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Abstract

We present a new approach to gesture recogni-
tion that tracks body and hands simultaneously and
recognizes gestures continuously from an unseg-
mented and unbounded input stream. Our sys-
tem estimates 3D coordinates of upper body joints
and classifies the appearance of hands into a set of
canonical shapes. A novel multi-layered filtering
technique with a temporal sliding window is devel-
oped to enable online sequence labeling and seg-
mentation. Experimental results on the NATOPS
dataset show the effectiveness of the approach.
We also report on our recent work on multimodal
gesture recognition and deep-hierarchical sequence
representation learning that achieve the state-of-
the-art performances on several real-world datasets.

1 Introduction

For more than 40 years, human-computer interaction has been
focused on the keyboard and mouse. Although this has been
successful, as computation becomes increasingly mobile, em-
bedded and ubiquitous, it is far too constraining as a model of
interaction. Gestural interaction has a number of advantages
over the conventional interaction model. It uses equipment
we always have on hand; there is nothing extra to carry, mis-
place, or leave behind. It also can be designed to work from
natual and intuitive actions; gesturing is instinctive and a skill
we all have, so it requires little thought, leaving the focus on
the task itself, as it should be, not on the interaction modal-
ity. The goal of this work is to enable natural gesture-based
interaction using a camera sensor in a non-intrusive way .
We present a new vision-based approach to gesture recog-
nition that tracks body and hands simultaneously and recog-
nizes gestures continuously from an unsegmented and un-
bounded camera input stream. Most current systems focus
on one source of input, e.g., body pose [Shotton er al., 2011].
Yet human gesture is most naturally expressed with both body
and hands. Our system tracks both body and hands, allowing
a richer gesture vocabulary and more natural interaction.
Gesture recognition can be viewed as the task of se-
quence labeling and segmentation from an unsegmented and

*This paper is an extended abstract of our ACM TiiS article [Song et al., 2012a].
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unbounded input stream. Morency et al. [2007] presented
Latent-Dynamic Conditional Random Fields (LDCRF) for
offline sequence labeling and segmentation, but it assumed
a bounded input sequence, limiting its practical use for on-
line gesture recognition. Our work extends LDCRF to an
online domain by incorporating our novel multi-layered fil-
tering technique with a temporal sliding window. We demon-
strate our system on the NATOPS aircraft handling signals
dataset [Song et al., 2011b].

This extended abstract summarizes the material pre-
sented in [Song et al., 2012al. In addition, we briefly in-
troduce our recent work on multimodal gesture recogni-
tion [Song er al., 2012b] and deep-hierarchical sequence rep-
resentation learning [Song et al., 2013] that achieve the state-
of-the-art results on a number of real-world datasets.

2 Body and Hand Tracking

As our motivating scenario, we selected an official ges-
ture vocabulary used for communication between aircraft
marshallers and pilots on a carrier deck. The vocabulary
is defined in the Naval Air Training and Operating Proce-
dures Standardization (NATOPS), a standard manual for gen-
eral flight and operating procedures used by the US Navy.
Our NATOPS dataset [Song er al., 2011b] contains 24 ges-
ture classes, with each gesture performed by 20 participants
20 times, resulting in 9,600 gesture instances in total. See
[Song er al., 2011b] for more details about the dataset.

Our system starts by receiving RGBD images from a single
stereo camera.! As we receive the images, we perform back-
ground subtraction using a combination of a codebook ap-
proach [Kim er al., 2005] and a depth-cut method, i.e., once
obtaining a probable region-of-interest (foreground object),
we filter out pixels whose distance is further away then the
foreground object. We then track body and hands from fore-
ground RGBD images, described below.

2.1 3D Upper Body Pose Estimation

We represent an upper body using a 3D skeleton model con-
sisting of 6 body parts (head, torso, upper and lower arms)
and 9 joints (head, chest, navel, shoulders, elbows, wrists).
This model is paramaterized by a 14D vector with 8 local

'Our work predates the now-popular Kinect-based gesture recog-
nition systems; we used a single Bumblebee2 stereo camera.



variables (3D ball-and-socket joints for shoulders, 1D revo-
lute joints for elbows) and 6 global variables (3D translation
and rotation). From the 14 parameters, we can reconstruct 3D
coordinates of the 9 joints by solving the forward kinematics
problem [Denavit and Hartenbert, 1955].

