
Regular Graphical Pattern Detection and Its
Applications

by

Shang-Yun (Maggie) Wu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 18, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Randall Davis

Professor
Thesis Co-Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Dana L. Penney

Director of Neuropsychology, Lahey Hospital & Medical Center
Thesis Co-Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



2



Regular Graphical Pattern Detection and Its Applications

by

Shang-Yun (Maggie) Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

While there is no existing cure to Alzheimer’s disease, early detection and interven-
tion can greatly improve patient prognosis. However, early signals can be very subtle
changes in behaviors. Our research aims to understand an individual’s behaviors
through analyzing their gaze patterns. We do this by introducing eye tracking in
addition to traditional pen-and-paper tests that measure cognitive status. Tradition-
ally, fiducial markers are added to assist in locating gaze positions with respect to
an object in the real world. However, fiducial markers can introduce a distraction
and make the test different from its traditional pen-and-paper version. To enable eye
tracking without fiducial markers, we present an algorithm that identifies the graph-
ics within the test, allowing us to locate a subject’s gaze on the test form using the
test alone. It is a novel approach to detecting features in regular graphical patterns
despite occlusions.

Thesis Co-Supervisor: Randall Davis
Title: Professor

Thesis Co-Supervisor: Dr. Dana L. Penney
Title: Director of Neuropsychology, Lahey Hospital & Medical Center

3



4



Acknowledgments

I would like to express my deepest gratitude to my amazing advisor, Professor Randall

Davis of the Human Computer Interactions Lab at CSAIL, and to Dr. Dana L.

Penney, Neurology Specialist from Lahey Hospital and Medical Center, for guiding me

through this project and being accommodating in the midst of COVID-19. Without

their ongoing support and guidance, ranging from academic to personal advice, this

project and my level of personal growth would not have been possible. Thank you for

absolutely everything and I aspire to one day be as knowledgeable and encouraging

as the two of you.

I also wish to acknowledge the following individuals for their inputs and help to

my research project. Thank you to Prof. Berthold K.P. Horn for teaching me ma-

chine vision concepts that directly impact one major stage of my algorithm. Thank

you to Huili Chen, Ph.D. candidate in the Personal Robots Group at the Media Lab,

for being an incredible UROP advisor and preparing me for this research experience.

Thank you to Yun Boyer for suggesting valuable algorithmic ideas that directly im-

proved my research method. Thank you to Meredith Zhou for reading and editing

both my research proposal and thesis numerous times until they were polished and

ready for submission.

I would like to additionally thank Elizabeth DeTienne, Karunya Sethuraman, and

Sarbari Sarkar for being wonderful lab mates. Thank you for letting me bounce off

research ideas, giving me suggestions, and accompanying me throughout this journey.

Finally, I would like to thank my family and friends for always being there for

me. Thank you for acting as sanity checks and making sure I stay both healthy and

happy in stressful times. I know it would have been a rather difficult journey without

your love and support.

5



6



Contents

1 Introduction 13

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Attempted Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Why Not Object Tracking? . . . . . . . . . . . . . . . . . . . 15

1.2.2 Why Not Scale-Invariant Feature Transform (SIFT)? . . . . . 16

1.2.3 Why Not Boundary Detection? . . . . . . . . . . . . . . . . . 16

1.3 Successes and Limitations of Our Algorithm . . . . . . . . . . . . . . 16

1.3.1 Successes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Technical Background 21

2.1 Eye Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Cognitive Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Test Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Related Work 25

3.1 Digital Cognitive Assessments . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Object Detection with Occlusions . . . . . . . . . . . . . . . . . . . . 26

4 Research Approaches 29

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Image Rectification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



4.2.1 Hue-Saturation-Value (HSV) Mask . . . . . . . . . . . . . . . 31

4.2.2 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Line Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.4 Vanishing Points Rectification . . . . . . . . . . . . . . . . . . 36

4.3 Regional Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Corner Detection . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Feature Vector Labelling . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Corner Identification . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.4 Corner Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.5 Corner Extension . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 The Homography Transformation . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Homography Computation and Limitation . . . . . . . . . . . 48

4.4.2 Additional Corner Labelling . . . . . . . . . . . . . . . . . . . 49

4.5 Workflow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6 Outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Forward-Reverse Processing . . . . . . . . . . . . . . . . . . . 51

4.6.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Results and Discussion 53

5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Hit Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Rotation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Lean Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.3 Shadow Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Subject Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8



6 Conclusions and Future Work 61

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Achievements and Shortcomings . . . . . . . . . . . . . . . . . . . . . 61

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Figures 63

9



10



List of Figures

1-1 Sample Fiducial Markers . . . . . . . . . . . . . . . . . . . . . . . . . 14

1-2 An Example of Successful Processing . . . . . . . . . . . . . . . . . . 18

2-1 Eye Tracking Equipment . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-2 The Maze Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-1 Different Views in the Process . . . . . . . . . . . . . . . . . . . . . . 29

4-2 Workflow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-3 The Image Rectification Intermediate Results . . . . . . . . . . . . . 32

4-4 Hysteresis Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . 33

4-5 Non-grid Lines Removed by The Closeness & The Overlap Test . . . 35

4-6 The Regional Pattern Analysis Intermediate Results . . . . . . . . . . 37

4-7 8-bit & 64-bit Feature Vectors . . . . . . . . . . . . . . . . . . . . . . 41

4-8 Sample Bit and Corner Differences . . . . . . . . . . . . . . . . . . . 41

4-9 Corner Sectioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-10 Neighbor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-11 Distant Neighbor Analysis . . . . . . . . . . . . . . . . . . . . . . . . 46

4-12 Corner Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4-13 Standardized View from Nearby Homography Points . . . . . . . . . 49

4-14 Standardized View from Faraway Homography Points . . . . . . . . . 50

4-15 Workflow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5-1 Ordinary View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5-2 Rotation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11



5-3 Lean Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5-4 Shadow Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-5 Temporal Distribution of Outliers . . . . . . . . . . . . . . . . . . . . 58

5-6 Frequency Distribution of Consecutive Outliers . . . . . . . . . . . . 59

A-1 The Symbol Digit Tests . . . . . . . . . . . . . . . . . . . . . . . . . 64

12



Chapter 1

Introduction

1.1 Background

Cognitive decline is a major health problem worldwide. In particular, Alzheimer’s

disease - the most common cause of dementia - impacts as many as 1 in 10 individuals

over the age of 65 [2]. Those with Alzheimer’s typically experience symptoms such

as memory loss and time or space confusion, with end-stage Alzheimer’s resulting

in multiple organ failure and death. The cost of long-term care for individuals with

Alzheimer’s disease is substantial and, globally, it is estimated to be approximately

$605 billion per year [14].

Despite knowing the progression of Alzheimer’s disease, researchers have not been

able to identify a specific cause. Extensive study has implicated genetic, lifestyle,

and environmental factors [15]. Perhaps in part due to this complex and multifaceted

nature, a cure for Alzheimer’s still remains elusive. Nevertheless, early detection and

intervention can greatly improve patient prognosis and there has been much effort

devoted into early diagnosis.

For several years, joint research between the Lahey Clinic and MIT has been using

hardware that captures both the process and the product of the state-of-the-art tests

they developed. The hardware captures both what the subject drew and the process

they used to draw them. This allows researchers to capture subtle characteristics in

the subject’s behaviors during the testing process. Recently, this research has also

13



incorporated eye tracking, which identifies where the subject is looking and is believed

to reflect their thought processes. Our work used an eye tracking headset, instead

of an eye tracking chin-rest, because of comfort and the likelihood of capturing the

subject’s natural behaviors.

An eye tracking headset provides us with the subject’s gaze position in the world

camera view, i.e., the subject’s point of view (see Chapter 2.1). We also need to locate

the subject’s gaze on our test form. Locating the test form is typically done using

fiducial markers, which are graphical patterns (Fig. 1-1) that can be easily recognized.

