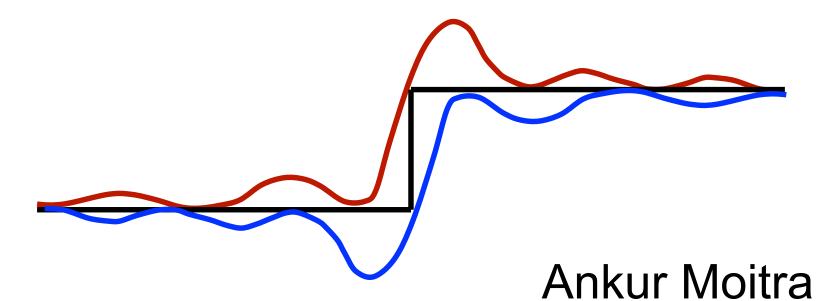
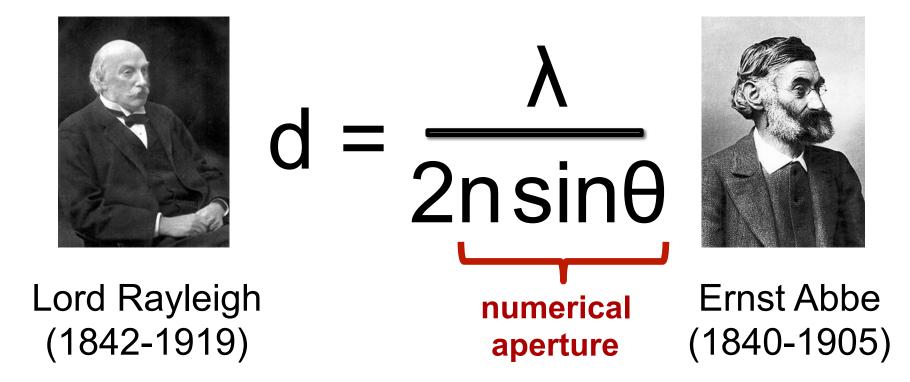
The Threshold for Super-resolution

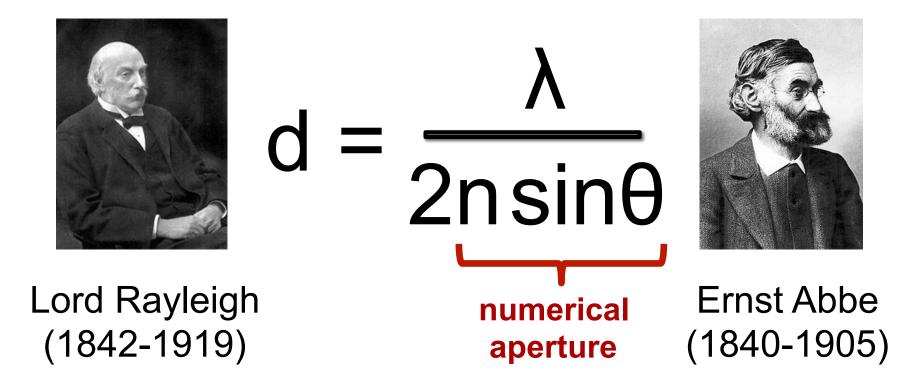


Massachusetts Institute of Technology

Limits to Resolution



Limits to Resolution



In microscopy, it is difficult to observe sub-wavelength structures (**Rayleigh Criterion**, **Abbe Limit**, ...)

Many devices are inherently **low-pass**:

Super-resolution: Can we recover **fine**-grained structure from **coarse**-grained measurements?

Many devices are inherently **low-pass**:

Super-resolution: Can we recover **fine**-grained structure from **coarse**-grained measurements?

Applications in medical imaging, microscopy, astronomy, radar detection, geophysics, ...

Many devices are inherently **low-pass**:

Super-resolution: Can we recover **fine**-grained structure from **coarse**-grained measurements?

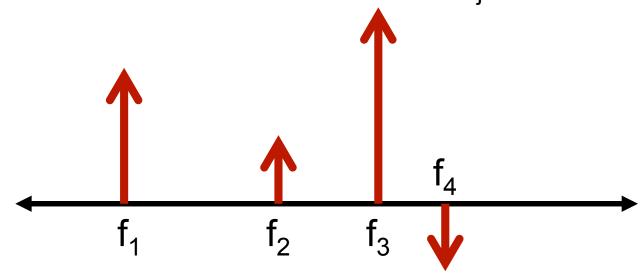
Applications in medical imaging, microscopy, astronomy, radar detection, geophysics, ...

