The Threshold for Super-resolution

Massachusetts Institute of Technology

Limits to Resolution

Lord Rayleigh (1842-1919)

$d=\frac{\lambda}{2 n \sin \theta}$

numerical
aperture

Ernst Abbe
(1840-1905)

Limits to Resolution

Lord Rayleigh (1842-1919)

$\mathrm{d}=$

$2 n \sin \theta$

numerical aperture

Ernst Abbe
(1840-1905)

In microscopy, it is difficult to observe sub-wavelength structures (Rayleigh Criterion, Abbe Limit, ...)

Many devices are inherently low-pass:

Super-resolution: Can we recover fine-grained structure from coarse-grained measurements?

Many devices are inherently low-pass:

Super-resolution: Can we recover fine-grained structure from coarse-grained measurements?

Applications in medical imaging, microscopy, astronomy, radar detection, geophysics, ...

Many devices are inherently low-pass:
Super-resolution: Can we recover fine-grained structure from coarse-grained measurements?

Applications in medical imaging, microscopy, astronomy, radar detection, geophysics, ...

2014 Nobel Prize in Chemistry! Super-resolution Cameras

Eric Betzig, Stefan Hell, William Moerner

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

Measurement at frequency ω :

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

Measurement at frequency ω :

$$
v_{\omega}=\int_{0}^{1} e^{i 2 \pi \omega t} x(t) d t
$$

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

noise
Measurement at frequency ω :

$$
v_{\omega}=\int_{0}^{1} e^{i 2 \pi \omega t} x(t) d t+\eta_{\omega}
$$

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

Measurement at frequency ω :

$$
v_{\omega}=\sum_{j=1}^{k} u_{j} e^{i 2 \pi f_{j} \omega}+\eta_{\omega}
$$

A Mathematical Framework [Donoho, '91]:

Super-position of k spikes, each f_{j} in $[0,1)$:

$$
x(t)=\sum_{j=1}^{k} u_{j} \delta_{f_{j}}(t)
$$

Measurement at frequency $\omega,|\omega| \leq m$:

$$
v_{\omega}=\sum_{j=1}^{k} u_{j} e^{i 2 \pi f_{j} \omega}+\eta_{\omega}
$$

Are there algorithms for enhancing resolution?

Are there algorithms for enhancing resolution?

When can we recover the coefficients (u_{j} 's) and locations (f_{j} 's) from low freq measurements?

Are there algorithms for enhancing resolution?
When can we recover the coefficients (u_{j} 's) and locations (f 's s) from low freq measurements?

Proposition 1: When there is no noise $\left(\eta_{\omega}=0\right)$, there is a polynomial time algorithm to recover the u_{j} 's and f_{j} 's exactly with $m=k$ i.e. measurements at $\omega=-m,-m+1, \ldots, m-1, m$

Are there algorithms for enhancing resolution?
When can we recover the coefficients (u_{j} 's) and locations (f; s) from low freq measurements?
[Prony (1795), Pisarenko (1973), Matrix Pencil (1990), ...]
Proposition $1:$ When there is no noise $\left(\eta_{\omega}=0\right)$, there is a polynomial time algorithm to recover the u_{j} 's and f_{j} 's exactly with $m=k-i . e$. measurements at $\omega=-m,-m+1, \ldots, m-1, m$

Are there algorithms for enhancing resolution?

When can we recover the coefficients (u_{j} 's) and locations (f_{j} 's) from low freq measurements?

Are there algorithms for enhancing resolution?

When can we recover the coefficients (u_{j} 's) and locations (f, j) from low freq measurements?

What if there is noise?

Are there algorithms for enhancing resolution?
When can we recover the coefficients (u_{j} 's) and locations (f; s) from low freq measurements?

What if there is noise? Under what conditions is there an estimator

$$
\widehat{\mathrm{f}}_{\mathrm{j}} \longrightarrow \mathrm{f}_{\mathrm{j}} \text { and } \widehat{\mathrm{u}}_{\mathrm{j}} \longrightarrow \mathrm{u}_{\mathrm{j}}
$$

which converges at an inverse poly-rate (in $1 /\left|\eta_{\omega}\right|$)?