A fiducial marker is placed at each of the four corners of the test so that, in most

cases, at least two of them are visible in the world camera view.

While the use of fiducial markers vastly simplifies the vision task, a test with

fiducial markers is inconsistent with the traditional version administered and may be

distracting for the subject. In order to keep the data collected when using eye trackers

consistent with those from the traditional pen-and-paper tests, it is important that

the two tests are the same.

Figure 1-1: Sample Fiducial Markers

The goal of this research is thus to detect and locate the test form in the world

camera view without using fiducial markers. We aim to achieve accuracy within

half a degree of the visual angle even when the test form is partially occluded. We

believe the algorithm developed to locate the test form may also contribute to object

detection in the field of computer vision.

Note that since all of our tracking data is recorded (including videos from all three

cameras), we do not need real-time processing. This allows us to explore a wider range

of approaches.

This thesis proceeds as follows. Chapter 1 provides motivation and background

for our study and the success and limitations of our research outcome. Chapter 2

elaborates on eye tracking and the test forms. Chapter 3 references related studies in

14



the field of cognitive science and computer vision to illustrate the difference between

past studies and our research work. Chapter 4 explains our algorithm in detail and

how it is used to achieve our goal. Chapter 5 details the evaluation metrics and

presents results obtained from our algorithm. Finally, Chapter 6 concludes with the

effectiveness and limitations of our algorithm as well as future work that can be

extended from this research.

1.2 Attempted Approaches

We tried several different methods to detect and locate the test form. Here, we review

briefly several that did not work and explain why not.

1.2.1 Why Not Object Tracking?

One plausible solution is object tracking. Our test form is always readily available in

front of the subject at the start of the study, giving us a clear image of the test form

in the world camera view and making it easy to identify and create a rectangular box

around it. If we were to use object tracking, we would start a recording, pause it at

the start, click and drag to create a rectangular box, i.e., the object tracker, around

our test form, and let the object tracker follow it throughout the video.

While this is a plausible solution, object trackers are generally prone to shifts as a

result of occlusions1. When an object to be tracked is occluded, its object tracker loses

information about it. As a result, the object tracker typically can no longer capture

the location of its object and may instead start following the source of occlusion (e.g.,

a moving hand). Even with the help of multiple object trackers situated at various

locations of the test form, we cannot guarantee that all of these locations will be

visible during a testing session. In fact, we found that object trackers return the

accurate location of the test form less than 50% of the time.

1An occlusion occurs when part or all of the object is hidden from the vantage of observation

15



1.2.2 Why Not Scale-Invariant Feature Transform (SIFT)?

SIFT is an algorithm to describe and detect objects in an image [11]. It does so by

extracting and identifying keypoints, which are points that lie in high-contrast regions

(e.g., an edge) of an object. The specific distribution and pattern of keypoints, known

as a feature vector, usually uniquely defines the object of interest. Furthermore, these

feature vectors are robust to scale, noise and illumination, making SIFT a popular

technique for object detection tasks.

SIFT works well for identifying objects in natural images because individual ob-

jects in the wild have distinct patterns, resulting in unique feature vectors. However,

the graphical layout of our test has a regularity that makes the local neighborhoods

similar to one another, causing significant problems for SIFT.

1.2.3 Why Not Boundary Detection?

Boundary detection is a process to detect and localize object boundaries, which we

thought might be useful in identifying the contours of the test form. In fact, we did

find this to be a powerful technique when the test form is only slightly occluded.

However, because the technique relies on finding the four sides of the rectangular test

form, when any one of them is heavily occluded, this technique loses its reliability.

1.3 Successes and Limitations of Our Algorithm

Our algorithm, the Regular Graphical Pattern Detection Algorithm, is designed to

identify pieces of our test form as fiducial markers. It first removes distortions2 caused

by lens and perspective. Then, it identifies patterns within the graphics of the test,

which in turn tell us where the test form is located within the world camera view.

Knowing the gaze location, as provided by the eye tracker, and the test form location

in the world camera view, our algorithm computes a transform that helps identify

exactly where the subject is looking on the test form.
2In geometric optics, distortion is a deviation from rectilinear projection - a projection in which

straight lines in a scene remain straight in an image.

16



All video frames were processed using a 13-inch MacBook Pro with 2.8 GHz Quad-

Core Intel Core i7 processor. On average, our algorithm took 10 seconds to compute

a suitable transform for a frame taken at one-thirtieth of a second. The amount of

time a subject took to finish a test ranged from 15 to 30 seconds. Consequently, it

took approximately 2-3 hours to completely process each video.

Clearly, the processing time would be considerably shorter with a more powerful

machine. As noted earlier, we do not need to process the video in real-time. All of

the videos can be processed offline, making the processing time far less significant.

1.3.1 Successes

We define processing of a frame to be a success if we transform the image so that the

transformed image matches the ground truth template with a considerable accuracy

(i.e., an error within 50% of the width of the pathway). Chapter 5.1 provides specific

evaluation metrics and Fig. 1-2 shows an example of successful processing.

Our algorithm was able to successfully process most frames across videos with

different illumination and backgrounds. On average, it achieved a hit rate of 89.75%,

a sensitivity of 90.00%, and an average median distance of 1.27mm across four subject

videos3. Our algorithm worked well under both real-world and purposely stressful

conditions. These stress tests capture some of the most extreme behaviors clinicians

are likely to observe in patients during the study, including rotation, lean, and shadow.

Specific results can be found in Chapter 5.2.

Because our algorithm is designed to dynamically compute the appropriate values

for the parameters of the edge and corner detectors (as explained in Chapter 4), it does

not need users to hand-pick parameter values for different videos. Our algorithm can

thus be applied to different video recordings with little fine-tuning. We also expect

the algorithm to generalize to various types of tests with minor modifications4.

3As discussed in Chapter 5.1, hit rate is the percentage of frames processed successfully; sensitivity
is the percentage of corners correctly identified; median distance is the median of the distances
between all transformed corners and their ground truth locations.

4All figures shown in this thesis have fiducial markers. We worked off of this version of the form
in order to compare the gaze positions obtained using our algorithm vs. using Pupil Labs’ software.

17



(a)
O

riginalIm
age

(b)
T
ransform

ed
Im

age
(c)

G
round

T
ruth

T
em

plate

F
igure

1-2:
A

n
E

xam
ple

ofSuccessfulP
rocessing

18



1.3.2 Limitations

One challenge for our algorithm is frames that are blurred, typically caused by a

sudden shift in the head position. Because we rely on good feature detection, when

images are blurred and features are hard to detect, our algorithm struggles to perform

well. Rapid head movements are, however, not the only cause of video frames for

which we cannot compute appropriate transforms. There are a number of other

situations that cause this issue but we still do not entirely understand why this

happens. As a consequence, as explained in Chapter 4.6, we developed a variety

of techniques to deal with frames for which the appropriate transform cannot be

computed from that frame alone.

19



20



Chapter 2

Technical Background

2.1 Eye Tracking

The eye tracker (Fig. 2-1a) used in our study was developed by Pupil Labs. It has

3 cameras with video recording capabilities. Two of the cameras, called the eye

cameras, focus on the left and right eyes, respectively. They estimate the positions of

the pupils, which indicate gaze direction. The third camera, called the world camera,

is used to record the subject’s point of view.

(a) Eye Tracker (b) Calibration Target

Figure 2-1: Eye Tracking Equipment

At the start of a study, we adjust eye cameras so they capture both pupils entirely

and focus the world camera so it approximately reflects the subject’s point of view. A

calibration process is next in which we ask the subject to follow a target (Fig. 2-1b)

with their eyes alone while it is moved around within the world camera view. This

target is designed to be easily recognized and is located by Pupil Labs’ software. As

a result, these three cameras can, together, identify where the subject is looking.

21



2.2 Cognitive Tests

2.2.1 Test Types

Two different tests, the maze test and the symbol-digit test, are of interest here.

