox containing im-
plementations of the SCS recovery algorithms, together with scripts that generate all figures in this paper, is available at
http://dsp.rice.edu/scs.

Our first experiment compares the performance of standard IHT using the orthonormal DFT basis against that of the
SIHT algorithms. Our experiments use signals of length N = 1024 samples (chosen for computational efficiency) con-
taining K = 20 complex-valued sinusoids. For varying M , we executed 100 independent trials using random measure-
ment matrices Φ of size M × N with i.i.d. Gaussian entries and signals x = ∑K

k=1 e(ωk), where each pair of frequencies
ωi, ω j, 1 ! i, j ! K , i %= j are spaced by at least κ = 10π/1024 radians/sample (i.e., two sidelobes away from one another
in the Dirichlet kernel). For each CS matrix/sparse signal pair we obtain the measurements y = Φx and calculate estimates of
the signal x̂ using IHT with the orthonormal DFT basis, SIHT using the periodogram (Algorithm 2) via both integer program-
ming (Algorithm 1) and heuristic approximation (Algorithm 3) with frequency redundancy factor c = 10, maximum allowed
coherence ν = 0.1 (so that ν > |DN (κ)|/N), and quadratic parametric frequency interpolation as described in Section 4.2.2;
and SIHT using line spectral estimation (Algorithm 4) via both Root MUSIC and Thomson’s multitaper method. We use a
window size W = N/10 in Root MUSIC to estimate the autocorrelation matrix Rxx and set W = 5/2N in the multitaper
method. For reference, we also evaluate the performance of the standard root MUSIC spectral estimation algorithm applied
to M regular samples of the signal obtained by reducing the sampling rate by a factor of M/N , i.e., we obtain fewer samples
from the same signal duration to match the equivalent sampling rate obtained in CS. We study the performance of the IHT
algorithm with the DFT basis in three different regimes: (i) the average case, in which the frequencies are selected randomly
to machine precision; (ii) the best case, in which the frequencies are randomly selected and rounded to the closest integral
frequency, resulting in zero spectral leakage; and (iii) the worst case, in which each sinusoid frequency is midway between

•Main lobe of Dirichlet 
kernel can be well 
approximated by a 
quadratic polynomial 
(parabola)

•Three samples 
around peak are 
required for 
interpolation



From Discrete to Continuous Models
• Both the DFT basis and the DFT frame can be conceived 

as samplings from an infinite set of signals e(f) 
for a discrete set of values for the frequency

• Since the signal vector e(f) varies smoothly in each entry 
as a function of f, we can represent the signal set as a 
one-dimensional nonlinear manifold: 

e(0)
e(1)
e(2)
e(3) ...

f

0 N

Parameter space

e(f) =
1p
N

h
ej2⇡f/N ej2⇡2f/N . . . ej2⇡(N�1)f/N

i



From Discrete to Continuous Models
• For computational reasons, we wish to design methods 

that allow us to interpolate the manifold from the 
samples obtained in the DFT basis/frame to increase the 
resolution of the frequency estimates.

• An interpolation-based compressive line spectral 
estimation algorithm obtains projection values for sets of 
manifold samples and interpolates around peak on the 
rest of the manifold to get frequency estimate

e(0)
e(1)
e(2)
e(3) ...

f

0 N

Parameter space



•All points in manifold have 
equal norm; distance b/w 
samples is uniform

•Manifold must be contained 
within unit Euclidean ball 
(hypersphere)

•Project signal estimates 
into hypersphere

•Find closest point in 
manifold by interpolating 
from closest samples with 
polar coordinates

•Integrate band exclusion to 
get Band-Excluding 
Interpolating SP (BISP)

e(0)
e(1)
e(2)
e(3) ...

Interpolating the Manifold:
Polar Interpolation



•In BISP, find closest point 
in manifold by interpolating 
from closest samples with 
polar coordinates:

•Map back from manifold to 
frequency estimates 
(parameter space)

Interpolating the Manifold:
Polar Interpolation

e(f0-1/c)

e(f0+1/c)
e(f0)

f

0 N
Akin to Continuous Basis Pursuit (CBP) 

[Ekanadham, Tranchina, and Simoncelli 2011]



Compressive Line Spectral Estimation: 
Performance EvaluationAlgorithm 1 BISP

INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
S

0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
0
), i = i+ 1

end while
y

0
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�

†
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LOOP:
repeat

i = 1, S

n
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n�1

while i  K do
S

n
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n[argmaxi |hy,Aii|, i 62 B0(S
n
), i = i+1

end while
a = (�Sn

)

†
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n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 1. Frequency estimation performance in noise-less case.
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Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.
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to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

N = 100, K = 4, 
c = 5,           = 0.2 Hz

BOMP [Fannjiang and Liao 2012]
SDP: Atomic Norm Minimization 
[Tang, Rhaskar, Shah, Recht 2012]

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
S

0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
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), i = i+ 1

end while
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repeat
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while i  K do
S
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n[argmaxi |hy,Aii|, i 62 B0(S
n
), i = i+1

end while
a = (�Sn

)

†
y

S

n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.