2014 Nobel Prize in Chemistry!

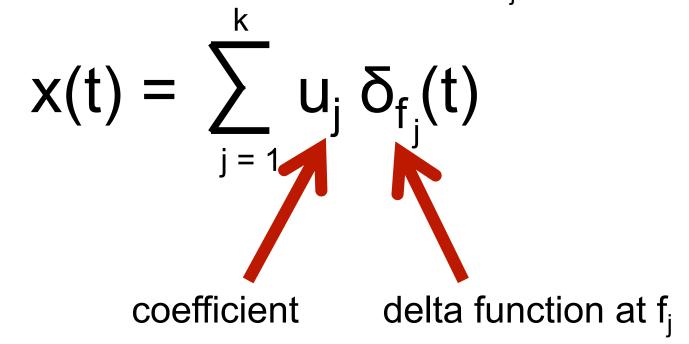
Super-resolution Cameras

Eric Betzig, Stefan Hell, William Moerner

Super-position of k spikes, each f_i in [0,1):



Super-position of k spikes, each f_i in [0,1):



 f_4

 f_3

e^{i2πωt}

Super-position of k spikes, each f_i in [0,1):

$$\mathbf{x}(t) = \sum_{j=1}^{k} \mathbf{u}_{j} \, \delta_{f_{j}}(t)$$

Measurement at frequency ω :

f

Super-position of k spikes, each f_i in [0,1):

$$\mathbf{x(t)} = \sum_{j=1}^{k} \mathbf{u_j} \, \delta_{f_j}(t)$$

Measurement at frequency ω :

$$v_{\omega} = \int_{0}^{1} e^{i2\pi\omega t} x(t) dt$$

Super-position of k spikes, each f_i in [0,1):

$$\mathbf{x}(t) = \sum_{j=1}^{k} u_j \, \delta_{f_j}(t)$$
 noise

Measurement at frequency
$$\omega$$
:
 $v_{\omega} = \int_{0}^{1} e^{i2\pi\omega t} x(t) dt + \eta_{\omega}$

Super-position of k spikes, each f_i in [0,1):

$$\mathbf{x(t)} = \sum_{j=1}^{k} \mathbf{u_j} \, \delta_{f_j}(t)$$

Measurement at frequency ω :

$$v_{\omega} = \sum_{j=1}^{k} u_j e^{i2\pi f_j \omega} + \eta_{\omega}$$

Super-position of k spikes, each f_i in [0,1):

$$\mathbf{x}(t) = \sum_{j=1}^{k} \mathbf{u}_j \, \delta_{f_j}(t) \qquad \begin{array}{c} \text{cut-off} \\ \text{frequency} \end{array}$$

Measurement at frequency ω , $|\omega| \le m$:

$$\mathbf{v}_{\omega} = \sum_{j=1}^{k} \mathbf{u}_{j} \mathbf{e}^{i2\pi f_{j}\omega} + \mathbf{\eta}_{\omega}$$

When can we recover the coefficients (u_j) and locations (f_j) from low freq measurements?

When can we recover the coefficients $(u_j's)$ and locations $(f_i's)$ from low freq measurements?

Proposition 1: When there is no noise (η_{ω} =0), there is a polynomial time algorithm to recover the u_j 's and f_j 's exactly with m = k – i.e. measurements at $\omega = -m, -m+1, ..., m-1, m$

When can we recover the coefficients $(u_j's)$ and locations $(f_i's)$ from low freq measurements?

[Prony (1795), Pisarenko (1973), Matrix Pencil (1990), ...]

Proposition 1: When there is no noise $(\eta_{\omega}=0)$, there is a polynomial time algorithm to recover the u_j 's and f_j 's exactly with m = k – i.e. measurements at $\omega = -m, -m+1, ..., m-1, m$

When can we recover the coefficients (u_j) and locations (f_j) from low freq measurements?

When can we recover the coefficients (u_j) and locations (f_i) from low freq measurements?

What if there is noise?

When can we recover the coefficients (u_j) and locations (f_i) from low freq measurements?