Are there algorithms for enhancing resolution?
When can we recover the coefficients (u_{j} 's) and locations ($\mathrm{f}_{\mathrm{j}} \mathrm{s}$) from low freq measurements?

What if there is noise? Under what conditions is there an estimator

$$
\widehat{\mathrm{f}}_{\mathrm{j}} \longrightarrow \mathrm{f}_{\mathrm{j}} \text { and } \widehat{\mathrm{u}}_{\mathrm{j}} \longrightarrow \mathrm{u}_{\mathrm{j}}
$$

which converges at an inverse poly-rate (in $1 /\left|\eta_{\omega}\right|$)?
And is there an algorithm?

Proposition 2 [M '14]: There is a polynomial time

 algorithm for noisy super-resolution if $m>1 / \Delta+1$
separation condition

Proposition 2 [${ }^{\prime}$ '14]: There is a polynomial time algorithm for noisy super-resolution if $m>1 / \Delta+1$

separation condition

...where d_{w} is the "wrap-around" distance:

Proposition 2 [${ }^{\prime}$ '14]: There is a polynomial time algorithm for noisy super-resolution if $m>1 / \Delta+1$

separation condition

... where d_{w} is the "wrap-around" distance:

Proposition 2 [M'14]: There is a polynomial time algorithm to recover estimates where provided $\left|\eta_{\omega}\right| \leq \operatorname{poly}(\varepsilon, 1 / m, 1 / k)$, and $m>1 / \Delta+1$
...where d_{w} is the "wrap-around" distance:

Proposition 3 [M ‘14]: For any $m \leq(1-\varepsilon) / \Delta$ and k, there is a pair of Δ-separated signals x and $\hat{\mathrm{x}}$ where

$$
\left|\sum_{j=1}^{k} u_{j} e^{i 2 \pi f_{j} \omega}-\sum_{j=1}^{k} \hat{u}_{j} e^{i 2 \pi \hat{f}_{j} \omega}\right| \leq e^{-\varepsilon k}
$$

for any $|\omega| \leq m$

Proposition 3 [M'14]: For any $m \leq(1-\varepsilon) / \Delta$ and k, there is a pair of Δ-separated signals x and \hat{x} where

$$
\left|\sum_{j=1}^{k} u_{j} e^{i 2 \pi f_{j} \omega}-\sum_{j=1}^{k} \hat{u}_{j} e^{i 2 \pi \hat{f}_{j} \omega}\right| \leq e^{-\varepsilon k}
$$

for any $|\omega| \leq m$

[Donoho, '91]:

Asymptotic bounds
for $m=1 / \Delta$, on a grid

[Donoho, '91]:

Asymptotic bounds
for $m=1 / \Delta$, on a grid
[Candes, Fernandez-Granda, '12]: Convex program for $m \geq 2 / \Delta$, no noise

[Donoho, '91]:
 Asymptotic bounds
 for $m=1 / \Delta$, on a grid

[Candes, Fernandez-Granda, '12]: Convex program for $m \geq 2 / \Delta$, no noise
[Fernandez-Granda, '13]:
Convex program for $m \geq 2 / \Delta$, with noise

[Donoho, '91]:

Asymptotic bounds
for $m=1 / \Delta$, on a grid
hundreds of other papers
[Candes, Fernandez-Granda, '12]:
Convex program for $m \geq 2 / \Delta$, no noise
[Fernandez-Granda, '13]:
Convex program for $m \geq 2 / \Delta$, with noise

[Donoho, '91]:

Asymptotic bounds
for $m=1 / \Delta$, on a grid
compressed sensing off-the-grid
hundreds of other papers
[Candes, Fernandez-Granda, '12]:
Convex program for $m \geq 2 / \Delta$, no noise
[Fernandez-Granda, '13]:
Convex program for $m \geq 2 / \Delta$, with noise

[Donoho, '91]:

Asymptotic bounds
for $m=1 / \Delta$, on a grid
(Beurling's balyage)
compressed sensing off-the-grid
hundreds of other papers
[Candes, Fernandez-Granda, '12]:
Convex program for $m \geq 2 / \Delta$, no noise
[Fernandez-Granda, '13]:
Convex program for $m \geq 2 / \Delta$, with noise

Vandermonde Matrices

Vandermonde Matrices

This matrix plays a key role in many exact inverse problems (poly interpolation, sparse recovery, ...)