Compressive Line Spectral Estimation: 
Performance Evaluation (Noise)

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
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0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
0
), i = i+ 1

end while
y

0
r = y ��S0
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S0y, n = 1

LOOP:
repeat
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n
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while i  K do
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end while
a = (�Sn

)
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S

n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
= ;

while i  K do
S

0
= S

0 [ argmaxi |hy,Aii|, i 62 B0(S
0
), i = i+ 1

end while
y

0
r = y ��S0
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†
S0y, n = 1

LOOP:
repeat

i = 1, S

n
= S

n�1

while i  K do
S

n
= S

n[argmaxi |hy,Aii|, i 62 B0(S
n
), i = i+1

end while
a = (�Sn

)

†
y

S

n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

N = 100, K = 4, M = 50, c = 5,           = 0.2 Hz



Compressive Line Spectral Estimation: 
Computational Expense

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
INITIALIZE: � = AD, i = 1, S

0
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while i  K do
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end while
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end while
a = (�Sn
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n
= supp(thresh(a,K))

⌦ = [{�(s� 1),�s,�(s+ 1)|s 2 S

n}
From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

Algorithm 1 BISP
INPUTS: Compressed signal y, sparsity K, measurement
matrix A and spacing between dictionary elements �.
OUTPUTS: Reconstructed signal ˜

f and frequency esti-
mates ˜!.
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0
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while i  K do
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0 [ argmaxi |hy,Aii|, i 62 B0(S
0
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S0y, n = 1

LOOP:
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n
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From T(y,A,⌦) obtain ˜

f and ˜! using (9) and (6)
y

n
r = y �A

˜

f , n = n+ 1

until ||yn
r ||2 < ✏ · ||yn�1

r ||2 _ n  K

vector or a reconstructed signal (`1-synthesis, `1-analysis,
SIHT, and SDP), we apply the MUSIC algorithm [15] on the
reconstructed signal to estimate its frequencies. In the BISP
and BOMP algorithms, we exclude atoms with coherence
⌘ > 0.25 using (4).

For the first experiment, we explore a range of subsam-
pling ratios  with noiseless measurements to verify the level
of compression that allows for successful estimation. We set
✏ = 10

�10 for the relevant algorithms. The result of the nu-
merical experiment is shown in Figure 1. In the noiseless
case, SDP obtains the best result. The polar interpolation al-
gorithms (CBP and BISP) both converge to a given estimation
precision, which corresponds to the level of approximation
error. When the number of measurements M is sufficiently
small, CBP outperforms `1-synthesis. The performance of
BOMP and SIHT is worst among the algorithms tested. Sur-
prisingly, while the DFT coefficients x found by `1-synthesis
are not sparse and do not match the original frequencies, the
signal f is still reconstructed accurately, and so the MUSIC
algorithm recovers the frequencies adequately.

For the second experiment, we include measurement
noise in the signal model. We fix  = 0.5 and vary the signal-
to-noise ratio (SNR) from 0 to 20 dB. In the noisy case, the
polar interpolation algorithms perform best. This is because
their interpolation step relies less on the sparsity of the signal
and more on the known signal model and the fitting to a circle
on the manifold. Additionally, the presence of noise renders
the measurements non-sparse in the dictionaries used by the
non-interpolating algorithms, hindering their performance.

The computation time of the algorithms is also of impor-
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Fig. 2. Frequency estimation performance in noisy case.

Noiseless Noisy
`1-analysis 9.5245 8.8222
`1-synthesis 2.9082 2.7340
SIHT 0.2628 0.1499
SDP 8.2355 9.9796
BOMP 0.0141 0.0101
CBP 46.9645 40.3477
BISP 5.4265 1.4060

Table 1. Average computation times in seconds.

tance, and we have listed the average computation times in
Table 1. We observed that most algorithms exhibit compu-
tation time roughly independent of M , with the exception of
`1-synthesis and CBP. The table shows that the excellent per-
formance of SDP in Figure 1 is tempered by its high computa-
tional complexity, as well as its lack of flexibility on the mea-
surement scheme. Moreover, the relaxation in BISP that ac-
counts for the presence of noise reduces its computation time,
increasing its performance advantage over SDP and CBP.

Time (seconds)



Conclusions
• Spectral CS provides significant improvements on 

frequency-sparse signal recovery
– address coherent dictionaries via structured sparsity
– simple-to-implement modifications to recovery algs
– can leverage decades of work on spectral estimation
– robust to model mismatch, presence of noise

• Compressive line spectral estimation:
– recovery via parametric dictionaries provides 

compressive parameter estimation 
– dictionary elements as samples from manifold models
– from dictionaries to manifolds via interpolation techniques
– from recovery to parameter estimation from compressive 

measurements 
– localization, bearing estimation, radar imaging, ...

http://www.ecs.umass.edu/~mduarte       mduarte@ecs.umass.edu