What if there is noise? Under what conditions is there an estimator

$$\widehat{\mathbf{f}}_{j} \longrightarrow \mathbf{f}_{j}$$
 and $\widehat{\mathbf{u}}_{j} \longrightarrow \mathbf{u}_{j}$

which converges at an inverse poly-rate (in $1/|\eta_{\omega}|$)?

When can we recover the coefficients (u_j) and locations (f_i) from low freq measurements?

What if there is noise? Under what conditions is there an estimator

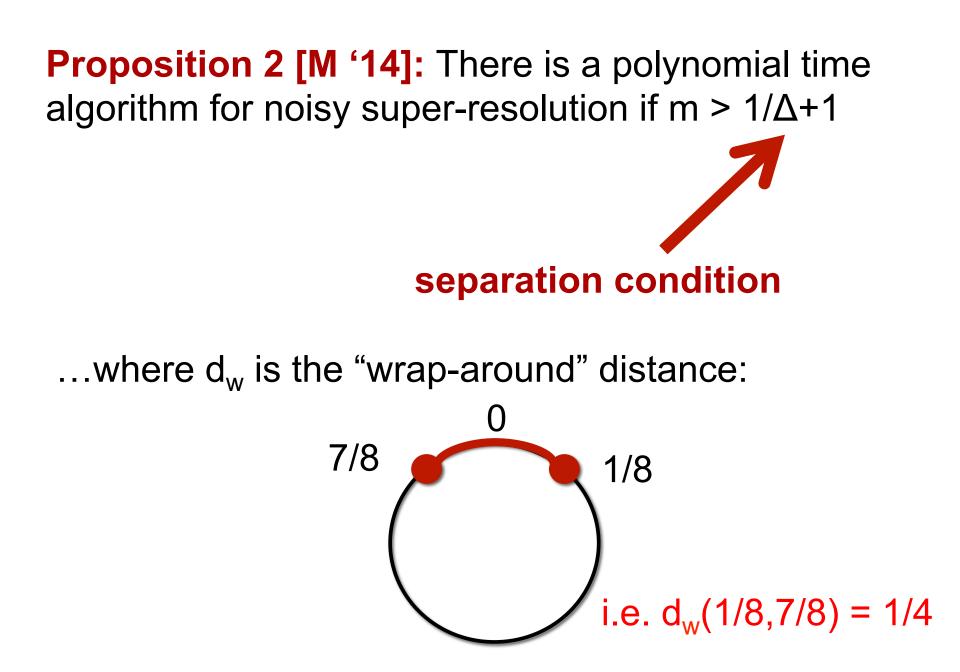
$$\widehat{\mathbf{f}}_{j} \longrightarrow \mathbf{f}_{j}$$
 and $\widehat{\mathbf{u}}_{j} \longrightarrow \mathbf{u}_{j}$

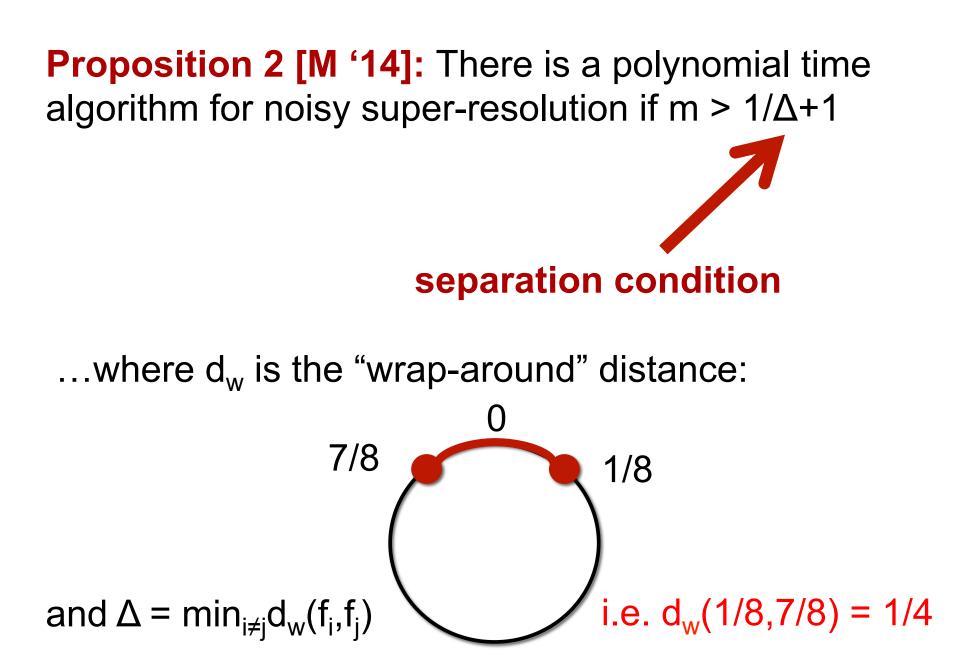
which converges at an inverse poly-rate (in $1/|\eta_{\omega}|$)?

