FPGA-based design of a
Million point Sparse FFT

Abhinav Agarwal (abhiag@mit.edu)

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology



Outline

Introduction
Motivation for hardware

Implementation
— 4 Blocks: Challenges and solutions
— Resource usage and performance constraints

Conclusion



Collaborators

Haitham Hassanieh
Omid Abari
Ezzeldin Hamed
Prof. Dina Katabi
Prof. Arvind



SFFT implementation

Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price:
Simple and Practical Algorithm for Sparse Fourier Transform,
Proceedings of the Symposium on Discrete Algorithms, 2012

SFFT already quite fast in software: 20 ms per million pt FFT

Special purpose hardware may offer several more benefits:
— power : 100-1000x lower than software
— cost and form factor: Enabling wireless, mobile or air borne applications

— real time: make it possible to compute SFFT in real time on streaming
data

Design metrics: 10x higher performance than SW while
consuming 100x lower power



Rapid Prototyping - FPGA

* Custom hardware — ASICs

— High performance, low power

— Very high costs, fixed design, no revisions
 FPGA based prototyping

— Lower performance & efficiency than ASICs,
 Still beats SW handily

— Very low cost
— Reprogrammable — useful for evolving algorithms
— Parameterized HW for different applications



Goal & Challenges

Goal: Perform million pt FFTs at ~¥1 ms throughput
— Enable ~1 GHz line rate

Use FPGA prototyping for hardware design & development
— Target Platform: Xilinx ML605 platform with Virtex-6 FPGA
— Power consumption: 1 W

Challenges

— Algorithm uses extremely large shared data structures

— Requires a very fast and relatively large dense FFT (1024 - 4096 pts)
— Limited HW resources on FPGA = need modular dataflow

— Architectural exploration needed as SFFT algorithm relatively new

HDL: Bluespec System Verilog



Sparse FFT algorithm parameters

Sub-linear algorithm requires only some of the input data
Iterative probabilistic algorithm

Higher the no of iterations & greater the input slice sizes
— Higher the confidence in output
— Higher the noise tolerance

— Lower the error

Parameters under consideration

— Input Slice size: W - storage requirements

— No of buckets: B - computational requirements
— No of iterations: t - performance & storage

Chosen Values for N = 229 and k = 500
— W=8192,B=4096,t=8



Outline

* Introduction
e Motivation for hardware



Implementation Blocks

Input

Datastream
Generate Input Slices (Sampling & permutations)

Repeat iteratively t: 8

Perform dense FFT Multiply by filter: W = 8192

For each slice: 4096 pt & Aliasing: B = 4096 samples

Keep track of frequencies in
large buckets

Find large buckets for each

iteration

v

h 4

Output

[ Determine locations & values of largest frequencies

Frequencies

8



Outline

* Introduction to the algorithm
* Motivation for hardware

* Implementation
— Block 1: Input time slices



Sparse FFT side-channel

64 bit complex values

a
>

’ ADC 1 Giga samples/sec

1 million inputs
every 1 ms

Data channel snooping
ensures no effect on
existing design

Requires efficient selection

) Top 500 frequency
of the required data

locations & values

i
.

Data
processing

10



Generating slices from
Input Datastream

11



Input indices for randomized sigma

Slice Vall Val2 Val3 . . Val8192
Slicel 0 866253 683930 843271
Slice2 0 98001 196002 677779
Slice8 0 253835 507670 76545

* Each slice has 8192 (W) values from the input stream

* The table gives the input stream index for each value
in the slice

* All these values are pre-computed




Challenge: Storage

* Each of the million input time samples
— Can be at any place out of 8192 positions in a slice
— 13 bits of position address
— In any of the 8 slices: 3 bit slice address
— 1 million * (13b + 3b) =16 Mb
— For larger no of slices, increases proportionally

— Not feasible, already larger than total BRAM
storage
e 832 16kb Blocks : 13.3 Mb



