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Solve PDE for string position

1. Posit: separation of variables

2. Pluginto PDE 2
v(t)d u(x)

fz,t) = u(z)v(t)

d?v(t)

9

s = c“u(x) 73

1 dQU(CIZ) _ c? dzv(t) — )\ | Depends
’U(t) dt2 on t only

Solutions are
eigenfunctions of
diff. operator
with eigenvalue
A=-k?m?



General solution

f(x,t) = ﬂsin(km)}(ak cos(ckmt) + Bi sin(cm))

l l

Laplacian: self-adjoint operator with nice
spectrum and eigenfunctions

Lu = \u

(physical, Fourier analysis)
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L — D _ A (combinatorial, spectral graph theory)



Joint work with
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1 2 3 N/2

N sensors on
structure

N/2+1 N

* Each sensor observes displacement data ()

* Concatenate to get:[x(t)] = [z1(t), z2(t), ..., zn(t)]"

* An N-degree-of-freedom structure with no damping can
be modeled by:

de(t)}

Qﬂ[ T

N x N mass matrix N x N stiffness matrix free decay

- K x(t)] = [0(¢ [M], [K] : unknown



Structural Dynamics

 Homogeneous solution:
N

) Generalized
[Cl?(t)] = Z POn Sln(wnt Hn)[ (o eigenvectors
— ~~ ~~ (1K1 = N[M]) = 0
modal frequency N x 1 mode shape

e |%n] are orthonormal, independent of time, physical

mformatlon about structure //\

2.44 Hz 2.83 Hz 10.25 Hz
 Modal analysis:

— Extract modal frequencies, mode shape Discrete

Inverse

— Populate/update FE models, detect chang€s 8 ZslEys




Recall:

Consider analytic signal:

Data Collection

()] = 3 pusin(wnt +0.)( Y|

n= 1moda1 frequency

N x 1 mode shape

2(t)] = D Ane " [¢hy]

Sample [z(t)] attimes t1,%2,...,1lp

Stack samples into M x N matrix [ X].

X]

z1(t1)
z1(t2)

z1(tn)

T2 (t1)
i) (tg)

To(tar)

TN (t1)
Ty (t2)

N (tr)



SVD for Modal Analysis

r1(t1)  x2(t1) - an(t1) recall
[X] _ wl(.tg) $2(t2) JZN:(t2) CU(t) ZAnelwn wn
wi(tar) @atrr) - an(ian),

eiwltl
eiwltg
: [Wo] - [¥n]]
. A
eiwltM
sampled sinusoids diagonal unitary

can make nearly orthogonal amplitudes mode shapes



SVD for Modal Analysis

sampled sinusoids

N

amplitudes

>
AN

mode shapes



SVD for Modal Analysis

* Key idea:
right singular vectors of| X | & true mode shapes

* Accuracy depends on:
— strategy for choosing sample times t1,t2, ..., T
— number of samples M
— total sampling duration T
— number of active modes K <M
— minimum separation between modal frequencies
5min — minl;én ‘wl — Wn‘
— maximum separation between modal frequencies
5max — INaXjA£n ‘wl — wn’
* Our contributions:
— three sampling strategies, including compressive sampling
— non-asymptotic bounds



Related work

Modal Analysis

— lbrahim Time Domain (ITD), Frequency Domain Decomposition
(FDD), Eigensystem Realization Algorithm (ERA)

Proper Orthogonal Decomposition (POD)

— Proper Orthogonal Modes (POM)

converge asymptotically to true

mode shapes [Feeny and Kappagantu, 1998], [Kerschen and

Golinval, 2002]
CS in SHM

— Use CS to collect data, reconstruct signal, modal analysis

[O’Connor, Lynch, Gilbert, 2014],

Randomized Numerical Linear A
— Compressive PCA [Fowler, 2009],

Bao, et al., 2010, 2013]
gebra (randNLA)

Qi and Hughes, 2012]

— Subspace approximation [Halko and Tropp, 2010] and many

others



Uniform Sampling

* Theorem 1:

Suppose t1,ta,...,tp are uniformly spaced over
0, 7] with sampling interval T, , where

log K
T~ 25 and T, = =

€ Orin Omax

Then

~ 2 1_|_€) 2 2
. ) 2>1_€ ( . _AA—LAL‘J;

’(W }7{¢ }>’ = 1 — ¢ I{;ﬁ&;( miﬂ@lp L ’An‘2 —|—C€)’2
ce[—1,1
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Random Sampling

* Theorem 2:

Suppose t1,t2,...,tpr are chosen uniformly at
random over |0, T'| with
T~ and M~ SEE

Then with exponentially small failure probability,

[({on}, {n P > 1 -




Lessons

* Uniform sampling = “Nyquist-like” bound
— sampling interval inversely proportional to Omax
— time span T inversely proportional to Omin

« Random sampling requires
— same time span T (up to a constant)
— fewer total measurements M when Omax/Omin large

* Similar results for mode shapes with closely
spaced amplitudes

MNmaX<log€K . Omax K) vs. M ~ KlozK

5min




Practical sampling in HW

e Goal: reduce transmission, save batteries/use solar
power

* Uniform samples possible, generates too much data
* Uniformly random in time too hard to implement

e Uniform samples but randomly “reduced” or
sketched

2
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Algorithm: Compressive SVD

e Collect data

Y =X
 Compute SVD[Y]
Y = SYU”

 Return mode shapes

b = Py,



Uniform Sampling with Random Matrix Multiplication

* Theorem 3: Suppose t1,%2,...,trpare uniformly spaced
with sampling interval T = +—— and

5m ax

5min

M ~ max (188 . Jusx )

Let [Y] = [®][X]with [®] random JLT with m ~ 22X

roOws.

For the right singular vectors of [Y'], with high probability,

- |Al||An|
Itn} = Watle < O e = AP — AP T o)

O10n

+ C - € -max ;
Spectral I#n  min 1 + ce )|}
gap in [X] ce[—1,1




Conclusions

* Simple analysis of compressed data via SVD

— many other data-centric applications need spectral
estimates

— promising non-asymptotic results in modal analysis
— simple hardware implementation

* Future work
— modal analysis of systems with damping
— estimation bounds for modal frequencies
— more sophisticated estimation strategies
— robustness & stability analysis