Because our algorithm is currently designed to work for the maze test, this thesis

provides figures specifically for the maze test. However, some figures and descriptions

of the symbol-digit tests are in Appx. A-1 as we expect a similar algorithm will

generalize to the symbol-digit test.

The maze test is a 16 × 15 grid-like structure where the width of any pathway

within the maze is constant, approximately 8mm when printed. This test requires

a subject to find a solution path from the start (i.e., the bottom arrow) to the goal

(i.e., the top arrow).

2.2.2 Test Conditions

The maze test has two conditions, low cognitive load (LCL, Fig. 2-2a) and high

cognitive load (HCL, Fig. 2-2b). Each subject completes both conditions twice in a

study. The subject is presented with each condition in turn and cannot move back

and forth between them.

The LCL test is a maze with no choice points. The subject simply follows the

path from beginning to end.

The HCL test consists of a maze with choice points, i.e., multiple paths. Subjects

have to find the path that leads to the exit.

Unknown to the subjects, the solutions to both the LCL and the HCL tests are

identical. Having identical solutions means the subject is presented with two tasks

that require identical physical demands but different cognitive loads. The subjects

thus act as their own controls, enabling the test to distinguish physical and cognitive

issues in performance.

22



(a
)

T
he

LC
L

T
es

t
(b

)
T

he
H

C
L

T
es

t

F
ig

ur
e

2-
2:

T
he

M
az

e
Te

st
s

23



24



Chapter 3

Related Work

There are two areas of related research: digital cognitive assessments and object

detection with occlusion.

3.1 Digital Cognitive Assessments

Other work has compared patient performance on digital cognitive assessments to

those on corresponding pen-and-paper tests [1, 6, 19]. For the most part, studies

concluded that additional research is necessary before their respective technologies

can be used to replace traditional pen-and-paper tests. This arises because of the

small sample sizes used in these studies. It is therefore difficult to say whether or not

the results will generalize to a larger population. However, initial pilot experiments

showed comparable and promising results between the two versions of the assessments

[6, 19].

These relate to our work as they demonstrate the effect on patient performance

with digital technology as the input. In our case, the additional technology introduced

is the eye tracking headset. Future work should compare patient performance with

and without the eye tracking headset. This can then help isolate the effect of the

headset, a potential source of distraction.

25



3.2 Object Detection with Occlusions

Occlusion is common in images, posing a challenge to object detection. While SIFT

is a robust technique for detecting texture-rich objects, it struggles to detect those

with uniform or repeating patterns, such as the maze and the symbol-digit test. In

addition, the use of arbitrary viewpoints and the presence of occlusion further adds

to the difficulty of the problem.

One model proposed by Hsiao et al. addresses these common difficulties - texture-

less objects, arbitrary viewpoints, and occlusions [5]. The model describes the 3D

interactions between objects, which indirectly explains how an object occludes another

in an arbitrary viewpoint. As a result, this model can be used to describe how

occlusions affect the particular object we are trying to detect. By training the model

to detect a particular object under various types of occlusion, it can achieve an average

detection precision of 77% when occlusion was slight (≤35%). However, the model

struggled in detection performance when there was heavy occlusion (≥35%).

Given that our research focuses on pattern recognition under occlusion, an under-

standing of the occlusion itself is not necessary. We do, however, require an accuracy

beyond what this model can achieve.

In the past decade, there has been increased interest in using machine learning

models to automatically construct a bounding box around the object of interest.

These models have been successful in identifying pedestrians and vehicles [8, 18].

Some even gained success in achieving fast real-time detection [17]. However, they

are mostly designed to work well in a single view, which does not satisfy our research

needs; using the eye tracking headset, our participants are free to move their heads,

leading to multiple views. In addition, these models often sacrifice some accuracy for

efficiency, but our research instead favors accuracy over efficiency.

For both occlusion understanding and many machine learning models, a bounding

box is created to capture the object of interest. However, a bounding box for object

detection does not describe the location of the object at the pixel level. Boundary

detection with occlusion has been proposed in an attempt to resolve this concern [7].

26



For simple geometric shapes, the description for an object’s boundary is as accurate

as 95% when 60% of the object is occluded. This method, however, suffers when

there is very little or heavy occlusion, which is a critical shortcoming for detection

that requires high accuracy under various levels of occlusion.

Many object detection models and algorithms have, thus far, focused on a combi-

nation of accuracy, efficiency, and generalizability. As noted above, efficiency is not

a pressing concern to our research because our videos can be processed offline. In

regard to generalizability, cognitive tests are often designed to have specific patterns

in order to effectively evaluate an individual’s mental state. These patterns, albeit

repetitive and similar, hold valuable details that we can leverage for detection. That

is, we believe an algorithm that works for one type of test can generalize to other

tests in the same field. Our work, as a result, focuses on understanding and detecting

regular graphical patterns with high accuracy.

27



28



Chapter 4

Research Approaches

4.1 Overview

To effectively detect, identify, and localize the test form in a frame of the video, we

must transform the frame from the world camera view (Fig. 4-1a) to the rectified

view (Fig. 4-1b), then further transform to the standardized view (Fig. 4-1c). These

two major transforms and their intermediate steps make up the Regular Graphical

Pattern Detection Algorithm.

(a) World Camera View (b) Rectified View (c) Standardized View

Figure 4-1: Different Views in the Process

29



Stage one of the algorithm rectifies a frame from the world camera view (Fig. 4-1a)

to the rectified view (Fig. 4-1b) using vanishing points. This eliminates perspective

distortion, making it easier to detect regular patterns. We call this stage the Image

Rectification.

The maze is designed to have all pathways have the same width. This is evident

in the rectified view (Fig. 4-1b). We define the unit to be the width of the pathways;

we also define a corner to be the endpoint of any line or where two lines in the maze

intersect. We can see that each corner in our particular maze has a unique pattern

of other corners that lie within 2 units of it1. Stage two of the algorithm uses these

neighborhood patterns to describe pieces of the test form. We call this stage the

Regional Pattern Analysis.

With some neighborhood patterns identified, stage three, the last stage, of the

algorithm computes the homography that transforms a frame from the rectified view

(Fig. 4-1b) to the standardized view (Fig. 4-1c). Again, the standardized view is

the final view our algorithm aims to achieve. We call this stage the Homography

Transformation.

When we cannot find the vanishing points, the unit, or the homography at their

respective stages for a given frame, they are assumed to be the same as those of its

previous frame. This is a fallback technique we call repetition. We use repetition

based on the assumption that two consecutive frames taken at the normal video rate,

i.e., one-thirtieth of a second apart, are likely to have parameters very similar to

one another. The repeated parameters are then used to process the current frame of

interest in the aforementioned way.

4.2 Image Rectification

To transform an image from the world camera view (Fig. 4-1a) to the rectified view

(Fig. 4-1b), the algorithm masks the image to remove background, detects edges and

lines, and computes vanishing points to be used for rectifying the image.

1We will explore the cases where not every corner has a unique pattern around it as future work.

30



Figure 4-2: Workflow Summary. The Regular Graphical Pattern Detection Algorithm
includes 3 views (2 transforms), 3 stages, and 10 sub-stages.

4.2.1 Hue-Saturation-Value (HSV) Mask

To avoid visual background noise, subjects take the test while seated at a dark,

monochromatic desk. This makes our white test form stand out. Determining the

range of HSV values suitable for a recording is done via a brief manual process. At

the start of a video, the user clicks on the four corners of the form to allow our system

to identify their HSV values. Among these, the minimum and the maximum define

the range (typically between [20, 30, 150] and [50, 60, 240]). Afterwards, we apply

a HSV mask, an image filter that removes pixels with HSV values outside that HSV

range, to eliminate most of the background in the world camera view. This creates

the masked image (Fig. 4-3a) and limits our feature detection to within the test form.