Storage: Data look up table

Part 1: For all input time samples
— Store a single bit denoting whether it is used
— 1 million *1b=1Mb
Part 2: For each value that is used
— Store the number of times it is repeated in all slices
— Max no of repetitions = No of slices-1=7:3 bits
— Max no of used values = 8192 * 8
— 8192*8*3b=0.2Mb
Part 3: For each input value that is used
— Store its 16 bit address (3b: Slice, 13b: position)
— Max: 8192 *8 * 16b=1 Mb

Total storage= 1 Mb +0.2 Mb+1 Mb =2.2 Mb

13



Outline

* Introduction to the algorithm
* Motivation for hardware

* Implementation
— Block 1: Input time slices
— Block 2: Filtering & Aliasing



Filtering & Aliasing

* Filter function
— Fixed at design time
— Stored as a look up table
— Multiply with each 8192 point slice

* Dataslice storage: 8192 * 8 * 64b = 4.16 Mb
e Aliasing: Add top half of product to bottom half

Aliasing
—

Input Slice Filter func Output Slice

8192 pt 8192 pt 4096 pt
(From Slice Generator) (Input for FFT)

16



Combining operations

For each used value in input datastream
— Multiply with appropriate filter value using position address

— Load previously stored slice value
* Use Slice address & 12 LSB bits of position address
* MSB of position address determines first/second half

— Add previously stored slice value to filtered value and store result back
— Initialize slice values to 0, use only half the slice storage locations

| 1

Slice Address Position Address

Bl x = N +H = N

Input time Filter time Filtered Previous Aliased
sample sample value value value

17



Reduction of storage

* Needed storage for filtered & aliased slices
— 4096 * 8 * 64b =2.08 Mb

e Reduced from:
— 8192 *8 *64b *2.5=10.4 Mb

e Total storage for 1st, 29 blocks
— 2.2 Mb +2.08 Mb =4.28 Mb
— Fits within BRAM!



Outline

* Introduction to the algorithm

e Motivation for hardware

* Implementation

OC
OC

OC

< 1: Input time slices
K 2: Filtering & Aliasing

<3: FFT



FFT Computation

Larger the FFT size, greater the applicability of HW
High storage & computational costs

Would like to go up to 4096 point FFT
— With minimum possible resource usage
— Conventional folded architectures not suitable for FPGAs

Ref: A new approach to pipeline FFT processor, Shousheng He and Mats
Torkelson, Intl Parallel Processing Symposium 1996.

— Proposed HW oriented streaming 256 pt FFT

* Radix-4 multiplicative complexity (fewer multiplications) using
simpler radix-2 structures

— Radix 22 Single-path Delay Feedback architecture



Streaming FFT - stage

ar(n) —

xi(n) —=

xT(n+N/2) —=

= Zr{n+N/2)

= Zifn+N/2)

—= Zr(n)
xifn+N/2) —=| —= Zin)
BF,
2N
—> >
BF, BF,
_’ > _’
Sl Sl SO
A

Trigger —»

(every N cycles)

aT(n) —=

Xin) —=

xr{n+N/2) —=

xifn+N/2) —=

BF (N)




4096 point Streaming FFT

—E[I]—» BF (N = 64) —E[[I—» -E[[I—» BF (N = 16) —{[I—» X —EI]]—»BF(N=4) —{[I—»

-E[I]—» BF (N = 256) —ﬂ—»

X(k)
-E|||—>BF(N=1)->
4

E—b >~
o
E—b >

LS PSS
R et e e

Wo(n) Wi(n) W,(n) Ws(n) W,(n)
0 T w [ 9 [ s [ 7 [ s | 5 [ 4« | 3 ] 2 ] 1 ] o

22



Generation of Twiddle Factors

W(n) = e-(2mn/N)
n = ky(k;+2k,)

W,(n) C4CyC,CcCsC,C,C,C,Co(Cy,+2C,,) 3072
W, (n) 4*C,C,CcC,C,C,C,C,(C4*+2C,) 768
W,(n) 16*C.C,C,C,C,Co(C,+2C) 196
W,(n) 64*C,C,C,C,(Co+2C,) 48