Matrix Pencil Method

Notation: $\mathrm{D}_{\mathrm{u}}=\operatorname{diag}\left(\left\{\mathrm{u}_{\mathrm{j}}\right\}\right)$ and $\mathrm{D}_{\alpha}=\operatorname{diag}\left(\left\{\alpha_{\mathrm{j}}\right\}\right)$

$$
A=V_{m}^{k} D_{u}\left(V_{m}^{k}\right)^{H} \text { and } B=V_{m}^{k} D_{a} D_{u}\left(V_{m}^{k}\right)^{H}
$$

Matrix Pencil Method

Claim 1: The entries of A and B correspond to v_{ω} with $-\mathrm{m}+1 \leq \omega \leq \mathrm{m}$

Notation: $\mathrm{D}_{\mathrm{u}}=\operatorname{diag}\left(\left\{\mathrm{u}_{\mathrm{j}}\right\}\right)$ and $\mathrm{D}_{\alpha}=\operatorname{diag}\left(\left\{\mathrm{a}_{\mathrm{j}}\right\}\right)$

$$
A=V_{m}^{k} D_{u}\left(V_{m}^{k}\right)^{H} \text { and } B=V_{m}^{k} D_{a} D_{u}\left(V_{m}^{k}\right)^{H}
$$

Matrix Pencil Method

Claim 1: The entries of A and B correspond to v_{ω} with $-m+1 \leq \omega \leq m$

Claim 2: If α_{j} 's are distinct and $m \geq k$ and u_{j} 's are non-zero, the unique solns to

$$
A x=\lambda B x
$$

are $\lambda=1 / \alpha_{j}$

Notation: $D_{u}=\operatorname{diag}\left(\left\{u_{j}\right\}\right)$ and $D_{\alpha}=\operatorname{diag}\left(\left\{\alpha_{j}\right\}\right)$

$$
A=V_{m}^{k} D_{u}\left(V_{m}^{k}\right)^{H} \text { and } B=V_{m}^{k} D_{a} D_{u}\left(V_{m}^{k}\right)^{H}
$$

Vandermonde Matrices

This matrix plays a key role in many exact inverse problems (poly interpolation, sparse recovery, ...)

Vandermonde Matrices

This matrix plays a key role in many exact inverse problems (poly interpolation, sparse recovery, ${ }^{\mathbf{v}}$. .) super-resolution

Vandermonde Matrices

exact recovery $\Longleftrightarrow V_{m}^{k}$ is full rank

Vandermonde Matrices

robust recovery $\Longleftrightarrow \mathrm{V}_{\mathrm{m}}^{\mathrm{k}}$ is well-conditioned

Vandermonde Matrices

robust recovery $\Longleftrightarrow V_{m}^{k}$ is well-conditioned
We show a phase transition for its condition number

An Interlude

The Beurling-Selberg majorant:

An Interlude

The Beurling-Selberg majorant:

Properties:
(1) $\operatorname{sgn}(\omega) \leq B(\omega)$

An Interlude

The Beurling-Selberg majorant:
$B(\omega)$

Properties:
(1) $\operatorname{sgn}(\omega) \leq B(\omega)$
(2) $\hat{B}(x)$ supported in $[-1,1]$

An Interlude

The Beurling-Selberg majorant:

Properties:
(1) $\operatorname{sgn}(\omega) \leq B(\omega)$
(2) $\hat{\mathrm{B}}(\mathrm{x})$ supported in $[-1,1]$
(3) $\int_{-\infty}^{\infty} B(\omega)-\operatorname{sgn}(\omega) d \omega=1$