31



(a) Masked Image (b) Edge Image (c) Hough Lines

Figure 4-3: The Image Rectification Intermediate Results

Because the lighting within an experiment room is relatively consistent over the

course of a test (about 10 minutes), a single HSV mask is sufficient.

The algorithm works in the HSV space, rather than the RGB space, because HSV

can capture changes in lighting due to shadowing. It does this by separating image

intensity from color information. Color information is captured by hue while image

intensity, which contains brightness information, is captured by saturation and value.

By modifying mask thresholds with respect to saturation and value, we can effectively

capture relevant pixels in all of our frames.

4.2.2 Edge Detection

To use the graphics of the test itself as fiducial markers, we need to detect features,

i.e., identifiable patterns, within the test. To do this in turn, the algorithm recognizes

features in the masked image that make up identifiable patterns. In particular, it uses

the Canny edge detector and the Hough transform to detect edge pixels and lines.

The Canny edge detector is used to detect edge pixels in an image [3]. Even

though developed in 1986, it is still one of the most effective and commonly used

edge detectors today.

32



In general terms, it blurs an image with a Gaussian filter, computes image intensity

gradients, and selects edge pixels using non-maximum suppression and hysteresis

thresholding. Everything considered, it takes in a masked image and outputs an edge

image (Fig. 4-3b) representing edge and non-edge pixels.

Non-maximum suppression is the key to finding thin edges. An edge pixel is

selected if it has the maximum image intensity gradient among those of its neighboring

pixels in the direction of the image intensity gradient. This step in the algorithm

effectively suppresses many false positive edges and preserves only pixels with sharp

image intensity changes.

Hysteresis thresholding filters edge pixels with respect to a minimum edge value

and a maximum edge value (Fig. 4-4). An edge pixel with an image intensity gradient

less than the minimum edge value is discarded and one with an image intensity

gradient greater than the maximum edge value is a true edge. Those with image

intensity gradients in between are accepted if they are connected to a true edge.

Figure 4-4: Hysteresis Thresholding. Pixels in A are true edges because
they are either above the maximum edge value or connected to those
who are above the maximum edge value. Pixels in B are not true edges.

The choice of edge values, however, depends on the application. Lower edge values

result in more edge pixels detected and higher edge values result in fewer. For our

purposes, we empirically chose small edge values because we were more concerned

with false negatives (edges missed) than with false positives.

33



4.2.3 Line Detection

The Hough transform is a technique that efficiently and effectively detects common

geometrical shapes, specifically lines in our edge image [16]. The underlying principle

of the Hough transform is a voting system for lines. For every edge pixel detected

by the Canny edge detector, we use the Hough transform to create multiple line

candidates at different angles. If a candidate intersects with many other edge pixels,

meaning these edge pixels all fall under the same line, the candidate is likely a true

line and is accepted.

The parameters to the Hough transform include the threshold, the minimum line

length, and the maximum line gap. The threshold value is the minimum number of

edge pixels a line must pass through. A high threshold generally results in fewer lines

detected and a low threshold results in the opposite. The minimum line length, as

is evident from its name, is a threshold for the lengths of the lines detected. The

length of a line is defined by edge pixels on the two ends of the line. The maximum

line gap is the distance allowed between a line and an accepted edge pixel. Because

edge pixels detected may not lie perfectly on the line, it is necessary to allow some

gaps in order to include edge pixels that fall close enough to a line. This relaxation

is especially important for real-world images.

For our purposes, parameters for the Hough transform are empirically chosen so

that a line is detected only when a large number of edge pixels lie on the same line

with a small maximum line gap. To further ensure that enough lines are detected to

compute vanishing points later in this stage, both threshold and maximum line gap

are adjusted dynamically. From their respective default values, the algorithm lowers

the threshold and increases the maximum line gap until it has found 10 horizontal

lines and 10 vertical lines, knowing that there are multiple such lines in the test form.

There are two tests - the closeness test and the overlap test - designed to remove

lines that don’t follow the maze grid. For simplicity, we call these the non-grid

lines and the ones that follow the maze grid the grid lines. The non-grid lines are

detected by the Hough transform when enough edge pixels are found diagonally. This

34



phenomenon is usually present when the maximum line gap becomes so large that

edge pixels across multiple lines on the maze grid can be connected to constitute a

detected line.

The closeness test removes detected lines that are too close to each other. Because

there are two sides to a line on the maze grid, sometimes both sides are detected as

separate lines in the image (Fig. 4-5a). To ensure that lines detected correspond to

different lines on the maze grid, we remove the shorter of any two near-parallel lines

that are less than 5 pixels apart.

The overlap test checks that no detected lines intersect with each other. While

these lines, when extended very far, should theoretically intersect at a vanishing point,

they should not, in pair-wise, intersect at a point anywhere close by. In other words,

a line that intersects with multiple lines within the maze is likely a non-grid line

(Fig. 4-5b). Our algorithm iteratively removes such lines until no more are left.

(a) The Closeness Test (b) The Overlap Test

Figure 4-5: Non-grid Lines Removed by The Closeness & The Overlap Test

After filtering the line candidates with these two tests, we are left with mostly,

if not only, grid lines. We call these the Hough lines. To demonstrate, we overlay

the horizontal Hough lines (red) and the vertical Hough lines (green) with the world

camera view (Fig. 4-3c).

35



4.2.4 Vanishing Points Rectification

We know that the vertical and the horizontal Hough lines are parallel in 3D. The

world camera view of the form makes them look nonparallel and appear to meet at

two vanishing points, one for vertical lines and one for horizontal lines. Our goal is

to undo this perspective distortion caused by the 2D view and return to the view of

the form where the parallel lines are once again parallel, i.e., the rectified view.

To do so, the algorithm first computes the horizontal and the vertical vanishing

point. Consider the set of vertical Hough lines for the moment. Given two lines

within this set, it is easy to compute their vanishing point, i.e., their intersection.

However, if there are more than two lines in the set, it becomes necessary to perform

least-squares to find a best-fit vanishing point, a point that minimizes the sum of

squared distance to all the lines used to compute it.

Using the horizontal and the vertical vanishing point, the algorithm transforms

the image from the world camera view to the rectified view using parallel projection,

a method to transform an image from a 3D to a 2D view by projecting the image

onto a fixed plane. Here, the vanishing points tell us where the fixed plane is so the

projection can be done. Finally, bicubic interpolation2 is used to fill in any gaps, i.e.,

non-integer pixel values as a result of any transformation, in the rectified view.

4.3 Regional Pattern Analysis

Working from the rectified view (Fig. 4-1b), we want to detect, then identify, corners

in the maze. Our algorithm finds corners in the maze, labels each one using its

unique neighborhood patterns, i.e., feature vectors, and determines which corner in

the ground truth it matches to. These identified corners are used to compute the

homography transformation.

2In mathematics, bicubic interpolation is an extension of cubic interpolation, a third-degree
polynomial interpolation, for interpolating data points on a two-dimensional regular grid.

36



(a) Harris Corners (b) Identified Corners (c) Ground Truth Corners

Figure 4-6: The Regional Pattern Analysis Intermediate Results

4.3.1 Corner Detection

The corner detection process includes detecting corners then filtering them.

A corner detector operates on the image intensity gradient. Our algorithm uses

the Harris corner detector to detect corners in the rectified view. It is an improvement

to the traditional Moravec corner detector. We first discuss the principles behind the

Moravec corner detector as it provides a baseline for how the Harris corner detector

works.

The Moravec corner detector identifies corner pixels by looking at the image inten-

sity gradient in patches around the pixel of interest. A corner is detected if neighboring

patches are dissimilar where similarity is measured by the sum of squared difference

(SSD) of the image intensity gradients. That is, a corner is a pixel where there is

a large SSD between the patch at that point and the patch centered at its neighbor

[13].

