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Abstract

Video data exhibits a variety of structures: pixels exhibit spatial structure, e.g., the same
class of objects share certain shapes and/or colors in an image; sequences of frames exhibit
temporal structure, e.g., dynamic events such as jumping and running have a certain
chronological order of frame occurrence; and when combined with audio and text, there
is multimodal structure, e.g., human behavior shows correlation between audio (speech)
and visual information (gesture). Identifying, formulating, and learning these structured
patterns is a fundamental task in video content analysis.

This thesis tackles two challenging problems in video content analysis – human action
recognition and behavior understanding – and presents novel algorithms to solve each: one
algorithm performs sequence classification by learning spatio-temporal structure of human
action; another performs data fusion by learning multimodal structure of human behavior.

The first algorithm, hierarchical sequence summarization, is a probabilistic graphical model
that learns spatio-temporal structure of human action in a fine-to-coarse manner. It con-
structs a hierarchical representation of video by iteratively summarizing the video sequence,
and uses the representation to learn spatio-temporal structure of human action, classifying
sequences into action categories. We developed an efficient learning method to train our
model, and show that its complexity grows only sublinearly with the depth of the hierarchy.

The second algorithm focuses on data fusion – the task of combining information from
multiple modalities in an effective way. Our approach is motivated by the observation that
human behavioral data is modality-wise sparse, i.e., information from just a few modalities
contain most information needed at any given time. We perform data fusion using struc-
tured sparsity, representing a multimodal signal as a sparse combination of multimodal
basis vectors embedded in a hierarchical tree structure, learned directly from the data.
The key novelty is in a mixed-norm formulation of regularized matrix factorization via
structured sparsity.
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We show the effectiveness of our algorithms on two real-world application scenarios: rec-
ognizing aircraft handling signals used by the US Navy, and predicting people’s impression
about the personality of public figures from their multimodal behavior. We describe the
whole procedure of the recognition pipeline, from the signal acquisition to processing, to
the interpretation of the processed signals using our algorithms. Experimental results show
that our algorithms outperform state-of-the-art methods on human action recognition and
behavior understanding.

Thesis Supervisor: Randall Davis
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Video content analysis is an umbrella term that encompasses detection, tracking, recog-

nition, and understanding of objects and their behaviors in video. It has a wide variety

of applications including action recognition [1], sentiment analysis [129], video summariza-

tion [75], and visual surveillance [47]. With an increasing amount of video available both

online and offline, processing all of that video content manually has become more expen-

sive and extremely time consuming. This in turn has dramatically increased the need for

systems capable of automatically analyzing video with far less human intervention.

We believe that one key to doing this is taking advantage of structures in video: pixels

exhibit spatial structure, e.g., the same class of objects share certain shapes and/or colors

in an image; frames have temporal structure, e.g., dynamic events such as jumping and

running have a certain chronological order of frame appearance; and when combined with

audio, there is multimodal structure, e.g., human multimodal signals show correlation

between audio (speech) and visual information (facial expression and body gesture) [83].

A fundamental task here is therefore identifying, formulating, and learning structured

patterns in different types of video contents.

This thesis tackles two challenging problems in video content analysis: human action recog-

nition and behavior understanding. The main focus is in the development of algorithms
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that exploit structures for video content analysis. In particular, we present two novel

machine learning algorithms: one algorithm performs sequence classification by learning

spatio-temporal structure of human action; another performs data fusion by learning mul-

timodal structure of human behavior.

Human action recognition aims to classify body movements into a set of known categorizes.

We developed a novel machine learning algorithm for learning spatio-temporal structures

in human actions. We formulate action recognition as sequence classification and develop

a latent variable discriminative graphical model to tackle the problem. Our approach

constructs a hierarchical representation of video by iteratively “summarizing” the contents

in a fine-to-coarse manner, and uses the representation to learn spatio-temporal structure

of human action. We evaluate the algorithm on a task of recognizing a visual vocabulary

aircraft handling signals used by the US Navy.

Human behavior understanding, on the other hand, aims to understand subtle affective

states of humans based on multimodal signals. We developed an algorithm that formu-

lates data fusion as a mixed-norm regularized matrix factorization with structure sparsity.

Our algorithm combines signals from multiple modalities and transforms it into a sparse

representation, preserving the most informative multimodal structure in a succinct man-

ner. The key idea is to construct a dictionary of basis vectors embedded in a hierarchy of

multimodal subspaces induced by the superset/subset relations among the subspaces. We

evaluate the algorithm on the task of predicting people’s impression about the personality

of public figures from their multimodal behaviors displayed in short video clips.

This chapter gives an overview of the thesis and highlights key contributions. Some of the

material presented in this thesis has been appeared in previous publications [100, 99, 101,

104]. Section 1.4 gives a full list of our publications and briefly explains contributions in

each of them in the context of this thesis.
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1.1 Video Content Analysis: Two Examples

Over the years, the amount of video has been substantially increased both online and

offline. According to YouTube statistics1, 100 hours of video are uploaded to YouTube

every minute, and 6 billion hours of video are watched by one billion unique users every

month. Consumer products with high quality video cameras have become widespread,

with Apple selling 150 million iPhones and 71 million iPads worldwide in 2013 alone2,

making it easy to produce and share personal video. Surveillance cameras are becoming

widespread for public safety and security, with an estimated 30 million surveillance cameras

now deployed in the United States recording 4 billion hours of footage every week.3

There are just as many types of applications as the amount of video available. One of the

challenges with a large amount of data is information retrieval: video indexing and retrieval

is crucial to the user experience in online video sites [98]. Video summarization provides an

easy way to review lengthy video quickly, useful for searching a short footage and generating

a preview of video [75]. Visual surveillance systems help detect abnormal objects and

behaviors, analyze traffic flow and congestion, and identify people from video [47].

The large amount of video makes manual processing of video contents prohibitive. The

current video indexing technology relies heavily on text (e.g., meta data such as title, de-

scription, user tags, etc.), but text information is often sparse, making it desirable to utilize

the content of video. Also, the manpower required to constantly monitor the surveillance

footage is extremely costly, and thus many video feeds are left unmonitored [60]. An au-

tomated visual surveillance system that works reliably would help dramatically improve

public safety and security.

Below we introduce two practical applications of video content analysis – human ac-

tion recognition and behavior understanding – that will be used as motivating examples

throughout the thesis.

1http://www.youtube.com/yt/press/statistics.html. Retrieved 05/12/2014
2http://mashable.com/2013/10/28/apple-150-million-iphones/. Retrived 05/12/2014.
3http://www.popularmechanics.com/technology/military/4236865. Retrieved 05/12/2014
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Figure 1-1: The US Navy plans to deploy drones to aircraft carriers by 2019. Shown above
is the Northrop Grumman X-47B designed for carrier-based operations. Our ultimate goal
is to enable drones to understand the same visual vocabulary of aircraft handling signals
currently used for communication between pilots and aircraft marshallers.