And is there an algorithm?

Proposition 2 [M '14]: There is a polynomial time algorithm for noisy super-resolution if $m > 1/\Delta+1$

separation condition





Proposition 2 [M '14]: There is a polynomial time algorithm to recover estimates where

$$\min_{\text{matchings }\sigma} \max_{j} \left| \widehat{f}_{\sigma(j)} - f_{j} \right| + \left| \widehat{u}_{\sigma(j)} - u_{j} \right| \leq \epsilon$$

provided $|\eta_{\omega}| \le \text{poly}(\epsilon, 1/m, 1/k)$, and $m > 1/\Delta + 1$

...where d_w is the "wrap-around" distance:

$$7/8 = \min_{i \neq j} d_w(f_i, f_j)$$

Λ

Proposition 3 [M '14]: For any $m \le (1-\epsilon)/\Delta$ and k, there is a pair of Δ -separated signals x and \hat{X} where

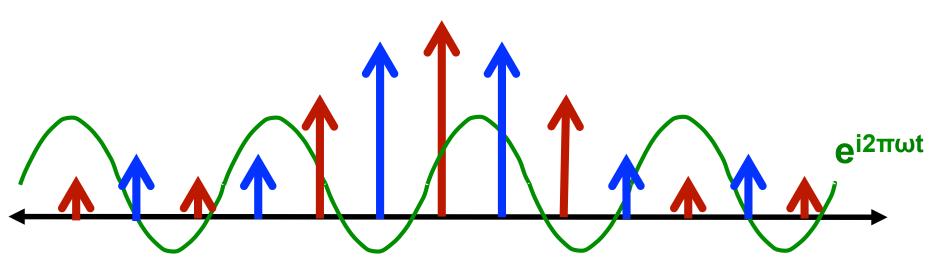
$$\left|\sum_{j=1}^{\kappa} u_{j} e^{i2\pi f_{j}\omega} - \sum_{j=1}^{\kappa} \hat{u}_{j} e^{i2\pi f_{j}\omega}\right| \leq e^{-\epsilon k}$$

for any $|\omega| \le m$

Proposition 3 [M '14]: For any $m \le (1-\epsilon)/\Delta$ and k, there is a pair of Δ -separated signals x and \hat{x} where

$$\left|\sum_{j=1}^{k} u_{j} e^{i2\pi f_{j}\omega} - \sum_{j=1}^{k} \hat{u}_{j} e^{i2\pi f_{j}\omega}\right| \leq e^{-\epsilon k}$$

for any $|\omega| \le m$



[Candes, Fernandez-Granda, '12]: Convex program for $m \ge 2/\Delta$, no noise

[Candes, Fernandez-Granda, '12]: Convex program for $m \ge 2/\Delta$, no noise

[Fernandez-Granda, '13]:

Convex program for $m \ge 2/\Delta$, with noise

hundreds of other papers

[Candes, Fernandez-Granda, '12]: Convex program for $m \ge 2/\Delta$, no noise

[Fernandez-Granda, '13]: Convex program for $m \ge 2/\Delta$, with noise

compressed sensing off-the-grid

hundreds of other papers

[Candes, Fernandez-Granda, '12]: Convex program for $m \ge 2/\Delta$, no noise

[Fernandez-Granda, '13]:

Convex program for $m \ge 2/\Delta$, with noise

[Donoho, '91]: Asymptotic bounds for $m = 1/\Delta$, on a grid (Beurling's balyage)

compressed sensing off-the-grid

hundreds of other papers

[Candes, Fernandez-Granda, '12]: Convex program for $m \ge 2/\Delta$, no noise

[Fernandez-Granda, '13]:

Convex program for $m \ge 2/\Delta$, with noise

Vandermonde Matrices

 $V_m^k =$

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_1 & \alpha_2 & & \alpha_k \\ \alpha_1^2 & \alpha_2^2 & & \alpha_k^2 \\ \vdots & \vdots & & \vdots \\ \alpha_1^{m-1} \alpha_2^{m-1} \cdots & \alpha_k^{m-1} \end{bmatrix}$$

$$\alpha_j \stackrel{\text{def}}{=} e^{i2\pi f_j}$$

Vandermonde Matrices

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix} \quad \alpha_{j}^{def} = e^{i2\pi f_{j}}$$

This matrix plays a key role in many *exact* **inverse problems** (poly interpolation, sparse recovery, ...)

Matrix Pencil Method

Notation: $D_u = diag(\{u_j\})$ and $D_\alpha = diag(\{\alpha_j\})$ $A = V_m^k D_u (V_m^k)^H$ and $B = V_m^k D_\alpha D_u (V_m^k)^H$

Matrix Pencil Method

Claim 1: The entries of A and B correspond to v_{ω} with $-m+1 \le \omega \le m$

Notation: $D_u = diag(\{u_j\})$ and $D_\alpha = diag(\{\alpha_j\})$ $A = V_m^k D_u (V_m^k)^H$ and $B = V_m^k D_\alpha D_u (V_m^k)^H$

Matrix Pencil Method

Claim 1: The entries of A and B correspond to v_{ω} with $-m+1 \le \omega \le m$

Claim 2: If α_j 's are distinct and m ≥ k and u_j 's are non-zero, the unique solns to $Ax = \lambda Bx$ are $\lambda = 1/\alpha_i$

Notation: $D_u = diag(\{u_j\})$ and $D_\alpha = diag(\{\alpha_j\})$ $A = V_m^k D_u (V_m^k)^H$ and $B = V_m^k D_\alpha D_u (V_m^k)^H$

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix} \quad \alpha_{j}^{def} = e^{i2\pi f_{j}}$$

This matrix plays a key role in many *exact* **inverse problems** (poly interpolation, sparse recovery, ...)

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix} \quad \alpha_{j}^{def} = e^{i2\pi f_{j}}$$

This matrix plays a key role in many *exact* **inverse problems** (poly interpolation, sparse recovery, ...) **super-resolution**

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix}^{\alpha}$$

 $\alpha_{j} \stackrel{\text{\tiny def}}{=} e^{i2\pi f_{j}}$

exact recovery \longleftrightarrow V^k_m is full rank

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix} \quad \alpha_{j}^{def} = e^{i2\pi f_{j}}$$

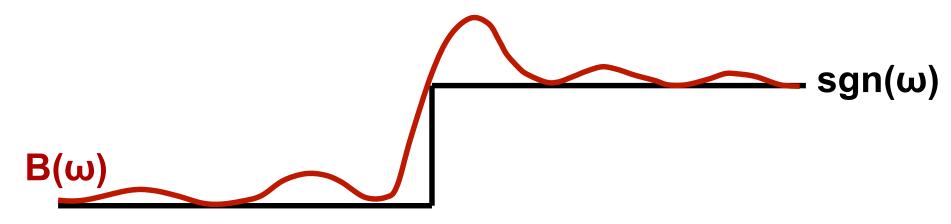
robust recovery \longleftrightarrow V_m^k is well-conditioned

$$V_{m}^{k} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \alpha_{1} & \alpha_{2} & & \alpha_{k} \\ \alpha_{1}^{2} & \alpha_{2}^{2} & & \alpha_{k}^{2} \\ \vdots & \vdots & & \vdots \\ \alpha_{1}^{m-1} \alpha_{2}^{m-1} \cdots & \alpha_{k}^{m-1} \end{bmatrix} \quad \alpha_{j}^{def} = e^{i2\pi f_{j}}$$