While the Moravec corner detector is effective, its lack of isotropy3 is a major

drawback. The Harris corner detector is an improvement to the Moravec corner

detector because it considers the image intensity gradient in the direction of the
3Isotropy refers to uniformity in all directions and orientations

37



maximum image intensity gradient, thereby preserving isotropy. It computes the

eigenvalues of the image intensity gradient matrix. Because eigenvalues directly reflect

the magnitude of the image intensity gradient, large eigenvalues indicate a corner pixel

is present.

The Harris corner detector has only a single free parameter 𝑘, which is related to

the threshold for the magnitude of the eigenvalues. The larger 𝑘 is, the more evident

the corner must be in order to be identified. We set this to be 0.5, which has been

empirically tested to work well.

To control the corner detection process and selectively accept the corners returned

by the Harris corner detector, we set three additional parameters. These parameters

are the maximum number of corners, the quality level, and the minimum distance.

The maximum number of corners, 𝑛, constrains the number of corners that can

possibly be returned as the output of the corner detection process. If there are fewer

corners detected than the constraint allows for, all corners are returned. Otherwise,

the top 𝑛 corners are returned.

As Fig. 4-3a shows, our HSV mask blocks everything in the frame other than the

test form (and pixels with HSV values similar to the test form). As a consequence,

a subject’s hand and the digitized pen, which are common sources of occlusion, are

typically masked out. Therefore, the size of the mask reflects the degree of occlusion.

The bigger the occlusion, the fewer visibly available corners there are. Knowing this,

the algorithm adjusts the maximum number of corners to be returned by the Harris

corner detector according to the size of the mask.

The quality level (𝑄𝐿), defined as a fraction of the maximum image intensity

gradient (𝐸𝑚𝑎𝑥), characterizes the minimally accepted quality of the returned corners.

It thresholds on the image intensity gradient (𝐸) to select only candidates whose

image intensity gradients are greater than the quality threshold (𝑄𝑇 ). Note that

the acceptance threshold depends on the maximum image intensity gradient of the

corners in the image. Hence, the image itself, rather than the user, tells the algorithm

what threshold to use.

38



Accept (Corner) =

⎧⎪⎨⎪⎩True, if 𝐸 ≥ 𝑄𝐿× 𝐸𝑚𝑎𝑥 = 𝑄𝑇

False, otherwise

We are overall less concerned about false positive corners than false negative ones

given the rigorous analysis further on in our workflow. As a result, the quality level

parameter can be small; we have empirically chosen it to be 10−4.

Finally, the minimum distance, which we called the unit distance, ensures that no

two corners can be closer than this threshold. This in turn reduces the probability of

double-counting corners found in a blurred image.

The minimum distance parameter should be slightly less than the width of the

pathways, i.e., the unit, in the maze in order to capture the corners without detecting

noise in the pathway. The user first indicates, by eyeballing, the unit size at the start

of each video. This user-supplied distance is called the backup unit and is usually

in the range of 10 to 15 pixels. Then, for each frame in the video, the algorithm

produces its own estimate of the unit size from the distances between the Hough

lines. Both the backup unit and the estimated unit are used individually to carry

out the remaining Regional Pattern Analysis. Whichever unit yields more identified

corners at the end of this stage is chosen.

The corner detection process uses the parameters described above and returns a

set of detected corners in the rectified view. We call these the Harris corners and

visualize them by marking them in the rectified view (Fig. 4-6a).

4.3.2 Feature Vector Labelling

Each corner in our particular maze has a unique neighborhood pattern. We take

advantage of this to define feature vectors to describe these neighborhoods.

To explain the basic idea behind the feature vectors, we start with a ground truth

image of the corners in the maze (Fig. 4-6c). For our maze, each neighborhood pattern

is unique when the pattern includes corners that lie within 2 units of the corner of

39



interest. We first create 8-bit feature vectors to describe the 1-unit neighborhood

pattern of each corner. Then, we create 64-bit feature vectors to describe the 2-unit

neighborhood pattern, building on the 8-bit feature vectors.

An 8-bit feature vector of a corner identifies the presence of its neighboring cor-

ners. Each bit corresponds to one of 8 locations 1-unit vertically, horizontally, and

diagonally away from the corner of interest. Starting from the neighboring location

1-unit vertically above and moving clockwise, we assign a 1 if there exists a corner

in close proximity to the neighboring location; otherwise, we assign a 0 (Fig. 4-7).

Note that close proximity, instead of exact location, is used in order to account for

the slight variations in the Harris corners that are found in the images; sometimes,

the Harris corners may slightly off-set from the exact intersections or endpoints of

the lines in the maze.

We then create the 64-bit feature vector of every corner by concatenating its eight

neighboring 8-bit feature vectors (Fig. 4-7). If no corner is present at a particular

neighboring location, the corresponding 8-bit is replaced with 8 dashes as fillers to

maintain a constant feature vector size of 64 elements.

Our algorithm automatically creates the feature vectors from the Harris corners.

It needs to compute new feature vectors for every frame because the feature vectors

depend on the Harris corners, which depend on the rectified view. Luckily, the feature

vectors for the ground truth corners are always the same for a given maze.

While a 64-bit feature vector contains repetitive information, the structure is used

for its implementation simplicity. It also allows us to easily track sources of error.

4.3.3 Corner Identification

Recall that we create feature vectors for both the ground truth corners in the maze

template and the Harris corners in the rectified view. To perform corner identification,

we compare the 64-bit feature vector from each ground truth corner to the 64-bit

feature vector from every Harris corner. Each ground truth corner sufficiently similar

to a Harris corner is considered a potential candidate for that Harris corner.

There are two metrics for evaluating similarity: bit difference and corner difference.

40



Figure 4-7: 8-bit & 64-bit Feature Vectors

Here, the bit difference is the number of positions in which the two vectors differ. The

corner difference, by contrast, considers only differences between a 1 and a dash or a

0 and a dash. Fig. 4-8 shows an example demonstrating these two metrics.

Figure 4-8: Sample Bit and Corner Differences

Using a combination of bit difference and corner difference yields better identi-

fication accuracy by reducing the false negative rate. A simple bit difference can

overstate the difference in a potential match. If there is a single corner that has been

missed in the image, the bit difference metric will report a bit difference of 8 when in

fact all of these 8 differences are the result of a single corner that has been missed.

Taking account of both the bit difference and the corner difference helps to deal with

this situation.

For each Harris corner, we then sort candidate matches from best to least-matching

according to Alg. 1.

41



Algorithm 1: SortCandidate
1 initialize bestMatch[], oneMiss[], twoMiss[];
2 initialize index = 0;
3 initialize bitDiff, cornerDiff;

// go through all ground truth corner candidates
4 while index < len(Candidate) do
5 bitDiff = Candidatebit[index];
6 cornerDiff = Candidatecorner[index];
7 if (bitDiff <= 8) then

// ground truth corner candidate matches well
8 bestMatch.insert(Candidate[index]);
9 else if (bitDiff <= 12 && cornerDiff <= 8) then

// ground truth corner candidate differs by 1 corner
10 oneMiss.insert(Candidate[index]);
11 else if (bitDiff <= 18 && cornerDiff <= 16) then

// ground truth corner candidate differs by 2 corners
12 twoMiss.insert(Candidate[index]);
13 else
14 pass;
15 end
16 index ++;
17 end

18 bestMatch.sort(key=bit);
19 oneMiss.sort(key=bit);
20 twoMiss.sort(key=bit);

21 return bestMatch + oneMiss + twoMiss;

4.3.4 Corner Analysis

Additional filtering is necessary to narrow down the number of ground truth corner

identities as potential matches for a Harris corner. The process starts off general

then becomes more specific until there is at most one candidate match for any Harris

corner. The 3 major steps are: sectioning, analyzing (neighbor and distant neighbor),

and removing duplicates.

To perform sectioning, we split up our corners into five sections via six lines. Note

that in the rectified view, the top-most and bottom-most Harris corners define the

top and bottom horizontal lines. Each corner now has a section that it belongs to.