1.1.1 Action Recognition: Aircraft Handling Signals

The US Navy plans to deploy drones (e.g., the X-47B shown in Figure 1-1) to aircraft

carriers by 2019.4 A question arises as to how to enable natural communication between

aircraft marshallers and the drones. One solution is to provide remote control devices to

the marshallers; but this requires special training, increasing the burden on the marshallers,

and means handling manned and unmanned vehicles differently.

The Naval Air Training and Operating Procedures Standardization (NATOPS) manual

standardizes a visual vocabulary of aircraft handling signals for communication between

marshallers and pilots on US Navy aircraft carriers. Our ultimate goal is to make drones

able to understand the same set of visual signals currently used for communication between

marshallers and human pilots. Such technology would need to be as robust as human pilots,

but it would allow more seamless integration of the drones to the carrier deck environment,

minimizing changes to the existing (already challenging) system.

To study this problem, we collected a dataset of 24 aircraft handling signals currently

4http://en.wikipedia.org/wiki/Northrop Grumman X-47B. Retrieved 05/12/2014
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Figure 1-2: The Time10Q dataset collected from YouTube. The goal is to predict people’s
impression on the personality of public figures based on their multimodal behavior recorded
in a short video clip.

used by the US Navy. We describe this dataset in Chapter 2 and recognition procedure in

Chapter 3.

1.1.2 Behavior Understanding: Personality Impression

Imagine an AI system that understands human behavior and provides feedback on conver-

sational skills based on behavior recorded in video [46], that harvests public opinions on

consumer products based on product review video [120], and that predicts the effectiveness

of TV commercials by analyzing facial responses of the audience [72].

Automatic human behavior understanding from video content is an essential component in

these systems [129]. In this thesis, we tackle the problem of recognizing personality impres-

sion. How someone’s personality is perceived by others tremendously affects interpersonal

communication, e.g., when making friends [51], in a job interview [126], and political cam-

paigns [34]. Our goal is to develop a system that predicts people’s impression of someone’s

personality, based on their multimodal behavior recorded in a short video clip.

To study this problem, we collected a set of 866 video clips containing interviews with 149
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public figures with a variety of professions (from actors to religious leaders; see Figure 1-2).

Based on a well-developed theory in psychology called the Big Five personality traits [25,

71], we crowd-sourced people’s impression about the personality of the public figures,

collecting 8,660 responses. Details are given in Chapter 4 and Chapter 5.

1.2 Learning Structures in Video

We believe that taking advantage of structure in video is one key to the success of automatic

video content analysis. In this thesis, we focus on two forms of structures in video, spatio-

temporal and multimodal, described below.

1.2.1 Spatio-Temporal Structure of Human Action

When analyzing video contents we are often interested in how certain objects move in space

and time. Action recognition is one such scenario where the goal is to discriminate different

classes of human actions based on body movement [1]. Central to this problem is learn-

ing spatio-temporal structure from video, that is, how spatially coherent groups of pixels

(corresponding to body parts) change their location over a period of time. In this thesis,

we focus on learning spatio-temporal structure in the context of sequence classification,

categorizing each sequence (not each frame) into one of the known categories.

Human actions are often composed of sub-actions, with each sub-action again similarly

decomposable. This recursive decomposition creates a hierarchical structure of an action

with multiple layers of abstractions, such as the one shown in Figure 1-3. Imagine a

video showing someone cooking a steak. It may contain several coarse-level sub-actions

(e.g., preparation, grilling, and serving) and each sub-action may again contain finer-level

sub-actions (e.g., chopping up unions, seasoning the meat, and heating the grill). The sub-

actions at each level represent actions at different spatio-temporal granularities, providing

a description of an action with different levels of abstraction.
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“Cooking a steak”

Prepare Grill Serve

Charcoal Chop Season Steak in Flip Steak out Clean up

Figure 1-3: Hierarchical decomposition of a fictitious action category “cooking a steak”. In
some action recognition tasks, we are given a single categorical label describing the overall
content of the action sequence, while mid-level sub-action labels are typically unknown.

We show that the hierarchical structure of human actions provides a means of improving

recognition performance beyond those of linear-chain graphical models (e.g., Hidden Con-

ditional Random Fields (HCRF) [86]). Note that the labels for sub-actions are not known

a priori, nor does the system know the corresponding segmentation information. However,

we hope to discover them in an unsupervised fashion using latent variables. The latent

variables in a linear-chain model represent hidden states of an action, which can be inter-

preted as sub-action labels. An algorithm that builds a hierarchy in a bottom-up fashion,

from the original sequence to progressively coarser-grained representation, may reveal the

hierarchical structure of an action. We describe the algorithm in Chapter 3.

1.2.2 Multimodal Structure of Human Behavior

Human behavior is inherently multimodal: we express our intents and thoughts via speech,

gesture, and facial expressions. It also involves a complex interplay of multiple modalities,

e.g., neither speech nor facial expression alone entirely conveys the true intention behind

sarcastic expressions (e.g., “that was great” said with an uninterested facial expression);

the sarcasm is conveyed only through multimodal signal as a whole.
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To get a machine to understand natural human behavior from video, we need algorithms

able to sense, learn, and infer from multiple modalities. Central to this problem is data

fusion: how should we combine information from multiple modalities in such a way that it

makes the best use of the richness of information available?

In this thesis, we perform data fusion by learning the dependence/independence structures

across modalities, capturing the patterns that are shared across modalities and patterns

that are private to each modality. In Chapter 5, we describe an algorithm that factorizes a

multimodal signal space into modality-shared and modality-private subspaces, and learns

a hierarchical structure among the subspaces induced by superset/subset relations.

1.3 Thesis Outline

We organize the thesis largely into two parts: (i) learning spatio-temporal structure of

action recognition, and (ii) learning multimodal structure of human behavior. The first

part includes Chapter 2 and Chapter 3, the second part includes Chapter 4, Chapter 5,

and Chapter 6. Below we give an overview of each chapter.

Chapter 2. Action Recognition: Aircraft Handling Signals

We developed an action recognition system able to recognize aircraft handling signals used

by the US Navy. The system starts by tracking upper body postures and hand shapes

simultaneously. Upper body postures are reconstructed in 3D space using a kinematic

skeleton model with a particle filter [50], combining both static and dynamic description

of body motion as the input feature to make tracking robust to self-occlusion. The re-

constructed body postures guide searching for hands. Hand shapes are classified into one

of four canonical hand shapes (hands opened/closed, thumb up/down) using a Support

Vector Machine (SVM) [113]. Finally, the extracted body and hand features are combined

and used as the input feature for action recognition.
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In our earlier work [101], we posed the task as an online sequence labeling and segmentation

problem. A Latent-Dynamic Conditional Random Field (LDCRF) [77] is used with a

temporal sliding window to perform the task continuously. We augmented this with a

novel technique called multi-layered filtering, which performs filtering both on the input

layer and the prediction layer. Filtering on the input layer allows capturing long-range

temporal dependencies and reducing input signal noise; filtering on the prediction layer

allows taking weighted votes of multiple overlapping prediction results as well as reducing

estimation noise. On the task of recognizing a set of 24 aircraft handling signals online

from continuous video input stream, our system achieved an accuracy of 75.37%.