An Interlude

The Beurling-Selberg majorant:

Properties:
(1) $\operatorname{sgn}(\omega) \leq B(\omega)$
(2) $\hat{\mathrm{B}}(x)$ supported in $[-1,1]$
(3) $\int_{-\infty}^{B}(\omega)-\operatorname{sgn}(\omega) d \omega=1$

An Interlude

The Beurling-Selberg majorant:
$\left(\frac{\operatorname{sign}(\pi \omega)}{\pi}\right)^{2}\left(\sum_{j=1}^{\infty}(\omega-j)^{-2}-\sum_{j=-\infty}^{-1}(\omega-j)^{-2}+\frac{2}{\omega}\right)$

Properties:
(1) $\operatorname{sgn}(\omega) \leq B(\omega)$
(2) $\hat{B}(x)$ supported in $[-1,1]$
(3) $\int_{-\infty}^{\infty} B(\omega)-\operatorname{sgn}(\omega) d \omega=1$

An Interlude

The Beurling-Selberg minorant:

An Interlude

The Beurling-Selberg minorant:

Many applications in analytic number theory

Many applications in analytic number theory

We will use them to bound $\mathrm{k}\left(\mathrm{V}_{\mathrm{m}}^{k}\right) \ldots$

Many applications in analytic number theory

We will use them to bound $\mathrm{k}\left(\mathrm{V}_{\mathrm{m}}^{\mathrm{k}}\right) \ldots$

Theorem 1: There are functions $C_{E}(\omega)$ and $c_{E}(\omega)$ for $E=[0, m-1]$ that satisfy:
(1) $\mathrm{C}_{\mathrm{E}}(\omega) \leq \mathrm{I}_{\mathrm{E}}(\omega) \leq \mathrm{C}_{\mathrm{E}}(\omega)$
(2) $\hat{C}_{E}(x)$ and $\hat{C}_{E}(x)$ supported in $[-\Delta, \Delta]$
(3) $\int_{-\infty}^{\infty} C_{E}(\omega)-I_{E}(\omega) d \omega=\int_{-\infty}^{\infty} I_{E}(\omega)-C_{E}(\omega) d \omega=1 / \Delta$

Many applications in analytic number theory

We will use them to bound $\mathrm{k}\left(\mathrm{V}_{\mathrm{m}}^{\mathrm{k}}\right) \ldots$

Theorem 1: There are functions $\mathrm{C}_{\mathrm{E}}(\omega)$ and $\mathrm{c}_{\mathrm{E}}(\omega)$ for $E=[0, m-1]$ that satisfy:
(1) $\mathrm{C}_{\mathrm{E}}(\omega) \leq \mathrm{I}_{\mathrm{E}}\left(\omega, \leq \mathrm{C}_{\mathrm{E}}(\omega)\right.$
(2) $\hat{\mathrm{C}}_{\mathrm{E}}(\mathrm{x})$ and $\hat{\mathrm{C}}_{\mathrm{E}}(\mathrm{x})$ supported in $[-\Delta, \Delta]$
(3) $\int_{-\infty}^{\infty} C_{E}(\omega)-I_{E}(\omega) d \omega=\int_{-\infty}^{\infty} I_{E}(\omega)-C_{E}(\omega) d \omega=1 / \Delta$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$

Proof:
$\left|v_{m}^{k} u\right|^{k}=\sum_{\omega=0}^{m-1}\left|v_{\omega}\right|^{2}$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:
$\left|V_{m}^{k} u\right|^{2}=\sum_{\omega=0}^{m-1}\left|v_{\omega}\right|^{2}$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:
$\left|V_{m}^{k} u\right|^{2}=\sum_{\omega=0}^{m-1}\left|v_{\omega}\right|^{2}$

Let $h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)$
(Dirac comb)

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:
$\left|V_{m}^{k} u\right|^{2}=\sum_{\omega=0}^{m-1}\left|v_{\omega}\right|^{2}=\int_{-\infty}^{\infty} h(\omega) I_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega$

Let $h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)$
(Dirac comb)