42



(a
)

H
ar

ri
s

C
or

ne
r

Se
ct

io
n

(b
)

W
ro

ng
Se

ct
io

n
E

xa
m

pl
e

(c
)

G
ro

un
d

T
ru

th
Se

ct
io

n

F
ig

ur
e

4-
9:

C
or

ne
r

Se
ct

io
ni

ng

43



We section both the Harris corners (Fig. 4-9a) and the ground truth corners

(Fig. 4-9c) in order to compare them.

The best-matching candidate (BMC) for a Harris corner is the ground truth corner

candidate at the front of the array returned by Alg. 1. Note that any BMC, thus far,

is a local-context match as it considers only corners within 2 units of it. Sectioning

and distant corner analysis consider and evaluate corners for global matches.

If the BMC falls in a section more than one away from its ground truth section, it

is removed from consideration. For instance, if a Harris corner has #151 as its BMC,

the Harris corner should belong to section C. If, instead, the Harris corner is located

in section A (Fig. 4-9b), the BMC must be wrong and is removed.

Sectioning is a crude first step to eliminate false positive identifications. The next

step, corner analysis, uses both the neighbor and the distant neighbor information to

support a corner identity. Using the BMCs that remain after sectioning, our algorithm

builds a neighbor support system.

Take, for example, the neighborhood around ground truth corner #11 (Fig. 4-

10b). This corner has ground truth corner #3 and ground truth corner #4 as its

upper and upper-right neighbors, respectively. If a Harris corner (Fig. 4-10a) has

#11 as its BMC and its upper and upper-right neighboring Harris corners have #3

and #4, respectively, as their BMCs, it is likely that our algorithm has correctly

identified this corner. In this case, this corner has a support score of 2, meaning

that its two neighboring Harris corners have BMCs that align with the ground truth

corner orientation. As one can imagine, this technique creates corner cliques4, each of

which is a group of Harris corners that support each other’s identity. The BMCs that

receive a support score of 2 or more proceed to the next step - the distant neighbor

analysis.

While the neighbor analysis often finds cliques scattered across the maze, an

additional support system of distant neighbors is necessary to justify relative clique

locations. This is especially important because cliques are formed using only BMCs

4A clique is a subset of vertices in an undirected graph such that every two distinct vertices are
adjacent.

44



(a) Harris Corner Neighborhood (b) Ground Truth Neighborhood

Figure 4-10: Neighbor Analysis

within a small neighborhood. We do not yet know whether these cliques are correctly

located relative to each other within the entire maze.

To determine this, we use the distant neighbor information. This focuses on

corners far from the corner in consideration. Consider ground truth corner #87 in

Fig. 4-11c. It has ground truth corners #5, #15, and #27 far above it. Consider,

now, the case where our algorithm has found four Harris corners and has determined

that #87, #5, #15, and #27 are their BMCs. Fig. 4-11a shows the situation where

Harris corners #5, #15, and #27 are located far above Harris corner #87. In this

case, the distant neighbor analysis would award Harris corner #87 a distant score of

3 and award Harris corners #5, #15, and #27 each a distant score of 1.

If, instead, the algorithm has identified the Harris corners in Fig. 4-11b as having

BMCs #5, #15, and #27 and they are located to the far right of the Harris corner

with #87 as its BMC, Harris corner #87 would now receive a distant score of -3 (it

does not match our expectations) while Harris corners #5, #15, and #27 each receive

a distant score of -1. Any BMCs with a positive distant score proceed to the next

step.

The last step of the corner analysis is to remove duplicate identities. Both support

and distant scores are recalculated using the remaining BMCs. For any two corners

with the same BMC, the one with a greater sum of support and distant scores is kept.

Finally, these BMCs are accepted as the corners’ identities.

45



(a)
C

orrect
D

istant
N

eighbor
E

xam
ple

(b)
W

rong
D

istant
N

eighbor
E

xam
ple

(c)
G

round
T
ruth

D
istant

N
eighbor

F
igure

4-11:
D

istant
N

eighbor
A

nalysis

46



4.3.5 Corner Extension

Given the extensive evidence that is required in order to support the identification of

a Harris corner, we can be reasonably confident about the correctness of our Harris

corner identities. We use this to further extend our labelling, which allows us to

identify additional unlabelled corners.

The algorithm first creates a support system very similar to that of our neighbor

analysis. Suppose, as in Fig. 4-12a, Harris corners #85, #86, and #99 have been

identified. Suppose, also, that there exists an as yet unidentified Harris corner below

Harris corner #85, to the bottom-left of Harris corner #86 and to the left of Harris

corner #99. This is where corner #98 should be located given our ground truth

neighbor reference (Fig. 4-12b). In this case, this unlabelled corner is hypothesized

to be corner #98 with a score of 3, meaning that its three neighboring Harris corners

support it being corner #98. A label with a score of 2 or more is accepted. Thus,

this technique branches out the labelling even further.

(a) Harris Corner Neighborhood (b) Ground Truth Neighborhood

Figure 4-12: Corner Extension

In each iteration of the corner extension, potentially more Harris corners are iden-

tified. We iterate this step until no additional corners may be labelled.

These labelled corners then form the basis for computing a homography to trans-

form the image from the rectified view to the standardized view.

47



4.4 The Homography Transformation

The homography transformation5 brings an image from the rectified view to the

standardized view. Because different perspectives are linear transformations of one

another, we can find the homography to describe the transformation between the rec-

tified view and the standardized view of an image given a set of matching points. The

more matching points there are, the more accurate the mapping becomes. Therefore,

we iterate between two steps, computing a tentative homography and labelling more

corners. When no more corners can be labelled, we have found the final homography.

4.4.1 Homography Computation and Limitation

We can define a single homography to transform an image from one view to another

if we have four pairs of corresponding points [9]. For more corresponding points, the

Least-Median Robust Method is routinely used along with the Levenberg-Marquardt

Method to minimize the re-projection error6 [4, 10, 12]. We chose linear interpolation

to ensure that pixels in the standardized view take on integer values.

While the homography describing any transformation is easy to compute, we

should keep in mind some of its limitations. Let us first define the points in the

original view used to compute the homography as the homography points. Then, the

further away a point in the original view lies from these homography points, the less

accurate its transformed location is.

This is a problem we sometimes see when computing the homography to map

from the rectified view to the standardized view. If our identified corners, i.e., the

homography points, span only a small area of the maze (Fig. 4-13a), the standardized

view may not match well to the ground truth maze template (Fig. 4-13b). Therefore,

we want to pick faraway homography points (Fig. 4-14a) in order to end up with the

standardized view that matches well to the ground truth maze template (Fig. 4-14b).

Note how much better Fig. 4-14b is compared to Fig. 4-13b.

5A homography transformation is the transformation between two images of the same surface.
6The re-projection error is a geometric error corresponding to the image distance between a

projected point and a measured one.

48



(a) Nearby Points (b) Standardized View

Figure 4-13: Standardized View from Nearby Homography Points

4.4.2 Additional Corner Labelling

To account for the homography limitation, we try to, once more, label unlabelled

Harris corners after they have been transformed.

Recall that a transformed pixel is accurate when its location in the original view

is close to the homography points. Going off this idea, an unlabelled Harris corner

that lies close to the identified corners, i.e., the homography points, is likely to be

transformed accurately. If the transformed location of this Harris corner lies less than

half the unit to a ground truth corner and no other Harris corners have previously

identified to be this ground truth corner, we can label this Harris corner as that

ground truth corner.

Additional labelling allows us to expand the area described by the homography

points, which leads to a better homography. When no additional corners can be la-

belled upon transformation, we have found the final, and likely the best, homography.

We conclude the Homography Transformation stage by applying the final homog-

raphy to the rectified view, effectively getting the standardized view.