We have explored various other approaches to recognize the aircraft handling signals, in-

cluding the hierarchical sequence summarization approach [104] we present in this thesis.

We briefly introduce the approach below and detail it in Chapter 3.

Chapter 3. Learning Spatio-Temporal Structure of Action Recognition

We present a hierarchical sequence summarization approach for action recognition that

constructs a hierarchical representation of video by iteratively “summarizing” the contents

in a bottom-up fashion, and uses it to learn spatio-temporal structure from each of the

summary representations. Each layer in the hierarchy is a temporally coarser-grained

summary of the sequence from the preceding layer. Intuitively, as the hierarchy builds, we

learn ever more abstract spatio-temporal structure.

Our approach constructs the hierarchical representation by alternating two steps: sequence

learning and sequence summarization.

The goal of the sequence learning step is to learn spatio-temporal patterns in each layer

in the hierarchy. We learn the patterns using an HCRF [86] with a modification on the

feature function to accommodate the hierarchical nature of our approach: each super

observation is a group of several feature vectors, rather than a single one. We define the

super observation feature function to incorporate a set of non-linear gate functions, as used

29



Hierarchical sequence summary representation 

 

 

R
e
c
u

r
s
io

n
 

Super  

Observations 

Latent  

Variables  

+1 

 

 

+1 

 

+1 

 

+1 

 

+1 

 

+1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

-th layer 

 

 

Figure 1-4: We build a hierarchical representation of action sequence and use it to learn
spatio-temporal pattern from multiple layers of summary representations. Gray nodes
represent super observations, white nodes represent latent variables. Superscripts indicate
layer index, subscripts indicate time index.
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in neural networks, to learn an abstract feature representation of super observations. The

set of gate functions creates an additional layer between latent variables and observations,

and has a similar effect to that of the neural network: it learns an abstract representation of

super observations, providing more discriminative information for learning spatio-temporal

structure of human action.

The goal of the sequence summarization step is to obtain a summary representation of the

sequence at a coarser-grained time granularity. We group observations adaptively, based

on the similarity of hidden states of the observations. We work with hidden states because

they are optimized to maximize class discrimination and thus provide more semantically

meaningful information. Sequence summarization can be seen as a variable grouping prob-

lem with a piecewise connectivity constraint. We use the graph-based variable grouping

algorithm by Felzenszwalb et al. [37], with a modification on the similarity metric to include

latent variables.

We formulate our model, Hierarchical Sequence Summarization (HSS), as the product of

the conditional probability distributions computed at each layer. We optimize the model

by performing incremental optimization [44], where, at each layer we solve for only the

necessary part of the solution while fixing all the others, and iterate the optimization

process, incrementing layers.

We evaluated the performance of our HSS model on the NATOPS dataset as well as

two other human action datasets, ArmGesture [86] and Canal9 [114]. The results show

that our approach outperforms all the state-of-the-art results on the ArmGesture and

Canal9 datasets. Notably, our approach achieves a near-perfect accuracy on the ArmGes-

ture dataset (99.59%); on Canal9 dataset we achieve 75.57% accuracy. For the NATOPS

dataset, our approach achieved an accuracy of 85.00%, significantly outperforming various

previous results using an early-fusion: HMM (from [102], 76.67%), HCRF (from [102],

76.00%), and HCNF (78.33%).

While our HSS approach has shown to work well in action recognition, specifically with
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single modality (visual), experimental results show that there is still room for improvement

in several directions. The HSS model takes the early-fusion approach for data fusion – fea-

ture vectors from different modalities are concatenated to produce one large feature vector

– and thus discards structures among the modalities, e.g., correlation and interaction. One

direction of improvement is therefore leveraging multimodal information, described below.

Chapter 4. Behavior Understanding: Personality Impression

We shift our attention from unimodal (visual) to multimodal aspects of video content

analysis, focusing on the task of understanding natural human behaviors recorded in video

data. In particular, we describe the problem of personality impression recognition from

human behavior. Based on a well-developed theory in psychology called the Big Five

personality traits [25, 71], we collected a dataset from YouTube, which we call the Time10Q

dataset. The goal is to predict people’s impression about the personality public figures

from their multimodal behavior displayed in short video clips; in other words, instead

of predicting the true personality of someone, we focus on predicting how people would

perceive the personality of public figures.

Our system uses information from multiple modalities, including body motions, facial ex-

pressions, and both verbal and non-verbal speech, to understand the kind of behavior that

gives particular impression to people about one’s personality. The body motion features

are extracted from densely sampled trajectories [116] by computing various local image de-

scriptors including the Histogram of Oriented Gradients (HOG), the Histogram of Optical

Flow (HOF), and the Motion Boundary Histogram (MBH). The face features are extracted

by detecting and registering the face region to a fixed sized image patch and computing

the Pyramid of HOG features [14].

The speech features are extracted both from the verbal and non-verbal perspectives. The

verbal speech features are extracted from automatically transcribed captions of video using

Latent Dirichlet Allocation (LDA) [11], and the non-verbal speech features are extracted

32



(a) Shared Subspace (b) Shared-Private Subspace (c) Hierarchical Shared-Private Subspace

Figure 1-5: Factor graph representations of three two-modality subspace models: (a) shared
subspace model, (b) shared-private subspace model [54], (c) our hierarchical shared-private
subspace model. An input signal from two modalities [x(1); x(2)] is represented in terms
of basis vectors from a shared subspace D(s) and basis vectors from a private subspace
[D(1); D(2)] via the coefficient term α(·).

from the acoustic channel of video by computing various prosody features, including the

fundamental frequency (F0), the noise-to-harmonic ratio, and the loudness contour.

Information from the four modalities are combined using a novel data fusion algorithm

based on structured sparsity, briefly described below and detailed in Chapter 5.