Theorem 2: $\left|V_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{aligned}
\left|V_{m}^{k} u\right|^{2}=\sum_{\omega=0}^{m-1}\left|v_{\omega}\right|^{2} & =\int_{-\infty}^{\infty} h(\omega) I_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega \\
& \leq \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega
\end{aligned}
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$

Proof:
$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega=$

Let $h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)$
(Dirac comb)

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
& \sum_{j=1}^{k} \sum_{j^{\prime}=1}^{k} u_{j} \bar{u}_{j^{\prime}} \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) e^{i 2 \pi\left(f_{j}-f_{j}\right) \omega} d \omega
\end{aligned}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
& \sum_{j=1}^{k} \sum_{j^{\prime}=1}^{k} u_{j} \bar{u}_{j^{\prime}} \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) e^{i 2 \pi\left(f_{j}-f_{j}\right) \omega} d \omega
\end{aligned}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega} \quad \text { (Dirac comb) }
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

Let $h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega}$
(Dirac comb)

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$

Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
& \\
& \quad \sum_{j=1}^{k} \sum_{j^{\prime}=1}^{k} \sum_{t=-\infty}^{\infty} u_{j} \bar{u}_{j^{\prime}} \hat{C}_{E}\left(f_{j^{\prime}}-f_{j} j^{\prime}+t\right)
\end{aligned}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega} \quad \text { (Dirac comb) }
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{array}{r}
\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
\sum_{j=1}^{k} \sum_{j^{\prime}=1}^{k} \sum_{t=-\infty}^{\infty} u_{j} \bar{u}_{j^{\prime}} \hat{C}_{E}\left(f_{j_{j}}-f_{j}+t\right)
\end{array}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega}
$$

(Dirac comb)

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$

Proof:

$$
\begin{gathered}
\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
\sum_{j=1}^{k}\left|u_{j}\right|^{2} \hat{C}_{E}(0)
\end{gathered}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega}
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
& \sum_{j=1}^{k}\left|u_{j}\right|^{2} \hat{C}_{E}(0)=\sum_{j=1}^{k}(|E|+1 / \Delta)\left|u_{j}\right|^{2}
\end{aligned}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega}
$$

Theorem 2: $\left|\mathrm{V}_{\mathrm{m}}^{\mathrm{k}} \mathrm{u}\right|^{2}=(\mathrm{m}-1 \pm 1 / \Delta)|\mathrm{u}|^{2}$
Proof:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega)\left|v_{\omega}\right|^{2} d \omega= \\
& \sum_{j=1}^{k}\left|u_{j}\right|^{2} \hat{C}_{E}(0)=\sum_{j=1}^{k}(|E|+1 / \Delta)\left|u_{j}\right|^{2}
\end{aligned}
$$

$$
\text { Let } h(\omega)=\sum_{t=-\infty}^{\infty} \delta_{t}(\omega)=\sum_{t=-\infty}^{\infty} e^{i 2 \pi t \omega}
$$

The threshold for super-resolution is $1 / \Delta$

The threshold for super-resolution is $1 / \Delta$

And the condition number of the Vandermonde matrix has an identical phase transition

The threshold for super-resolution is $1 / \Delta$

And the condition number of the Vandermonde matrix has an identical phase transition

Theme: Test functions are used in harmonic analysis to prove various inequalities

The threshold for super-resolution is $1 / \Delta$

And the condition number of the Vandermonde matrix has an identical phase transition

Theme: Test functions are used in harmonic analysis to prove various inequalities

These functions can be interpreted as preconditioners for $\mathrm{V}_{\mathrm{m}}^{\mathrm{k}}$, and can yield faster, new algorithms...

Thanks!

Summary:

- Noisy super-resolution needs separation, and there is a sharp phase transition for when it is possible
- Applications of Beurling-Selberg extremal functions in the analysis of algorithms
- A new interpretation of test functions in harmonic analysis as preconditioners for the Vandermonde matrix
- Can these tools be applied to compressed sensing off-the-grid? Other inverse problems?