49



(a) Faraway Points (b) Standardized View

Figure 4-14: Standardized View from Faraway Homography Points

4.5 Workflow Summary

We now have every piece of information to transform an image from the world camera

view to the standardized view. This allows us to identify where a subject is looking

on the maze form without fiducial markers. To summarize, we conclude with the

workflow (Fig. 4-15) for our Regular Graphical Pattern Detection Algorithm.

4.6 Outliers

An outlier is defined as a frame that cannot be processed or, having been processed,

produces transforms significantly different from those of its previous frame. As previ-

ously mentioned, repetition is a fallback technique to compute the vanishing points,

the unit, and the homography for frames where these parameters cannot be calcu-

lated. When, however, repetition has to be applied to all of these parameters, it means

the algorithm is unable to compute anything from the frame alone - everything now

depends on the previous frame. The frame in consideration is then an outlier.

50



Figure 4-15: Workflow Summary. The Regular Graphical Pattern Detection Algo-
rithm includes 3 views (2 transforms), 3 stages, and 10 sub-stages.

To handle these outliers, we used forward-reverse processing and interpolation as

our repair systems according to Alg. 2.

4.6.1 Forward-Reverse Processing

In an attempt to resolve outliers, we processed the frames in a video in both forward

and reverse directions. Because repetition can be applied at various stages of the

algorithm, the parameters used to process the current frame may be dependent on

its previous frame. An outlier that results during forward processing may in fact not

be an outlier when the frames are processed in reverse order. Then, we only needed

to interpolate across those that cannot be processed in either direction.

51



Algorithm 2: HandleOutliers
// RGPD = Regular Graphical Pattern Detection
// input: video, output: outliers

1 define RGPD;
// input: outliers, output: none

2 define Interpolation;

3 ForwardOutliers = RGPD(video, direction=’forward’);
4 ReverseOutliers = RGPD(video, direction=’reverse’);

// only interpolate mutual outliers
5 FinalOutliers = ForwardOutliers.intersect(ReverseOutliers);

6 Interpolation(FinalOutliers);

4.6.2 Interpolation

For any frame that could not be handled by either forward or reverse processing, we

used the parameter values from the frames before and after to compute its transforms.

Furthermore, if consecutive frames required interpolation, we used the nearest frames

that do not require interpolation before and after the sequence of outliers to compute

transforms for these consecutive outliers. We chose to use linear interpolation and

this effectively resolved our remaining outliers.

52



Chapter 5

Results and Discussion

5.1 Evaluation Metrics

Our primary evaluation metrics are hit rate, sensitivity, and goodness of fit. Hit

rate measures the percentage of the frames in a video that can be processed without

interpolation. Sensitivity measures the percentage of corners correctly identified out

of the actual number of corners visible in a frame. Goodness of fit measures the quality

of the standardized view, measured as the median distance between the corners in

the standardized view and their ground truth corner locations.

5.1.1 Hit Rate

Along with the hit rate, we also report the temporal distribution of frames missed, i.e.,

outliers. Consecutive outliers are harder to recover from as they require interpolation

between two distant frames and any distortion or shifts not in the direction of the

interpolation cannot be recovered.

Consecutive outliers are usually found in a sequence of frames with heavy occlu-

sions, while scattered outliers are usually found in blurred images, typically caused

by a sudden shift in the head position.

53



5.1.2 Sensitivity

Because sensitivity evaluates corner identification, this metric is applicable only for

frames where Harris corners have been matched to ground truth corners. Frames

whose transforms have been computed via interpolation do not have corner informa-

tion and are not considered for the sensitivity measure.

Calculating sensitivity is a labor-intensive process because whether a corner has

been correctly identified has to be determined manually. As a result, we approximate

and report our average sensitivity by evaluating 10% of the frames in each video.

5.1.3 Goodness of Fit

Recall that goodness of fit measures the median distance between corners in the

standardized view and the ground truth corner for each frame. The median distance,

instead of the average distance, is chosen to account for misidentified Harris corners

and is calculated in millimeters to match the width of the pathways when printed

(8mm). Then, for each video, we report the average of all the median distances.

5.2 Stress Tests

To evaluate performance for our system, we conducted several stress tests using ex-

treme cases including,

∙ rotation test : rotate test up to 45 degrees, clockwise and counter-clockwise.

∙ lean test : lean forward and backward to capture various world camera angles.

∙ shadow test : cast shadow on the test form with a hand.

The world camera view of an unrotated, unoccluded test form with a participant

sitting up straight is the ordinary view (Fig. 5-1). We gradually increased each

dimension of the stress individually, followed by a gradual shift back to the ordinary

view. The graded increase and decrease mimics real-world (i.e., continuous) body

motion and also allows our algorithm to adjust its parameters to better account for

the stress.

54



Figure 5-1: Ordinary View

5.2.1 Rotation Test

Image Rectification effectively takes care of the stress caused by rotation. There

is no difference in performance between clockwise and counter-clockwise rotations

(Fig. 5-2).

(a) Clockwise (b) Counter-clockwise

Figure 5-2: Rotation Test

Our algorithm has been tested against rotations up to 45 degrees in both directions

because a participant is unlikely to rotate a test form beyond 45 degrees. Nevertheless,

the algorithm can be adjusted to work for all degrees if necessary.

55



In regard to rotations, our algorithm achieved a hit rate of 99.61%, a sensitivity of

94.31%, and an average median distance of 0.85mm. These metrics together indicate

good performance with respect to rotations and eliminate rotation as a potential

source of error.

5.2.2 Lean Test

Different levels of leaning lead to distinct world camera views (Fig. 5-3). When a

participant leans forward, the distance between the world camera and the test form

shortens and the view becomes more orthogonal.

(a) Lean Forward (b) Lean Backward

Figure 5-3: Lean Test

Unlike rotations, the effects of leaning forward and backward are not symmetri-

cal. The test form in a lean-forward image is clearer, making feature detection easier.

This effect is further exaggerated by bicubic interpolation applied during Image Rec-

tification. Our algorithm can often compute transforms for a lean-forward image but

struggles when a participant is leaning far back, away from the test form.

For the lean-forward test, our algorithm achieved a hit rate of 100.00%, a sensi-

tivity of 97.67%, and an average median distance of 0.71mm. For the lean-backward

test, our algorithm achieved a hit rate of 20.74%, a sensitivity of 70.58%, and an

average median distance of 0.92mm.

56



5.2.3 Shadow Test

The main difficulty with shadows (Fig. 5-4) originally lies in the step of corner de-

tection. As stated in Chapter 4.3.1, the algorithm first detects corners then filters

them by the pre-selected quality level. Given that lines in the maze are black, which

leads to black corners, corners under a shadow have significantly lower image intensity

gradients. This makes them more difficult to detect than corners that lie outside of

the shadow. In response, we lowered the quality level from 10−3 to 10−4 (our final

choice) to accept most corners detected.

Figure 5-4: Shadow Test

With a lower quality level and the rigorous corner analysis, we were able to effec-

tively detect shadowed corners yet not falsely identifying extraneous corners outside

of the shadow. As a result, our algorithm achieved a hit rate of 99.61%, a sensitivity

of 93.07%, and an average median distance of 0.95mm.

5.3 Subject Data Results

We processed four videos of the maze test taken by three different individuals. Two

of them were recorded at the Lahey Clinic and the other two at our lab. The number

of frames ranged from 850 to 1485 frames and each of the frames has a resolution of

1280× 720 px.

57



The evaluation results for each video are provided in Table 5.1. On average,

our algorithm achieved a hit rate of 89.75%, a sensitivity of 90.00%, and an average

median distance of 1.27mm.

Data Source Lahey 1 Lahey 2 Lab 1 Lab 2
Hit Rate (%) 85.93 82.96 90.22 99.89

Sensitivity (%) 84.61 84.85 92.78 97.76
Goodness of Fit (mm) 1.69 1.64 0.92 0.81

Table 5.1: Subject Data Evaluation Results

The temporal distributions of outliers for each of the video are provided in Fig. 5-5.