Chapter 5. Learning Multimodal Structure of Human Behavior

Recently, there has been a surge of interest in learning a multimodal dictionary by exploit-

ing group sparsity in multimodal signals. In particular, it has been shown that factorizing

a multimodal signal space into parts corresponding to an individual modality and parts

that are shared across multiple modalities leads to improvements in multimodal signal

understanding [74, 54] (Figure 1-5 (b)). We call such factorized spaces the multimodal sub-

spaces, and the two kinds of subspaces modality-private and modality-shared subspaces,

respectively. Intuitively, modality-private subspaces account for the patterns within each

modality that are independent of other modalities, while modality-shared subspaces ac-

count for the patterns that are dependent on other modalities.
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We present a novel data fusion approach by learning multimodal subspaces with a hierarchi-

cal structure. We observe that multimodal subspaces have a superset/subset relationship

that induces a hierarchical structure of the sort shown in Figure 1-5 (c): a subspace D(s)

is a superset of two subspaces defined over the corresponding modalities [D(1); D(2)], thus

D(s) can be seen as a parent of [D(1); D(2)].

Our intuition is that leveraging this hierarchical structure will enable the multimodal sub-

spaces to capture the dependence/independence relationships across modalities accurately.

From the hierarchical structure we can use the hierarchical sparsity rule [53]: a subspace

D(i) will participate in reconstructing an input signal x (i.e., the corresponding weight term

α(·) is non-zero), only if all of its parent subspaces D(j) are participating as well, where j’s

are the indices of the parent of the i-th node. The sparsity constraint ensures that only a

few paths (from the root to the leaves) are participating in signal reconstruction. We show

that this effectively allows the sparse representation to select the most important subset

of modalities that best represent the given signal.

We show that it is possible to learn global and local patterns of multimodal data by

constructing a multimodal dictionary using the hierarchical sparsity constraint. Two char-

acteristics make this possible: (i) the range of modalities that each subspace covers, and

(ii) the frequency of each subspace participating in signal reconstruction. High-level sub-

spaces span over a wider range of modalities than low-level subspaces, and are active

more frequently than low-level subspaces in signal construction. These two characteris-

tics encourage high-level subspaces to capture the global patterns shared across multiple

modalities, and low-level subspaces to capture the local details narrowed down to specific

modalities. For example, a multimodal signal representing “laughing out loud” will be

reconstructed as a combination of a high-level subspace “highly aroused” and low-level

subspaces “the appearance of mouth” and “the pitch of the voice.”

We evaluate our hierarchical multimodal subspace learning approach on the Time10Q

dataset. In particular, in order to study the benefit of using structured sparsity for data

fusion, we compare our approach to two other sparsity approaches shown in Figure 1-5.
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We show that our approach achieves a mean F1 score 0.66, outperforming LASSO [112]

(0.64) and the factorized subspace approach by Jia et al. [54] (0.65).

Chapter 5. Learning Correlation and Interaction Across Modalities

This chapter describes a framework for learning correlation and interaction across modali-

ties for multimodal sentiment analysis. Our framework is based on Canonical Correlation

Analysis [43] (CCA) and Hidden Conditional Random Fields [86] (HCRFs): CCA is used to

find a projection of multimodal signal that maximizes correlation across modalities, while

a multi-chain structured HCRF is used to learn interaction across modalities. The multi-

chain structured HCRF incorporates disjoint sets of latent variables, one set per modality,

to jointly learn both modality-shared and modality-private substructures in the data. We

evaluated our approach on sentiment analysis (agreement-disagreement classification) from

non-verbal audio-visual cues based on the Canal 9 dataset [114]. Experimental results show

that CCA makes capturing non-linear hidden dynamics easier, while a multi-chain HCRF

helps learning interaction across modalities.

1.4 List of Publications

Some of the material presented in Chapter 2 and Chapter 3 has appeared earlier in an

journal article [101] and in conference proceedings [100, 99, 104]; the work in Chapter 4

and Chapter 5 have not been published; and the work in Chapter 6 has appeared in

conference proceedings [102, 103]. Below we provide a full list of previous publications,

situating them in the context of this thesis work.
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Learning Spatio-Temporal Structure of Action Recognition

[100] Yale Song, David Demirdjian, Randall Davis: Tracking body and hands for gesture

recognition: NATOPS aircraft handling signals database. In Proceedings of the IEEE

International Conference and Workshops on Automatic Face and Gesture Recognition (FG)

2011 : 500-506.

• This paper described the NATOPS dataset, including a data collection procedure

and algorithms to track 3D upper body postures and hand shapes. The dataset is

described in Chapter 2 and used for experiments in Chapter 3.

[99] Yale Song, David Demirdjian, Randall Davis: Multi-signal gesture recognition using

temporal smoothing hidden conditional random fields. In Proceedings of the IEEE Interna-

tional Conference and Workshops on Automatic Face and Gesture Recognition (FG) 2011 :

388-393

• This paper presented a temporally smoothed HCRF for learning long-range tem-

poral dependence structure in sequential data. It extends the work by Wang et

al. [118], who captured long-range temporal dependency by concatenating neighbor-

ing observations into each observation, increasing the feature dimension. Our work

uses a Gaussian kernel to incorporate neighboring observations into each observation,

which offers the advantage of not increasing the feature dimension. Experimental re-

sults showed that our approach significantly outperforms the approach by Wang et

al. [118].

[101] Yale Song, David Demirdjian, Randall Davis: Continuous body and hand gesture

recognition for natural human-computer interaction. In ACM Transactions on Interactive

Intelligent Systems (2012): Volume 2(1), Article 5.

• This paper presented online recognition of the NATOPS aircraft handling signals,

classifying each frame into one of action categories. We developed a multi-layered
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filtering technique that performs filtering both on the observation layer and the pre-

diction layer. Filtering on the observation layer allows capturing long-range temporal

dependencies and reducing signal noise; filtering on the prediction layer allows taking

weighted votes of multiple overlapping prediction results as well as reducing estima-

tion noise. We showed that our approach achieves a recognition accuracy of 75.37%.

[104] Yale Song, Louis-Philippe Morency, Randall Davis. Action Recognition by Hierarchi-

cal Sequence Summarization. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) 2013 : 3562-3569

• This paper presented hierarchical sequence summarization approach to action recog-

nition, which we describe in Chapter 3. Motivated by the observation that human

action data contains information at various temporal resolutions, our approach con-

structs multiple layers of discriminative feature representations at different temporal

granularities. We build up a hierarchy dynamically and recursively by alternat-

ing sequence learning and sequence summarization. For sequence learning we use

HCRFs [86] to learn spatio-temporal structure; for sequence summarization we group

observations that have similar semantic meaning in the latent space. For each layer

we learn an abstract feature representation through neural network. This procedure

is repeated to obtain a hierarchical sequence summary representation. We developed

an efficient learning method to train our model and showed that its complexity grows

sublinearly with the size of the hierarchy. Experimental results showed the effective-

ness of our approach, achieving the best published results on the ArmGesture and

Canal9 datasets.