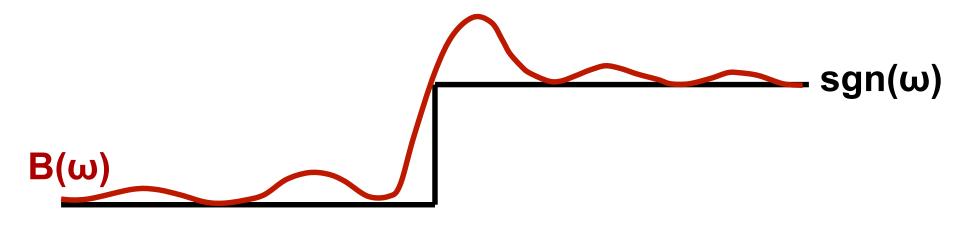
robust recovery \longleftrightarrow V_m^k is well-conditioned

We show a phase transition for its condition number

The **Beurling-Selberg majorant**:

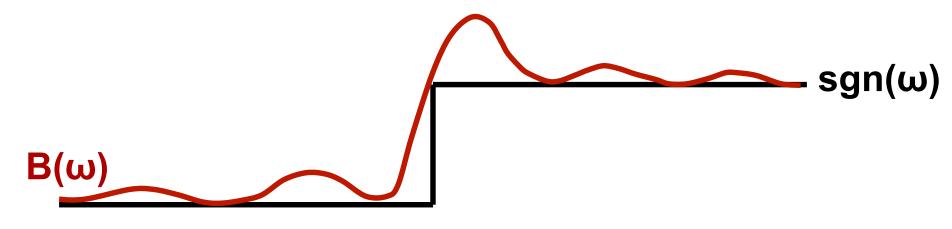


The Beurling-Selberg majorant:



Properties: (1) $sgn(\omega) \le B(\omega)$

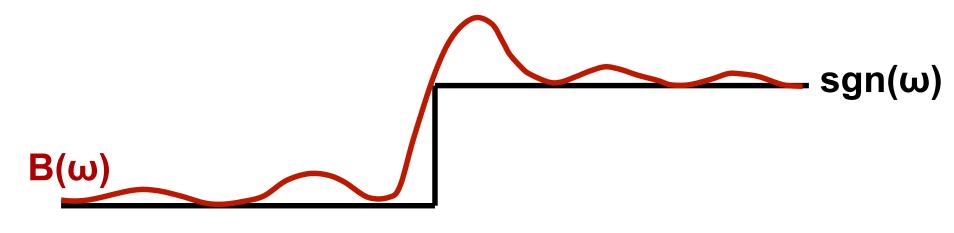
The Beurling-Selberg majorant:



Properties:

(1) $sgn(\omega) \le B(\omega)$ (2) $\widehat{B}(x)$ supported in [-1,1]

The Beurling-Selberg majorant:



Properties:

(1) $\operatorname{sgn}(\omega) \leq B(\omega)$ (2) $\widehat{B}(x)$ supported in [-1,1] (3) $\int_{-\infty}^{\infty} B(\omega) - \operatorname{sgn}(\omega) d\omega = 1$

The Beurling-Selberg majorant:

Properties:

(1) $\operatorname{sgn}(\omega) \leq B(\omega)$ (2) $\widehat{B}(x)$ supported in [-1,1] (3) $\int_{-\infty}^{\infty} B(\omega) - \operatorname{sgn}(\omega) d\omega = 1$

The **Beurling-Selberg majorant**:

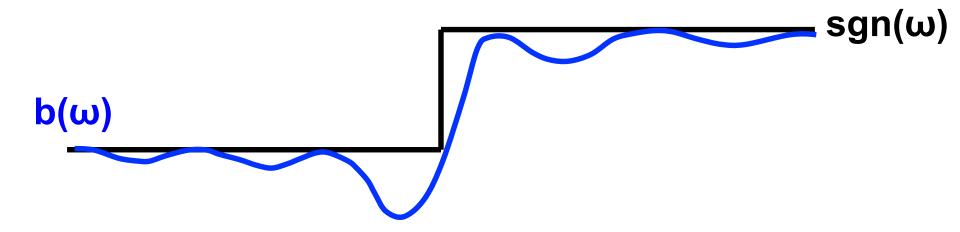
$$\left(\frac{\operatorname{sign}(\pi\omega)}{\pi}\right)^{2}\left(\sum_{j=1}^{\infty}(\omega-j)^{-2}\sum_{j=-\infty}^{-1}(\omega-j)^{-2}+\frac{2}{\omega}\right)$$