We formulate pose estimation as a sequential Bayesian fil-
tering problem. Let x; be a parameterization of an upper body
pose and I, a vector representation of an RGBD image at time
t. Our goal is to estimate a posterior state density p(x; | I1.¢)
having observed images I;.; = [I ---I;] and knowing the
prior state density p(x;—1). We solve this problem us-
ing a Particle Filter [Isard and Blake, 1998], which repre-
sents p(x; | I.t) as a multinomial non-Gaussian distribution
with a set of N weighted particles {(s},7}) - (sV,7]V)}.
Each sample s! represents a pose configuration, and the
weights 7}V are obtained by computing the likelihood 7¢ =
p(I; | x; = s}) and normalizing them so that )\, 7} = 1.

Our likelihood function is defined as p(I; | x; = si) =
exp{e(I;, si)}~1, where the fitting error €(I;, s!) is a
weighted sum of three error terms : 3D visible-surface point
clouds, 3D contour point clouds, and a Motion History Image
(MHI) [Bobick and Davis, 2001]. The first two features cap-
ture spatial discrepancies in static poses; the third captures
discrepancies in the temporal dynamics of motion. We chose
the weights for each error term empirically.

We initialized the Particle Filter with 500 random pose
samples, and computed the prior p(xo) by assuming the “T-
pose” (arms stretched to the side) and fitting the model to
the image with exhaustive search. Our C++ implementation
based on streaming SIMD extensions 2 (SSE2) takes no more
than 0.3 seconds for each iteration on an Intel Xeon 2.4 GHz
machine. The pose estimate at time ¢ is then obtained by
computing the weighted sum, E[x;] = " \ si 7¢.

The final body features include 3D joint velocities for el-
bows and wrists. To obtain this, we reconstruct a normal-
ized skeletal model with the estimated joint angles and fixed-
length limbs, so that all generated models have the same
set of limb lengths across participants. This reduces cross-
participant variances resulting from different body measures.

2.2 Hand Shape Classification

Our approach to hand tracking is different from body tracking
in that, while we estimate 3D coordinates of body joints, we
classify the appearance of a hand into one of four canonical
shapes (thumb up and down, palm open and close), selected
based on the types of gestures used in the NATOPS scenario.

We define two small search regions (56 x 56 pixels) around
the estimated wrist positions, and slide a 32 x 32 pixel win-
dow in each region with a step size of 8 pixels, computing the
HOG features [Dalal and Triggs, 2005]. We classify the hand
shape using a pre-trained SVM [Chang and Lin, 2011]. The
classifier is defined with 5 classes (4 positive, 1 negative) and
trained on a set of manually labeled examples subsampled
from the NATOPS dataset. After we classify all windows
in each search region, we compute the mean probability es-
timate from the classification results and drop the negative
class to obtain the final 8D hand feature representation.
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Figure 1: An illustration of multi-layered filtering.

3 Continuous Gesture Recognition

An LDCRF [Morency et al., 2007] is a discriminative model
with latent variables that performs sequence labeling and seg-
mentation from a bounded input sequence. Given a pair of
input sequence X = [x;---x7] and a label sequence y =
[y1 - - - yr] (assumed discrete), the model computes a condi-
tional probability distribution p(y|x) by learning within-class
and between-class dynamics with a sequence of latent vari-
ables h = [hy---hy]. Given a test sequence x, the model
computes a label sequence by solving y* = arg max, p(y|x)
and obtains sequence boundaries by looking for disconti-
nuities in the predicted label sequence. Unfortunately, the
forward-backward inference (belief propagation) makes the
model inapplicable to an unbounded input scenario. Various
filtering techniques have been proposed to remedy this (e.g.,
forward-only inference [Huang et al., 2011]), but these often
resort to an approximate inference scheme [Murphy, 2002].

3.1 Multi-Layered Filtering

We present a multi-layered filtering technique with a tem-
poral sliding window for online sequence labeling and seg-
mentaion, which can be used with an LDCRF while still
maintaining the advantages of exact inference via belief
propagation. Specifically, we define three layers of filters:
a Gaussian temporal-smoothing filter in the input layer, a
weighted-average filter in the local prediction layer, and an
exponentiated-smoothing filter in the global prediction layer.
Figure 1 illustrates our approach.

We define a k-point temporal sliding window (this provides
locally-exact inference results). At each time ¢, a k-point
window slides forward and evaluates a sequence of k frames
Xjit = [Xj=t—k+1- - X¢) to compute p;(y;.¢ | X;.¢) using an
LDCREF. The result is a Y-by-k matrix, where each column
vector p(y; | X;.¢) is a probability estimate of Y~ class labels
for the i-th frame (t — k + 1 < i <t).

Input Layer: Temporal patterns of gestures exhibit long-
range temporal dependencies, e.g., body parts move smoothly
and coherently as time proceeds. Because our body and hand
signals are obtained via statistical estimation, the signals also
exhibit high-frequency fluctuations (i.e., noise). To capture
long-range dependencies, previous work proposed a tech-



nique that concatenates neighboring signals within a small
temporal window, creating a single large input feature vec-
tor for each time frame [Quattoni et al., 2007]. This, how-
ever, increases the model complexity and does not address
the noisy input problem explicitly [Song et al., 2011a].