Learning Multimodal Structure of Human Behavior

[102] Yale Song, Louis-Philippe Morency, Randall Davis: Multi-view latent variable dis-

criminative models for action recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2012 : 2120-2127
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• This paper presented multi-view latent variable discriminative models, an extension

to HCRFs [86] and LDCRFs [77] for learning with multimodal data. Our model

learns modality-shared and modality-private sub-structures of multimodal data by

using a multi-chain structured latent variable model. We showed that our model

outperforms both HCRFs and LDCRFs on action recognition datasets with multiple

information channels (e.g., the body motion and hand shape from the NATOPS).

[103] Yale Song, Louis-Philippe Morency, Randall Davis: Multimodal human behavior

analysis: learning correlation and interaction across modalities. In Proceedings of the

International Conference on Multimodal Interaction (ICMI) 2012 : 27-30

• We extended our multi-view latent variable discriminative model [102] by incorporat-

ing Kernel Canonical Correlation Analysis (KCCA) [43] to learn the correlation across

modalities, which we describe in Chapter 6. Our approach uses a non-linear kernel to

map multimodal data to a high-dimensional feature space and finds a new projection

of the data that maximizes the correlation across modalities. The transformed data

is then used as an input to our multi-view model [102]. We evaluated our approach

on a sentiment analysis task (agreement-disagreement recognition) and showed that

our approach outperforms HMM, CRF, HCRF, and our earlier work [102].

[106] Yale Song, Louis-Philippe Morency, Randall Davis: Learning a sparse codebook of fa-

cial and body microexpressions for emotion recognition. In Proceedings of the International

Conference on Multimodal Interaction (ICMI) 2013 : 237-244

• This paper presented an approach to obtaining a compact representation of facial and

body micro-expressions using sparse coding. Local space-time features are extracted

over the face and body region for a very short time period, e.g., few milliseconds.

A dictionary of microexpressions is learned from the data and used to encode the

features in a sparse manner. This allows us to obtain a representation that captures

the most salient motion patterns of the face and body at a micro-temporal scale.
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Experiments performed on the AVEC 2012 dataset [93] showed that our approach

achieves the best published performance on the expectation dimension based solely

on visual features.

Other Contributions

[107] Yale Song, Zhen Wen, Ching-Yung Lin, Randall Davis: One-Class Conditional Ran-

dom Fields for Sequential Anomaly Detection. In Proceedings of the 23rd International

Joint Conference on Artificial Intelligence (IJCAI) 2013 : 1685-1691

• Sequential anomaly detection is a challenging problem due to the one-class nature

of the data (i.e., data is collected from only one class) and the temporal dependence

in sequential data. This paper presented One-Class Conditional Random Fields

(OCCRF) for sequential anomaly detection that learn from a one-class dataset and

capture the temporal dependence structure, in an unsupervised fashion. We proposed

a hinge loss in a regularized risk minimization framework that maximizes the margin

between each sequence being classified as “normal” and “abnormal.” This allows

our model to accept most (but not all) of the training data as normal, yet keeps the

solution space tight. Experimental results on a number of real-world datasets showed

our model outperforming several baselines. We also reported an exploratory study

on detecting abnormal organizational behavior in enterprise social networks.

[105] Yale Song, Louis-Philippe Morency, Randall Davis: Distribution-sensitive learning for

imbalanced datasets. In Proceedings of the IEEE International Conference and Workshops

on Automatic Face and Gesture Recognition (FG) 2013 : 1-6

• Many real-world face and gesture datasets are by nature imbalanced across classes.

Conventional statistical learning models (e.g., SVM, HMM, CRF), however, are sen-

sitive to imbalanced datasets. In this paper we showed how an imbalanced dataset
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affects the performance of a standard learning algorithm, and proposed a distribution-

sensitive prior to deal with the imbalanced data problem. This prior analyzes the

training dataset before learning a model, and puts more weight on the samples from

underrepresented classes, allowing all samples in the dataset to have a balanced im-

pact in the learning process. We reported on two empirical studies regarding learn-

ing with imbalanced data, using two publicly available recent gesture datasets, the

Microsoft Research Cambridge-12 (MSRC-12) [38] and our NATOPS dataset. Ex-

perimental results showed that learning from balanced data is important, and that

the distribution-sensitive prior improves performance with imbalanced datasets.
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Chapter 2

Understanding Human Actions:

Aircraft Handling Signals

This chapter introduces the task of recognizing aircraft handling signals from video data.

We outline the background of the project, describe the data collection procedure, and

explain how we estimate body pose and hand shapes from stereo video data.

2.1 NATOPS Aircraft Handling Signals

This work is a part of a multiple lab-wide project in which a team of MIT faculty members

and students is working to develop a next-generation aircraft carrier deck environment

where manned and unmanned vehicles (drones) co-exist.

US Navy plans to deploy drones to aircraft carriers by 2019 (e.g., the X-47B, Figure 2-1).

A question arises as to how to enable natural communication between aircraft marshallers

and drones. One solution is to provide remote control devices to the marshallers; but this

requires special training, increasing the burden on the marshallers, and means handling

manned and unmanned vehicles differently. A more desirable solution is to enable drones to
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Figure 2-1: The US Navy plans to deploy drones to aircraft carriers by 2019. Shown above
is the Northrop Grumman X-47B designed for carrier-based operations. Our ultimate goal
is to enable drones to understand the same visual vocabulary of aircraft handling signals
currently used for communication between pilots and aircraft marshallers.

understand the same visual vocabulary of aircraft handling signals used for communication

between marshallers and human pilots. Such technology would need to be as reliable

as communicating with human pilots, but would allow more seamless integration of the

drones to the carrier deck environment, minimizing changes to the existing (already quite

challenging) system.

The Naval Air Training and Operating Procedures Standardization (NATOPS) manual

standardizes general flight and operating procedures for US Navy aircraft. One chapter

describes aircraft handling signals on a carrier deck environment, a vocabulary of visual

signals used for communication between marshallers and pilots for on-the-deck control of

aircrafts, e.g., taxing and fueling. Due to the extraordinary noise created by jet engines

(reaching 140 dB), this form of visual communication has proven to be effective on an

aircraft carrier deck environment.

To study the feasibility of automatic recognition of aircraft handling signals, we collected

the NATOPS dataset. It contains 24 aircraft handling signals from the NATOPS manual

that the US Navy marshallers most routinely use to communicate with the pilots (Fig-

ure 2.1).
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#1 I Have Command #2 All Clear #3 Not Clear #4 Spread Wings

#5 Fold Wings #6 Lock Wings #7 Up Hook #8 Down Hook

#9 Remove Tiedowns #10 Remove Chocks #11 Insert Chocks #12 Move Ahead

#13 Turn Left #14 Turn Right #15 Next Marshaller #16 Slow Down

#17 Stop #18 Nosegear Steering #19 Hot Brakes #20 Brakes On

#21 Brakes Off #22 Install Tiedowns #23 Fire #24 Cut Engine

Figure 2-2: Twenty-four NATOPS aircraft handling signals. Body movements are illus-
trated in yellow arrows, and hand poses are illustrated with synthesized images of hands.
Red rectangles indicate hand poses are important in distinguishing the actions with its
corresponding similar action pair.
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Figure 2-3: Input image (left), depth map (middle), and mask image (right). The “T-pose”
shown in the figures is used for body tracking initialization.