Properties:

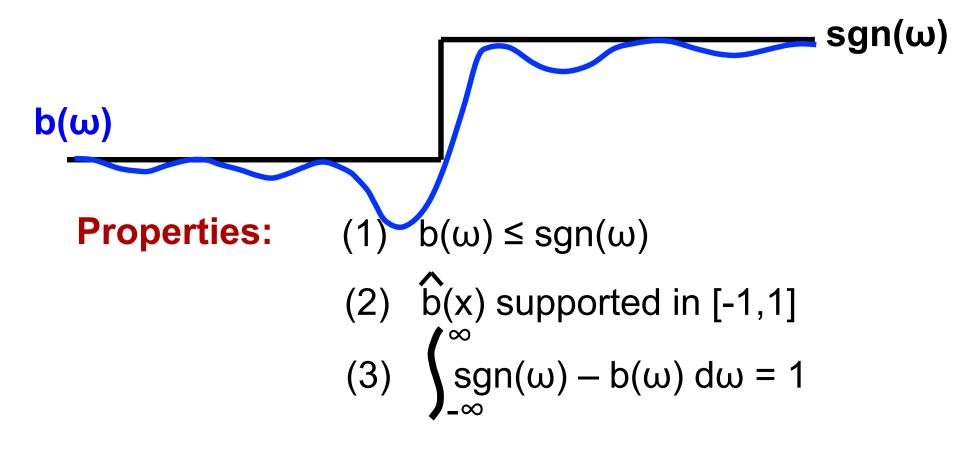
(1)
$$\operatorname{sgn}(\omega) \leq B(\omega)$$

(2) $\widehat{B}(x)$ supported in [-1,1]
(3) $\int_{-\infty}^{\infty} B(\omega) - \operatorname{sgn}(\omega) \, d\omega = 1$

The **Beurling-Selberg minorant**:



The **Beurling-Selberg minorant**:



We will use them to bound $\kappa(V_m^k)$...

We will use them to bound $\kappa(V_m^k)$...

Theorem 1: There are functions $C_E(\omega)$ and $c_E(\omega)$ for E = [0,m-1] that satisfy:

(1)
$$c_{E}(\omega) \le I_{E}(\omega) \le C_{E}(\omega)$$

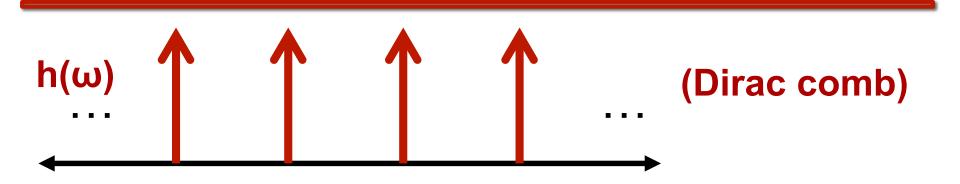
(2) $\hat{c}_{E}(x)$ and $\hat{C}_{E}(x)$ supported in $[-\Delta, \Delta]$
(3) $\int_{-\infty}^{\infty} C_{E}(\omega) - I_{E}(\omega) d\omega = \int_{-\infty}^{\infty} I_{E}(\omega) - c_{E}(\omega) d\omega = 1/\Delta$

We will use them to bound $\kappa(V_m^k)$...

Theorem 1: There are functions $C_{F}(\omega)$ and $c_{F}(\omega)$ for E = [0, m-1] that satisfy: indicator (1) $C_{F}(\omega) \leq I_{F}(\omega) \leq C_{F}(\omega)$ (2) $\hat{c}_{F}(x)$ and $\hat{C}_{F}(x)$ supported in $[-\Delta, \Delta]$ (3) $\int_{-\infty}^{\infty} C_{E}(\omega) - I_{E}(\omega) d\omega = \int_{-\infty}^{\infty} I_{E}(\omega) - C_{E}(\omega) d\omega = 1/\Delta$

Proof: $|V_{m}^{k}u|^{2} = \sum_{\omega = 0}^{m-1} |v_{\omega}|^{2}$

Proof:
$$|V_{m}^{k}u|^{2} = \sum_{\omega=0}^{m-1} |v_{\omega}|^{2}$$



Proof:
$$|V_{m}^{k}u|^{2} = \sum_{\omega = 0}^{m-1} |v_{\omega}|^{2}$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega)$$