The result is binary (i.e., an outlier or not) for each frame.

Figure 5-5: Temporal Distribution of Outliers

The frequency distributions of consecutive outliers for each of the video are also

provided in Fig. 5-6. This allows us to better understand the way outliers happen.

58



Figure 5-6: Frequency Distribution of Consecutive Outliers

5.4 Discussion

The results in Table 5.1 show that our algorithm achieved at least 80% hit rate across

all of our subject videos. It is important to note that the performance with respect

to the videos taken at the Lahey Clinic is overall lower due to some administrative

error. Specifically, the world camera on the eye tracker was not adjusted well, causing

some of the test form to be cut off for a limited number of frames. As a result, our

algorithm was unable to detect features necessary to compute the transforms.

The sensitivity achieved suggests that most of the identified corners actually had

correct labels. At the same time, there were far more than four corners identified for

any frame, allowing us to use many corners to compute the homography. We can,

therefore, be less concerned about the limitation of homography computation - the

vast number of homography points likely span most of the maze.

59



Recall that our research aims to achieve an accuracy that is within half a degree

of the visual angle. This corresponds to an error bound that is approximately half the

width of a path in the maze form, which, as noted above, we call a unit. Therefore,

the goodness of fit achieved indicates that we have successfully accomplished our

goal. Our algorithm detected gaze position to be within 20% of the unit from its true

location.

The temporal (Fig. 5-5) and frequency (Fig. 5-6) distributions further support

the use of interpolation in handling outliers, as outliers are typically scattered across

a video. There was only one occasion (in Lahey Sample 2) where there were thirty

consecutive frames missed, which ultimately constituted only one second. All others

had outliers that lasted for less than one second of the video. Thus, we can be

reasonably confident about the robustness of our algorithm.

60



Chapter 6

Conclusions and Future Work

6.1 Contributions

This thesis presents a new object detection method and effectively applies it to a

patterned form. It is a multi-stage image processing algorithm that aims to transform

an occluded, patterned image in an arbitrary view, back to its standardized view. We

used vanishing points to correct an image, allowing us to undo perspective skew.

Then, we detected corners and created patterns out of their neighboring corners,

making each of them uniquely identifiable. These identified corners were then used

to compute a homography, re-projecting our image back to its standardized view.

We tested our algorithm on four subject videos, with frame counts ranging from

850 to 1485, and one stress test video, consisting of rotation, lean, and shadow. For

all of these videos, our algorithm achieved high accuracy in identifying the test form

in an image. Then, for frames that cannot be processed, analyses in Chapter 5.4

further support the use of interpolation to take care of them, making our algorithm

an overall robust technique to identify patterned forms.

6.2 Achievements and Shortcomings

The outputs of these videos demonstrate success in our algorithm, where success is

defined by three evaluation metrics: hit rate, sensitivity, and goodness of fit.

61



While our algorithm performs well on most frames of our videos, in the case of

heavy occlusions, consecutive frames are missed. Interpolation allows us to recover

results between two good frames, but fails to capture any sudden shifts in position.

That is, our algorithm is unable to account for the case where, for instance, the test

paper was shifted to the right and back during the period of heavy occlusions. At

the same time, our algorithm depends on features built on local neighborhoods. It is,

therefore, unlikely to perform well in the presence of multiple scattered occlusions, an

uncommon situation given we have mostly continuous objects (e.g., arms and pencils).

Nevertheless, these remain challenges our algorithm has not yet overcome.

6.3 Future Work

For future work, we plan to improve our methods in three aspects, each of which

addresses slightly different parts of our algorithm.

We have noticed that multiple missed frames come from failures at the Image

Rectification stage. Our algorithm sometimes struggles to detect lines suitable for

determining the vanishing points. Therefore, we suspect it would be useful to create

our own line detection algorithm, perhaps an extension of the Hough transform.

Aside from consecutive missed frames, we have noticed that scattered missed

frames are usually results of blurred images, which are commonly due to a sudden

shift of the user’s head. Using filters like the box filter might sharpen the image,

thereby allowing our algorithm to process it successfully. However, we have yet to

find and incorporate a suitable filter.

We have seen and shown here the effectiveness of identifying corners using local

neighborhoods. Therefore, we believe we can further extend our approach to various

types of neighborhoods. Instead of depending solely on local neighborhoods to identify

each corner, our algorithm can be more robust against occlusions if we create feature

vectors that label and identify corners using multiple different references. We are

confident that such advancement will push the capabilities of our algorithm and object

detection even further.

62



Appendix A

Figures

63



(a) The LCL Test

(b) The HCL Test

Figure A-1: The Symbol Digit Tests. The symbol-digit test is a grid-like mapping
test. It requires a subject to write the corresponding number for each symbol in the
test.

64



Bibliography

[1] Claire Lancaster Chris Hinds Ivan Koychev Amy Chinner, Jasmine Blane. Digital
technologies for the assessment of cognition: a clinical review. Evidence-Based
Mental Health, 21(2):67+, May 2018.

[2] Alzheimer’s Association. 2019 alzheimer’s disease facts and figures report, 2019.

[3] John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6:679+, November 1986.

[4] Peter J. Rousseeuw Annick Leroy Desire L. Massart, Leonard Kaufman. Least
median of squares: a robust method for outlier and model error detection in
regression and calibration. Analytica Chimica Acta, 187:171+, January 1986.

[5] Martial Hebert Edward Hsiao. Occlusion reasoning for object detection under
arbitrary viewpoint. IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3146+, 2012.

[6] Hae-Jeong Park Hyunjoo Song, Do-Joon Yi. Validation of a mobile game-based
assessment of cognitive control among children and adolescents. PLOS One,
March 2020.

[7] S.Y. Chen-Qiu Guan Ke Zhang Jianhua Zhang, Y.F. Li. Partial occlusion de-
tection of object boundary. IEEE Instrumentation and Measurement Technology
Conference, pages 30+, July 2009.

[8] Zhishuai Zhang-Jun Zhu Lingxi Xie Alan Yuille Jianyu Wang, Cihang Xie. De-
tecting semantic parts on partially occluded objects. Computer Vision and Pat-
tern Recognition, July 2017.

[9] David Kriegman. Homography estimation. UCSD Computer Vision I CSE 252A
Lecture Notes, 2007.

[10] Kenneth Levenberg. A method for the solution of certain non-linear problems in
least squares. Quarterly of Applied Mathematics, 2(2):164+, July 1944.

[11] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60:91+, November 2004.

65



[12] Donald W. Marquardt. An algorithm for least-squares estimation of nonlin-
ear parameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431+, June 1963.

[13] Hans P. Moravec. Obstacle avoidance and navigation in the real world by a
seeing robot rover. Tech report, Carnegie-Mellon University, Robotics Institute,
Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, September 1980.

[14] Erum Naqvi. Alzheimer’s disease statistics. Alzheimer’s News Today, June 2017.

[15] National Institute on Aging. What causes alzheimer’s disease? December 2019.

[16] Peter E. Hart Richard O. Duda. Use of the hough transformation to detect lines
and curves in pictures. Communications of the ACM, 15(1), January 1972.

[17] Qingshan Liu Shengye Yan. Inferring occluded features for fast object detection.
Science Direct, 110:188+, May 2015.

[18] Xiao Bian-Zhen Lei Stan Z. Li Shifeng Zhang, Longyin Wen. Occlusion-aware
r-cnn: Detecting pedestrians in a crowd. EECV, pages 657+, October 2018.

[19] Moises Betancort Alejandra Machado Maria Lindau Stina Bjorngrim, Wobbie
V. Hurk. Comparing traditional and digitized cognitive tests used in standard
clinical evaluation – a study of the digital application minnemera. Frontiers in
Psychology, 10:2327+, October 2019.

66


