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In microscopy, it is difficult to observe sub-wavelength 
structures (Rayleigh Criterion, Abbe Limit, …) 
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Super-resolution Cameras 
2014 Nobel Prize in Chemistry! 

Eric Betzig, Stefan Hell, William Moerner 
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A Mathematical Framework [Donoho, ‘91]: 

Super-position of k spikes, each fj in [0,1): 

x(t) =   uj δf (t) j 
j = 1 

k 

Measurement at frequency ω, |ω| ≤ m: 

uj ei2πf ω + ηω j 

j = 1 

k 

vω =  

cut-off  
frequency 
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[Prony (1795), Pisarenko (1973), Matrix Pencil (1990), …] �
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  Are there algorithms for enhancing resolution? 

What if there is noise? Under what conditions is  
there an estimator 
 

fj fj uj uj and 

which converges at an inverse poly-rate (in 1/|ηω|)? 

And is there an algorithm? 

When can we recover the coefficients (uj’s) and  
locations (fj’s) from low freq measurements? 
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…where dw is the “wrap-around” distance: 

Proposition 2 [M ‘14]: There is a polynomial time  
algorithm to recover estimates where 

min 
matchings σ 

max 
j 

fσ(j) uσ(j) - fj - uj + ≤ ε 
provided |ηω| ≤ poly(ε, 1/m, 1/k), and m > 1/Δ + 1  
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  Matrix Pencil Method 
Claim 1: The entries of A and B correspond to vω  
with -m+1 ≤ ω ≤ m 

Du = diag({uj}) and Dα = diag({αj})  Notation: 

VmDu(Vm)H k k k k VmDαDu(Vm)H and B =  A = 

Claim 2: If αj’s are distinct and m ≥ k and uj’s are  
non-zero, the unique solns to 

Ax = λBx 
are λ = 1/αj 
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Vm  k = 

robust recovery 

αj = ei2πf   j 
def 

Vm k is well-conditioned 

We show a phase transition for its condition number 
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    The threshold for super-resolution is 1/Δ 

And the condition number of the Vandermonde  
matrix has an identical phase transition 

Theme: Test functions are used in harmonic analysis 
to prove various inequalities  

These functions can be interpreted as preconditioners 
for Vm, and can yield faster, new algorithms… k 



  

Thanks! 
Summary:	  
 

 �	  Noisy	  super-‐resolu-on	  needs	  separa-on,	  and	  there	  
is	  a	  sharp	  phase	  transi-on	  for	  when	  it	  is	  possible	  
 

 �	  Applica-ons	  of	  Beurling-‐Selberg	  extremal	  func5ons	  
in	  the	  analysis	  of	  algorithms	  
 

 �	  A	  new	  interpreta-on	  of	  test	  func-ons	  in	  harmonic	  
analysis	  as	  precondi5oners	  for	  the	  Vandermonde	  matrix	  
 

 �	  Can	  these	  tools	  be	  applied	  to	  compressed	  sensing	  
off-‐the-‐grid?	  Other	  inverse	  problems?	  