2.2 Data Collection

A Bumblebee2 stereo camera from Point Grey Research Inc. was used to record video data,

producing 320 x 240 pixel resolution images at 20 FPS. Each of our 20 subjects repeated

each of 24 actions 20 times, resulting in 400 sequences for each action class (9,600 sequences

in total). The sequence length varied between 1 and 5 seconds, with an average of 2.34

seconds. Video was recorded in a closed room environment with a constant illumination,

and with positions of cameras and subjects fixed throughout.

While recording video, we produce depth maps using a manufacture-provided SDK1 com-

pute mask images using in real-time (see Figure 2-3). Depth maps allow us to reconstruct

body postures in 3D space and resolve some of the pose ambiguities arising from self-

occlusion; mask images allow us to concentrate on the person of interest and ignore the

background, optimizing the use of available computational resources.

We obtain mask images by performing background subtraction. Ideally, background sub-

traction could be done using depth information alone, by the “depth-cut” method: Filter

out pixels whose distance is further from camera than a foreground object, assuming there

is no object in between the camera and the subject. However, as shown in Figure 2-3,

depth maps typically have lower resolution than color images, meaning that mask images

produced from the depth maps would be equally low resolution. This motivates our ap-

proach of performing background subtraction using a codebook approach [58], then refining

1http://www.ptgrey.com
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the result with the depth-cut method.

The codebook approach works by learning a per-pixel background model from a history

of background images sampled over a period of time, then segmenting out the “outlier”

pixels in new images as foreground. Since this approach uses RGB images, it produces high

resolution (per-pixel accuracy) mask images. One weakness of the codebook approach is,

however, its sensitivity to shadows, arising because the codebook defines a foreground

object as any set of pixels whose color values are noticeably different from the previously

learned background model. To remedy this, after input images are background subtracted

using the codebook approach, we refine the result using the depth-cut method described

above, which helps remove shadows created by a foreground object.

2.3 Feature Extraction

Any pattern recognition task involves a feature extraction step to obtain a vector represen-

tation of the data. Two popular feature extraction techniques in human action recognition

are body skeleton tracking [95] and low-level visual descriptor tracking such as space-time

interest points [65]. The former provides a compact description of body motion (a vector

with fewer than 100 dimensions, indicating 3D coordinates of body joints); the latter typi-

cally produces a much higher dimensional feature vector (a few hundred to thousands), but

is more robust to viewpoint changes and partial body occlusions, and hence more suitable

for action recognition “in the wild” [66].

Since the NATOPS dataset has been collected in a controlled lab environment, we can

obtain a compact feature representation by skeleton tracking. Using RGBD data collected

from a stereo camera, we estimate upper body pose (3D coordinates of left/right elbow and

wrist) as well as hand shapes (hand open, hand close, thumb up, thumb down), producing

a 20-dimensional vector.

45



Figure 2-4: Skeleton model of the human upper-body model. The model includes 6 body
parts (trunk, head, upper/lower arms for both sides) and 9 joints (chest, head, navel,
left/right shoulder, elbow, and wrist).

2.3.1 3D Body Pose Estimation

The goal here is to reconstruct 3D upper-body postures from input images. We formulate

this as a sequential Bayesian filtering problem, i.e., having observed a sequence of images

Zt = {z1, · · · , zt} and knowing the prior state density p(xt), make a prediction about

a posterior state density p(xt | Zt), where xt = (x1,t · · ·xk,t) is a k-dimensional vector

representing the body posture at the t-th frame.

Skeleton Upper Body Model

We construct a skeleton upper-body model in 3D space, using a kinematic chain and a volu-

metric model described by super-ellipsoids [5] (see Figure 2-4). The model includes 6 body

parts (trunk, head, upper and lower arms for both sides) and 9 joints (chest, head, navel,

left/right shoulder, elbow, and wrist). The shoulder is modeled as a 3D ball-and-socket

joint, and the elbow is modeled as a 1D revolute joint, resulting in 8 model parameters in

total. Coordinates of each joint are obtained by solving the forward kinematics problem,

following the Denavit-Hartenberg convention [28], a compact way of representing n-link

kinematic structures. We prevent the model from generating anatomically implausible

body postures by constraining joint angles to known physiological limits [78].
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We improve on our basic model of the human upper-body by building a more precise

model of the shoulder, while still not increasing the dimensionality of the model parameter

vector that we estimate. To capture arm movement more accurately, after a body model

is generated, the shoulder model is refined analytically using the relative positions of other

body joints. In particular, we compute the angle ϕ between the chest-to-shoulder line and

the chest-to-elbow line, and update the chest-to-shoulder angle θCS as

θCS
′
=

θ
CS + ϕ

θCS
MAX

if elbow is higher than shoulder

θCS − ϕ
θCS
MIN

otherwise

(2.1)

where θCSmin and θCSmax are minimum and maximum joint angle limits for chest-to-shoulder

joints [78]. Figure 2-4 illustrates our skeleton body model, rendered after the chest-to-

shoulder angles θCS are adjusted (note the left/right chest-to-shoulder angles are different).

This simplified model mimics shoulder movement in only one-dimension, up and down,

but works quite well if the subject is facing the camera, as is commonly true for human-

computer interaction.

With these settings, an upper-body posture is parameterized as x = (GR)T where G is a

6-dimensional global translation and rotation vector, and R is an 8-dimensional joint angle

vector (3 for shoulder and 1 for elbow, for each arm). In practice, once the parameters

are initialized, we fix all but (x, z) translation elements of G, making x a 10-dimensional

vector.

Particle Filter Estimation

Human body movements can be highly unpredictable, so an inference that assumes its

random variables form a single Gaussian distribution can fall into a local minima or

completely loose track. A particle filter [50] is particularly well suited to this type of

task for its ability to maintain multiple hypotheses during inference, discarding less likely

hypotheses only slowly. It represents the posterior state density p(xt | Zt) as a multi-
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modal non-Gaussian distribution, which is approximated by a set of N weighted particles:{(
s

(1)
t , π

(1)
t

)
, · · · ,

(
s

(N)
t , π

(N)
t

)}
. Each sample st represents a pose configuration, and the

weights π
(n)
t are obtained by computing the likelihood p(zt | xt = s

(n)
t ), and normalized so

that
∑N

n=1 π
(n)
t = 1.