We define a Gaussian temporal-smoothing filter with a nor-
malized w-point weighted kernel g(w) and perform a convo-
lution of the input signals with g(w). Each element of the
kernel is computed as g(w)[i] = exp{—1/2(c - 2i/w)?} for
—(w—=1)/2 < i < (w—1)/2, with « set to be inversely
proportional to the standard deviation of a Gaussian distri-
bution. Intuitively, the filter computes a weighted mean of
neighboring input signals, capturing long-range dependencies
and providing robustness to noise. This approach has the ad-
vantage of keeping the dimensionality of input feature vectors
the same, keeping the model complexity unchanged.

Local Prediciton Layer: As the k-point window slides
forward and computes p,(y ;.. | X;.¢), we obtain k prediction
results per frame. We make a local prediction for the first
frame p;(y;) within the current window (i.e., the tail edge)
by computing a weighted average of k previous prediction
results p;(y;) = Z§:1 YiPt—i+1(¥j | Xj_it1:4—i+1) Where
Y1k 18 a normalized uniform weight vector (y; = 1/k).

Global Prediction Layer: A sequence of local predic-
tion results alone may still provide noisy output, resulting in
highly fluctuating prediction labels. To smooth out the local
prediction results, a global prediction ¢;(y;) is made over the
local prediction results using exponential smoothing. Intu-
itively, the smoothing rate should be adaptive to how confi-
dent the local prediction is, putting less weight to the past if
the current prediction is highly confident. Therefore, we set
the smoothing rate adaptively to the maximum probability of
the local prediction ¢ (y;) = - pe(y;) + (1 — ) - qr—1(y;-1)
where @ = maxp;(y;) so that the more confident a local
prediction is, the less smoothing performed.

4 Experiments

We evaluated various aspects of our system using the
NATOPS dataset [Song et al., 2011b]; here, we briefly sum-
marize the highlights of the results, see [Song ef al., 2012a]
for the complete results. In all our experiments, we chose the
optimal parameter values via 5-fold cross validation. For pa-
rameter optimization, we selected three pairs of gestures from
the NATOPS dataset (all/not clear, insert/remove chocks,
breaks on/off) that are difficult to distinguish from each other
within a pair without knowing both body and hand poses. We
then evaluated our approach on all 24 gestures in the dataset.

Input layer: We evaluated our Gaussian temporal-
smoothing (GTS) filter on the input layer, varying the window
size w from O (no smoothing) to 9 (19 frames; roughly one
second in the NATOPS dataset). We compared our approach
to [Quattoni et al., 2007], which used temporal concatenating
window (TCW) to capture long-range dependencies.

Figure 2 shows our approach outperforming TCW in terms
of both the mean F1 score and the training time. The best
mean F1 scores from both approaches were 0.8573 for our
GTS (w = 3) and 0.8487 for the TCW (w = 1); the baseline
score (w = 0) was 0.8268. In case of TCW, the mean F1
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Figure 2: Mean F1 scores and training time comparisons of
our Gaussian temporal-smoothing (GTS) to the temporal con-
catenating window (TCW) of Quattoni ef al. [2007].

[Method |  Train [ Validation [ Test |
[Offine [ 9514 (.03) | .8785 (.04) | .8645 (.05) |
Online .8332 (.02) | .7783 (.06) | .7668 (.05)
Online (P) | .9587 (.01) | .8907 (.04) | .8758 (.05)
Online (IP) | .9650 (.02) | .8912 (.04) | .8977 (.05)

Table 1: F1 scores of various approachs (means and standard
deviations from 5-fold cross validation). We evaluated three
verions of our online approach, enabling filtering methods on
the input layer (I) and/or on the prediction layer (P).

score has sharply decreased at w > 1, suggesting the model
has started to overfit due to the increased model complexity,
caused by the concatenation of neighboring input features.
The linear increase in training time of TCW is another con-
sequence of the increased model complexity. Our approach
performs convolution of neighboring signals with a Gaussian
filter and keeps the model complexity unchanged, allowing
us to capture long-range temporal dependencies more effec-
tively than the competing approach.

Prediction layer: We evaluated our filters on the local and
global prediction layers, varying the window size k from 20 to
80 frames (i.e., one to four seconds in the NATOPS dataset).
We compared our method to two baselines. The offline LD-
CRF assumes bounded input and makes predictions in batch;
hence the prediction delay is infinite with unbounded input.
The online LDCRF without filtering is similar to ours with-
out the filtering step: it assumes unbounded input and makes
predictions continuously as the observation is made, sliding
a temporal window and selecting the prediction result as the
last frame within the window; hence the prediction delay is
zero. Our approach can be considered as an extension of the
online LDCRF with filtering on the prediction layer; the pre-
diction delay is k because of the filtering step.