Theorem 2:
$$|V_m^k u|^2 = (m-1 \pm 1/\Delta) |u|^2$$

Proof:
$$|V_{m}^{k}u|^{2} = \sum_{\omega=0}^{m-1} |v_{\omega}|^{2} = \int_{-\infty}^{\infty} h(\omega) |I_{E}(\omega)| |v_{\omega}|^{2} d\omega$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega)$$

Theorem 2:
$$|V_m^k u|^2 = (m-1 \pm 1/\Delta) |u|^2$$

Proof:

$$|V_{m}^{k}u|^{2} = \sum_{\omega=0}^{m-1} |v_{\omega}|^{2} = \int_{-\infty}^{\infty} h(\omega) I_{E}(\omega) |v_{\omega}|^{2} d\omega$$

$$\leq \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega)$$

Proof:

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega)$$

Proof:

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} \sum_{j'=1}^{k} u_{j} \overline{u_{j'}} \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) e^{i2\pi(f_{j}-f_{j'})\omega} d\omega$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega)$$

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} \sum_{j'=1}^{k} u_{j} \overline{u_{j'}} \int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) e^{i2\pi(f_{j}-f_{j'})\omega} d\omega$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega) = \sum_{t = -\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

$$\int_{j=1}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k^{-\infty}} \sum_{j'=1}^{k} \sum_{t=-\infty}^{\infty} u_{j} \overline{u_{j'}} \int_{-\infty}^{\infty} e^{i2\pi t\omega} C_{E}(\omega) e^{i2\pi (f_{j} - f_{j'})\omega} d\omega$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega) = \sum_{t = -\infty}^{\infty} e^{i2\pi t\omega}$$

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} \sum_{j'=1}^{k} \sum_{t=-\infty}^{\infty} u_{j} \overline{u}_{j'} \widehat{C}_{E}(f_{j}-f_{j'}+t)$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega) = \sum_{t = -\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega = \frac{\text{zero for cross-terms}}{\sum_{j=1}^{k} \sum_{j'=1}^{k} \sum_{t=-\infty}^{\infty} u_{j} \overline{u}_{j'} \widehat{C}_{E}(f_{j}-f_{j'}+t)}$$

Let
$$h(\omega) = \sum_{t = -\infty}^{\infty} \delta_t(\omega) = \sum_{t = -\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} |u_{j}|^{2} \hat{C}_{E}(0)$$

Let
$$h(\omega) = \sum_{t=-\infty}^{\infty} \delta_t(\omega) = \sum_{t=-\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} |u_{j}|^{2} \hat{C}_{E}(0) = \sum_{j=1}^{k} (|E| + 1/\Delta) |u_{j}|^{2}$$

Let
$$h(\omega) = \sum_{t=-\infty}^{\infty} \delta_t(\omega) = \sum_{t=-\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

$$\int_{-\infty}^{\infty} h(\omega) C_{E}(\omega) |v_{\omega}|^{2} d\omega =$$

$$\sum_{j=1}^{k} |u_{j}|^{2} \hat{C}_{E}(0) = \sum_{j=1}^{k} (|E| + 1/\Delta) |u_{j}|^{2}$$

Let
$$h(\omega) = \sum_{t=-\infty}^{\infty} \delta_t(\omega) = \sum_{t=-\infty}^{\infty} e^{i2\pi t\omega}$$
 (Dirac comb)

And the condition number of the Vandermonde matrix has an identical **phase transition**

And the condition number of the Vandermonde matrix has an identical **phase transition**

Theme: Test functions are used in harmonic analysis to prove various inequalities

And the condition number of the Vandermonde matrix has an identical **phase transition**

Theme: Test functions are used in harmonic analysis to prove various inequalities

These functions can be interpreted as preconditioners for V_m^k , and can yield **faster**, new algorithms...

Thanks!

Summary:

• Noisy super-resolution needs separation, and there is a sharp phase transition for when it is possible

• Applications of **Beurling-Selberg extremal functions** in the analysis of algorithms

• A new interpretation of test functions in harmonic analysis as **preconditioners** for the Vandermonde matrix

• Can these tools be applied to compressed sensing off-the-grid? Other inverse problems?