The joint angle dynamic model is constructed as a Gaussian process: xt = xt−1 + e, e ∼

N (0, σ2). Once N particles are generated, we obtain the estimation result by calculating

the Bayesian Least Squares (BLS) estimate:

E [f(xt)] =
N∑
n=1

π
(n)
t f(s

(n)
t ). (2.2)

Iterative methods need a good initialization. We initialize our skeleton body model at the

first frame: The initial body posture configurations (i.e., joint angles and limb lengths) are

obtained by having the subject assume a static “T-pose” (shown in Figure 2-3), and fitting

the model to the image with exhaustive search. This typically requires no more than 0.3

seconds (on an Intel Xeon CPU 2.4 GHz machine with 4 GBs of RAM).

Designing Likelihood Function

The likelihood function p(zt | xt = s
(n)
t ) measures the goodness-of-fit of an observation zt

given a sample s
(n)
t . We define it as an inverse of an exponentiated fitting error ε

(
zt, s

(n)
t

)
:

p(zt | xt = s
(n)
t ) =

1

exp
{
ε
(
zt, s

(n)
t

)} . (2.3)

The fitting error ε
(
zt, s

(n)
t

)
is a weighted sum of three error terms computed by comparing

features extracted from the skeleton body model to the corresponding features extracted

from input images. The three features include a 3D visible-surface point cloud, a 3D

contour point cloud, and a motion history image (MHI) [13]. The first two features capture

discrepancies in static poses; the third captures discrepancies in the dynamics of motion.
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Figure 2-5: Motion history images of the observation (left) and the estimated model (right).
White pixel values indicate an object has appeared in the pixel; gray pixel values indicate
there was an object in the pixel but it has moved; black pixel values indicate there has
been no change in the pixel.

We chose the weights for each error term empirically.

The first two features, 3D visible-surface and contour point clouds, are used frequently in

body motion tracking (e.g., [29]) for their ability to evaluate how well the generated body

posture fits the actual pose observed in image. We measure the fitting error by computing

the sum-of-squared Euclidean distance errors between the point cloud of the model and

the point cloud of the input image (i.e., the 3D data supplied by the image pre-processing

step described above).

The third feature, an MHI, is an image where each pixel value is a function of the recency

of motion in a sequence of images (see Figure 2-5). This often provides useful information

about dynamics of motion, as it indicates where and how the motion has occurred. We

define an MHI-based error term to measure discrepancies in the dynamics of motion.

An MHI is computed from It−1 and It, two time-consecutive 8-bit unsigned integer images

whose pixel values span from 0 to 255. For the skeleton body model, It is obtained by

rendering the model generated by a sample s
(n)
t (i.e., rendering an image of what body

posture s
(n)
t would look), and It−1 is obtained by rendering E [f(xt−1)], the model generated

by the estimation result from the previous step (Equation 2.2). For the input images, It
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is obtained by converting an RGB input image to YCrCb color space and extracting the

brightness channel2, and this is stored to be used as It−1 for the next time step. Then an

MHI is computed as

IMHI = thresh(It−1 − It, 0, 127) + thresh(It − It−1, 0, 255) (2.4)

where thresh(I, α, β) is a binary threshold operator that sets each pixel value to β if

I(x, y) > α, and zero otherwise. The first term captures pixels that were occupied at

the previous time step but not in the current time step. The second term captures pixels

that are newly occupied in the current time step. We chose the values 0, 127, and 255 to

indicate the time information of those pixels: 0 means there has been no change in the

pixel, regardless of whether or not there was an object; 127 means there was an object in

the pixel but it has moved; while 255 means an object has appeared in the pixel. This

allows us to construct an image that concentrates on the moved regions only (e.g., arms),

while ignoring the unmoved parts (e.g., trunk, background). The computed MHI images

are visualized in Figure 2-5.

Given the MHIs of the skeleton body model and the observation, one can define various

error measures. In this work, we define an MHI error as

εMHI = Count [ thresh(I ′, 127, 255) ] (2.5)

where

I ′ = abs
(
IMHI(zt, zt−1)− IMHI(s

(n)
t ,E [f(xt−1)])

)
(2.6)

This error function first subtracts an MHI of the model IMHI(s
(n)
t ,E[f(xt−1)]) from an

MHI of the observation IMHI(zt, zt−1), and computes an absolute-valued image of it (Equa-

tion 2.6). Then it applies the binary threshold operator with the cutoff value and result

value (127 and 255, respective), and counts non-zero pixels with Count [·] (Equation 2.5).

2Empirically, most of the variation in images is better represented along the brightness axis, not the
color axis [18].
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Figure 2-6: Four canonical hand shapes defined in the NATOPS dataset (thumb up and
down, palm open and close), and visualization of their HOG features. HOG features are
computed with an image size of 32 x 32 pixels, cell size of 4 x 4 pixels, and block size
of 2 x 2 cells (8 x 8 pixels), with 9 orientation bins. This results in 16 blocks in total.
Bright spots in the visualization indicate places in the image that have sharp gradients at
a particular orientation; the orientation of the spot indicates orientation of the gradients.

We set the cutoff value to 127 to penalize the conditions in which two MHIs do not match

at the current time-step, independent of the situation at the previous time-step.3

2.3.2 Hand Shape Classification

The goal of hand shape classification is to categorize hand shape into one of four canonical

shapes: thumb up and down, palm open and close. These are often used in hand signals,

particularly on the NATOPS actions used in this work (see Figure 2-6).

Search region

Because it is time-consuming to search for hands in an entire image, we use the information

about wrist positions computed in body posture estimation to constrain the search for

hands in the image. We create a small search region around each of the estimated wrist

positions, slightly larger than the average size of an actual hand image, and search for

a hand shape in that region using a sliding window. Estimated wrist positions are of

3As mentioned, our error measure in Equation 2.5 concentrates on errors at the current time-step only.
However, note that Equation 2.4 also offers information on the errors at the previous time-step as well.
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Figure 2-7: Search regions around estimated wrist positions (black rectangles) and cluster-
ing of multiple classification results. Our search region was 56 x 56 pixels (outer rectangles);
the sliding window was 32 x 32 pixels (inner rectangles). Inner rectangles indicate clustered
results (blue/red: palm open/close), and small circles are individual classification results
(best viewed in color).

course not always accurate, so a search region might not contain a hand. We compensate

for this by including information on hand location from the previous step’s hand shape

classification result. If a hand is found at time t− 1, for time t we center the search region

at the geometric mean of the estimated wrist position and the hand position at time t− 1.

Our search region was 56 x 56 pixels; the sliding window was 32 x 32 pixels (see Figure 2-7).

