
Light Field Reconstruction Using Sparsity in

the Continuous Fourier Domain

Code Documentation
Tianwei Huagn

tracyhuangtw@gmail.com

Table	of	Contents	
1. Program Overview 3

2. Running Procedure 3

2.1 Download Procedure 3

2.2 Overall Structure 3

2.3 Compiling Procedure 4

2.3.1 Install Libraries 4

2.3.2 Generate ssh public key 5

2.3.3 Compile Programs 6

2.4 Example Run 6

2.4.1 Parameter Setting 6

2.4.2 Sample Run with Multiple Machines 8

2.4.3 Sample Run with One Machine 11

3. Additionals 11

3.1 ./Nonint_C/crystal.cfg 11

3.2 Parallelization 12

1. Program Overview

This program is used to do 4D light field reconstruction by method of sparse fast fourier

transform (SFFT). It can be generally divided into two parts: voting and gradient

descent. In the first part, namely voting, we use powers of sample positions to do voting

on each single slice and by learning a threshold, we can get a set of estimated peaks. In

the second part, we will improve our estimation by gradient descent, which involves the

use of pseudo inverse matrix and shadow buckets. For more details about the algorithm,

please read the paper Light Field Reconstruction Using Sparsity in the Continuous

Fourier Domain on our website.

2. Running Procedure

2.1	Download	Procedure	

After downloading the program, unzip it and it will look like something below:

2.2	Overall	Structure	

 The "input" and "matlab" folder contains some matlab codes which is not part of

the main program, but you can use them to manipulate and check on results.

 The “lib” folder contains some shared link libraries used by the main program.

 The “inputGeneration” folder contains the program responsible for generating the

input. The program takes colored images to do FFT and store the results in .dat

files as input to the main program.

 The “Nonint_C” folder contains the main program and related configuration files.

 The “resultCollection” folder contains the program responsible for collecting

results from one or multiple machines, and transfer results back to image,

specifically one channel of the output image (r, g, b).

 Note that the main program is running on one channel (r, g, b) for one pass, so we

actually run the main program 3 rounds to handle the colored image. Thus we

have a program in “rgbRecunstruction” to combine the results of three channels

and generate the final colored result.

 The "lf.cfg" file is the main configuration file for the whole program.

 The "runner.sh" script is used to run the whole program; it will go through each

executable in the order of inputGeneration -> Main Program -> Result

Collection -> RGB Reconstruction.

 The "rm_last_dir.sh" script is used to remove folders on remote machines.

 The "killall.sh" script is used to terminate execution on remote machines,

namely kill processes on remote machines.

2.3	Compiling	Procedure	

2.3.1	Install	Libraries	

We have three programs that need to be compiled. Before compiling them you need to

make sure you have the following libraries installed on your machine. (Note that all

these libraries are only required on the machine that you use to compile the

program. Say if you have machine 0-3 to use. Then you can install below

libraries on machine 0 and compile all three programs on machine 0. For

machine 1-3, if you are only using them to parallel run the program, then you

don’t need to install libraries on them).

Library Install Instruction

openCV http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_insta

ll.html

FFTW http://www.fftw.org/fftw2_doc/fftw_6.html

Libconfig http://packages.ubuntu.com/trusty/libconfig-dev

The Libconfig library is a bit annoying here, as it has several different versions for

different versions of Ubuntu releases.

For the Libconfig library, the most important package is the “libconfig++-dev” (again for

Ubuntu users). Another requirement is the libconfig++9/8 (libconfig++8 is for Ubuntu

versions lower than Trusty and libconfig++9 is for Ubuntu versions higher than Trusty).

You can check the installation of libconfig related libraries by running the following

command:

dpkg --get-selections | grep -v deinstall | grep libconfig

On the machine I used for testing it shows the following result:

libconfig++-dev:amd64 install

libconfig++8-dev install

libconfig++9:amd64 install

libconfig-dev:amd64 install

libconfig-doc install

libconfig-file-perl install

libconfig9:amd64 install

If you have trouble compiling the program in the “Nonint_C” folder (like header file not

found), then you need to check the installation and install packages that are missing.

2.3.2	Generate	ssh	public	key	

In some cases, you may wish to run the program on several remote machines to save

time. The shell script use ssh and scp to connect and send files to remote machines. In

order to avoid the case where you need to input password a million times, it is highly

suggested that to use ssh public key.