W,(n) 256*C,C,(C,+2C,) 12

23



4096 point FFT

e Efficient design for large FFT designs
— Minimal storage requirement
— Reduced number of multipliers over in-place FFT
— Simplified control structures with minimal Muxes
— Multi-step complex multiplication to break critical path, separate counters

* Pipelined version: designed, tested & synthesized

Register % LUT % | DSPASEs BRAM | % Frequency | Cycles/

Slices Slices (MHz) FET FFTs/Sec

Resource Usage

4096pt

8579 3.0 | 14892 |10 85 11] 38 |9 79.88 4096 | 19,502
3step Cmplx Mult

Time required per FFT: 51.3 us
8 iterations: 410.4 ps




Outline

* Introduction to the algorithm

e Motivation for hardware

* Implementation

OC
OC
OC
OC

< 1: Input time slices
K 2: Filtering & Aliasing
< 3: FFT

< 4: Top N Selector



Pipeline - One element at a time

A

FFT Output storage

Filtered- Fully pipelined Magnitude
Aliased ~ streaming FFT 2 Tag FETIdx
Inputs (4096pt) g

e Selector needs to maintain a high throughput
* Ideally match other blocks by being fully
pipelined with minimal stalls

Top-N selector

\4

FFT Indices of
buckets with
highest magnitudes




Top N Selector

* Heap priority queue
— Entries stored at 1,2,3,..,,N-1 (N=512)
— Children of k" node located at 2k & 2k+1
— Root is minimum of all tree entries
— Each parent is smaller than its two children



Logical view

Magnitude
& Tag FFTIdx

\4

newltem
—>

If newltem < parent
swap
If swapped continue checking

Root

Replace

5

Next Fill

If newltem > Root
discard Root
if newltem == min(newltem,2,3)
root = newltem; done
else swap with min
If swapped continue checking

28



Issues with Initial Implementation

Two phases

— Insert into unfilled tree at next empty cell

* If Parent is larger, swap and check with new parent until false or
root

— Replace root of filled tree if larger
* Read both children to find new minimum as new parent
* New child checks with its own children until last level

Storage not an issue: Only 7% Slice registers

54% LUTs used — Gigantic Muxes reading and writing
throughout the array

Pipelining not possible as the two phases move in
different directions



Magnitude
& Tag FFTIdx

Pipelined design

Replace

5

Next Fill

Root

Replace requests accompanied
with appropriate children
values

30



Fully Pipelined Heap queue

Insert from top using address of nextEmpty cell
— If newltem > root, use address to select appropriate child for comparison

Insertions can be started every cycle
— 511 insertions done for every slice at the start to fill up the heap

Once heap filled, newltems lead to replacements only if
greater than root
— Can be checked every cycle

Replacements can lead to bubbles (stall one cycle) only if:
— Previous cycle, newltem > root but not the new minimum

— And, this cycle again the newltem > root, as check for minimum
requires the previous replacement to settle

— Number of bubbles on average very low for randomized input



Pipelined design

» Satisfies performance requirement

— Top-N selector operation starts immediately as the
first FFT slice output is available, element by element.

— Ends operation after 4096 + number of bubble cycles
later
e Satisfies area requirements
— 7% Registers and 25% LUTs
— Dramatic reduction in Muxes

— Further optimization possible later using other
storage options



Outline

Introduction to the algorithm

Motivation for hardware

Implementation

— Bloc
— Bloc

— Bloc

— Bloc

< 1: Input time slices
K 2: Filtering & Aliasing
< 3: FFT

< 4: Top N Selector

Conclusion



Conclusion

Sparse FFT algorithm an opportunity to process Big Data in
real time

HW implementation needed to improve throughput,
power, mobile apps

Choice of parameters impacts resource usage and
performance

Demonstrated implementation of 4 major blocks
— How to meet resource and performance constraints
— 2 other blocks are currently being implemented

Applications will determine appropriate parameters for
design & in turn architectural choices

Focus on parameterization to allow variety of designs for
varying application requirements