Our approach outperformed the online LDCRF without fil-
tering by a large margin, achieving a mean F1 score of 0.8758
compared to 0.7668; the difference was statistically signifi-
cant (p < 0.001). The performance of an offline version can
be considered as an empirical upper bound because it per-
forms infernce over the entire input signal; the online ver-
sions have to make predictions based on local observations.
The offline version achieved a mean F1 score of 0.8645, com-
parable to our filtering method (the difference was not statis-
tically significant). Figure 3 shows a qualitative comparison
of sequence segmentaion results. Online LDCRF without our
multi-layered filters (middle) fluctuates over time, resulting
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Figure 3: Qualitative evaluation of sequence segmentation.
Shown here are probability estimate plots of three competing
approaches. Ground-truth sequence boundaries are roughly
at the 200th, the 310th, and the 550th frames.

in inaccurate sequence segmentation results. In contrast, our
approach (bottom) provides more accurate results, similar to
the offline version (top).

Multi-layered filtering: Table 1 shows mean F1 scores
on all four approaches we tested. Our multi-layered filtering
approach, Online (IP), which combines filtering on both the
input and the prediction layer, provides the best performance,
with an F1 score of 0.8977 on a set of 6 gestures. Figure 4
shows a confusion matrix obtained from the full 24 gestures,
setting the number of latent states to 7, the LDCRF regular-
ization factor to 102, the Gaussian window size w = 5, and
the temporal window size £ = 60. The overall recognition
accuracy was 75.37% and the mean F1 score was 0.7349.

5 Recent Work

5.1 Multimodal Gesture Recognition

Many real-world gesture recognition tasks involve data ob-
tained from multiple views, or modalities, including body
postures, hand shapes, facial expressions, voice, etc. These
modalities often interact with each other over time, providing
important cues to understanding the behavior, e.g., an angry
gesture manifested by loud voice with exaggerated gestures.
In [Song eral.,2012b], we presented multi-view latent
variable discriminative models that jointly learn both
modality-shared and modality-specific sub-structures to cap-
ture the interaction between modalities. Knowledge about
the underlying structure of the data is formulated as a multi-
chain structured latent conditional model, explicitly learn-
ing the interaction between modalities using disjoint sets of
latent variables, one set per modality. The chains are tied
using a pre-determined topology that repeats over time; we
presented three topologies — linked, coupled, and linked-
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Figure 4: Confusion matrix over 24 gesture classes.

coupled — that differ in the type of interactions that they
model. We showed that our model achieves the best perfor-
mance on the NATOPS dataset by learning the relationship
between body and hand signals. In [Song ef al., 2012c], we
extended this model with Kernal Canonical Correlation Anal-
ysis [Hardoon et al., 2004] and showed that it achieves the
best performance on an audio-visual agreement-disagreement
recognition task [Bousmalis ef al., 2011] by learning correla-
tion and interaction between audio-visual signals.

5.2 Hierarchical Sequence Summarization

Recent progress has shown that learning from deep-
hierarchical feature representations can lead to improvements
in various computer vision tasks [Bengio, 2009].

Motivated by the observation that human activity data
contains information at various temporal resolutions, in
[Song er al.,2013] we presented a novel approach to ac-
tion recognition that learns multiple layers of discrimina-
tive feature representations at different temporal granularities.
Our approach, dubbed hierarchical sequence summarization,
builds up a deep-hierarchical feature representation dynami-
cally and recursively, by alternating sequence learning and se-
quence summarization. For sequence learning, we use a CRF
with latent variables to learn hidden spatio-temporal dynam-
ics in human action. For sequence summarization, we group
local observations that share certain similarities in the latent
space. For each layer we learn an abstract feature represen-
tation through neural networks. This procedure is repeated to
obtain a hierarchical sequence summary representation. We
developed an efficient method to train our model and showed
that its complexity grows only sub-linearly with the depth of
the hierarchy. We also showed that our approach achieves a
near perfect recognition accuracy (99.59%) on the ArmGes-
ture dataset [Quattoni et al., 2007].

6 Conclusions

We presented a new approach to gesture recognition that
tracks body and hands simultaneously and recognizes ges-
tures continuously from an unsegmented and unbounded in-
put stream. We also introduced our recent work on mul-
timodal gesture recognition and deep-hierarchical sequence
representation learning that achieves the state-of-the-art per-
formance on several real-world datasets.
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