Please read instructions in this link: https://macnugget.org/projects/publickeys/

A more specific instruction can be found here: http://www.linuxproblem.org/art_9.html

	

2.3.3	Compile	the	Code	

For compilation, you need to go to three different folders and “make”, a list of commands

is listed below as reference:

cd inputGeneration | make

cd ../Nonint_C | make

cd ../resultCollection | make

cd ../rgbReconstruction | make

2.4	Example	Run	

2.4.1	Parameter	Setting	

In most cases, as we have a very large input dataset, we have to run the program

paralleled by multiple processes. Thus we split the input dataset into small pieces, and let

one process take charge of one split. If multiple machines are used, these processes are on

different machines and they will be on same machine if only one machine is used. The

number of process on one machine is called the “load” of that machine. It is

recommended that the load of one machine should be smaller than the number of

CPU/cores that machine has.

If multiple machines are used, we need to setup SSH connection so that we don’t need to

input passwords forever. Please refer to section 2.3.2 for instruction on this part.

Before running the program, we need to setup the configuration file “lf.cfg” first. In

most cases, we only need to set num_splits, machine_index, load, username,

num_machines.

parameter name usage example

input_program_pat Path to the input generation program ./inputGeneration/getI

input_images_path Path to the raw image input ./inputGeneration/img

n1, n2, n3, n4 n1/n2 are the x/y dimension for the camera

plane.

n3/n4 are the x/y dimension for the scene

plane.

n1=17

n2=17

n3=512

n4=512

num_splits The total number of splits we want to use. It

should be equal to the sum of all elements of

“load” array.

16

machine_index Array containing the IPs of all machines used.

that are going to be used.

(ip1 ip2 ip3)

Load Array containing how many processes will be

on each single machine. The indexing of this

array should be in accordance to machine_index.

(4 6 4)

user_name Array containing the user names on all machines

that are goi ng to be used. The indexing of this

array should be in accordance to machine_index

(username1 username2

username3)

num_machines Number of machines that are going to be used.

num_machines= length(machine_index) =

length(load) = length(user_name)

 3

config_file Name of the configuration file that is going to

be used by main program

crystal.cfg

2.4.2	Sample	Run	with	Multiple	Machines	

This sample run uses three Ubuntu 12.04 machines.

The parameters in the lf.cfg file will be the same as the example values in the chart above.

Like this:

After setting the configuration file, we will start the program by running:

./runner.sh ./lf.cfg

First you need to select the starting point of the program. In most cases you want to start

at the beginning, which is input generation. And then you will be prompted to select to

use copying to speed up execution or not. Thus just type 1 + <enter> twice.

Then the script will SCP all needed files (main program, input file, link libraries) to

remote machines and send commands to have the program running on them. After

sending files, the script will go into the phase of “checking loop”, namely checking the

running progress on remote machines, the running information will be displayed in the

format below:

The script will check the progress every 5 minutes. If it notices that all processes finish

running, it will ask the remote machines to send back result data files. Note that we are

operating on the colored image which has 3 channels (r, g, b). So the above process (send

input to remote machinesrunning programcollect result) will repeat 3 times. After

getting all the results, the script will use the ./rgbReconstruction/rgbReconstruct

program to reconstruct the colored image.

This is the end of the script, and all the output files (with name like result_<x index>_<y

index>.png) will be stored under the current directory.

2.4.3	Sample	Run	with	One	Machine	

Running with one machine is very similar to running with multiple machines. The only

difference is that the machine_index, user_name, load parameters in the lf.cfg file will

be a single value instead of an array. The num_machine should be set to 1, and the

num_splits should equal to the value of load parameter.

Another thing needs attention is that even if only one machine is used, we still need to be

able to SSH localhost without password. The setup procedure is similar to the multiple

machine scenario.

3.	Additionals	

3.1	./Nonint_C/crystal.cfg	

This is the configuration file for the main sfft program. Most of the parameters here are

relatively stable. If you want to run a new data set, you may wish to change following

parameters:

Parameter Name Usage

n_x length of x dimension of scene plane

n_y length of y dimension of scene plane

n_v length of x dimension of camera plane

n_h length of y dimension of camera plane

num_projection_lines number of lines that we used in step one

projection_matrices parameters related to each single projection line

sample_pos array containing sample positions of all sample we are

using

num_samples number of samples that are used

3.2	Parallelization	

The reason why we want to use parallelization is simple the long running time (usually

takes more than 6 hours for a reasonable dataset, like 17 * 17 colored images with 512 *

512 pixels for each one).

The most important step for parallelization is the setup of SSH login without password.

As the program uses SSH and SCP to communicate with remote machines (send/fetch

files, send commands, check running progress), it needs to setup large number of SSH

connections in total. If we are forced to type in the password every time it would be a

disaster. The SSH public key feature can help us achieve login without password. For

instructions on how to do this, please refer to section 2.3.2.

Another preparation of parallelization is to modify the lf.cfg file. Different from using

multiple machines, we will only have entry in machine_index, user_name, load (instead

of an array). The value of load parameter will also be the same as the num_splits.