HOG features

HOG features [39, 27] are image descriptors based on dense and overlapping encoding of

image regions. The central assumption of the method is that the appearance of an object

is rather well characterized by locally collected distributions of intensity gradients or edge

orientations, even without having the knowledge about the corresponding gradient or edge

positions that are globally collected over the image.

HOG features are computed by dividing an image window into a grid of small regions

(cells), then producing a histogram of the gradients in each cell. To make the features less

sensitive to illumination and shadowing effects, the image window is again divided into a

grid of larger regions (blocks), and all the cell histograms within a block are accumulated

for normalization. The histograms over the normalized blocks are referred to as HOG
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features. We used a cell size of 4x4 pixels, block size of 2x2 cells (8x8 pixels), window size

of 32x32 pixels, with 9 orientation bins. Figure 2-6 shows a visualization of the computed

HOG features.

Multi-class SVM classifier

To classify the hand shapes from HOG features, we trained a multi-class SVM classifier

[113] using LIBSVM [20], with 5 classes (i.e., the four canonical hand poses plus “no hand”).

We trained a multi-class SVM with an RBF kernel following the one-against-one method,

performing a grid search and 10-fold cross validation for parameter selection.

Training dataset

To train an SVM classifier, a training dataset was collected from the NATOPS dataset,

choosing the recorded video clips of the first 10 subjects (out of 20). Positive samples (the

four hand poses) were collected by manually selecting 32 x 32 pixel images that contained

hands and labeling them; negative samples (“no hand”) were collected automatically after

collecting positive samples, by choosing two random foreground locations and cropping the

same-sized images. We applied affine transformations to the positive samples, to make the

classifier more robust to scaling and rotational variations, and to increase and balance the

number of samples across hand shape classes. After applying the transformations, the size

of each class was balanced at about 12,000 samples.

Clustering

Each time a sliding window moves to a new search region, the HOG features are computed,

and the SVM classifier examines them, returning a vector of k + 1 probability estimates

(k hand classes plus one negative class; k = 4 in our current experiments). We thus

get multiple classification results per search region, with one from each sliding window
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position. To get a single classification result per search region, we cluster all positive

classification results (i.e., classified into one of the k positive classes) within the region,

averaging positions and probability estimates of the results (see Figure 2-7).

2.3.3 Output Features

From the body and hand tracking described above, we get a 12-dimensional body feature

vector and an 8-dimensional hand feature vector. The body feature vector includes 3D

joint velocities for left/right elbows and wrists. To obtain this, we first generate a model

with the estimated joint angles and fixed-length limbs, so that all generated models have

the same set of limb lengths across subjects. This reduces cross-subject variances resulting

from different limb lengths. Then we log coordinates of the joints relative to the chest, and

take the first order derivatives.

The hand feature includes probability estimates of the four predefined hand poses for

left/right hand, dropping the fifth class “no hand” (because as with any set of probabilities

that sum to one, N-1 values are enough).

In the next chapter, we describe an algorithm for recognizing actions based on these output

features.
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Chapter 3

Learning Spatio-Temporal Structure

of Human Action

This chapter presents a novel probabilistic graphical model for action recognition that

learns spatio-temporal structure in a fine-to-coarse manner. The main idea behind this

work is hierarchical sequence summarization: our algorithm constructs a hierarchical rep-

resentation of a video sequence by iteratively “summarizing” the contents in a bottom-up

fashion, and uses it to learn spatio-temporal structure from each of the summary rep-

resentations. Each layer in the hierarchy is a coarser-grained summary of the sequence

from the preceding layer. Intuitively, as the hierarchy builds, we learn ever more abstract

spatio-temporal structure of human action.

Technically, the main problem we want to solve is sequence classification: categorize each

sequence (not each frame) into one of the known categories. Our idea of learning hierar-

chical spatio-temporal structure from multiple layers resembles that of ensemble learning :

we combine multiple prediction results, collected from multiple layers, to obtain better

classification performance than could be done from a single layer. It also resembles deep

learning : our model consists of multiple layers of non-linear operations to obtain ever more

abstract feature representations.
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(a) Northop Grumman X-47B (b) NATOPS dataset

Figure 3-1: A subset of NATOPS dataset [100]. Body joint trajectories are illustrated in
yellow arrows, hand poses are illustrated with synthesized images of hands. Red rectangles
indicate hand poses are important in distinguishing the action with its corresponding
similar action pair. Action categories shown are: #1 All Clear, #2 Not Clear, #3 Remove
Chocks, #4 Insert Chocks, #5 Brakes On, #6 Breaks Off.

3.1 Task and Motivation

Our goal is to build a system that understands human actions recorded in a video format. In

particular, we consider the case where the whole video sequence is associated with a single

categorical label describing the overall content of the video, and the lengths of sequences

can be different from each other. The input to our system is thus a video sequence of

varying length, the output is a single categorical label.

Figure 3-1 (b) shows six action categories from the NATOPS dataset used in our exper-

iments. Note that each action instance has a single categorical label, and the length of

each action varies (e.g., on average, the “Not Clear” action is 1.8 seconds long, while the

“Remove Chocks” action is 2.7 seconds long). Regardless of the sequence length, we want

our system to categorize video clips using the NATOPS vocabulary.

56



3.1.1 Linear-Chain Graphical Models

Our task of assigning a single categorical label to a video sequence can be cast as sequence

classification [123]. One popular approach to this problem is to use a linear-chain graphical

model, such as Hidden Markov Models (HMMs) [87] and Hidden Conditional Random

Fields (HCRFs) [86]. These models assume there exists a set of “states” describing each

action, and associate a latent variable with each observation (i.e., each frame), learning

state transitions of an action sequence using a set of latent variables. Each latent variable

is a discrete multinomial random variable and represents which state an action is in at any

given moment. For example, if we train a two-state model with an “arm waving left-to-

right” action sequence, one state may correspond to “arm moving left” and the other may

correspond to ”arm moving right”; once the model is trained, a sequence of latent states

will alternate between the two states as an arm waves from left to right.

Linear-chain models are widely popular mainly because of their computational efficiency:

an exact inference is feasible in linear-chain models using the forward-backward algo-

rithm [87] or the belief propagation algorithm [84], and the computational complexity

is linear in the length of the sequence. One limitation in linear-chain models, however,

comes from the first-order Markov assumption that considers only local pairwise depen-

dencies among observations; in other words, it cares about body movement between only

two consecutive frames at a time. Therefore long-term dependencies are discarded, lim-

iting its capability of learning spatio-temporal patterns that do not follow the first-order

Markov property. Adding a long-term dependency term will solve this problem, but then

the computational complexity will grow exponentially with the sequence length.

3.1.2 Hierarchical Spatio-Temporal Structure

We observe that, although the whole action sequence is associated with a single categorical

label, an action is often composed of several sub-actions, with each sub-action again de-

composable as a series of sub-actions. This recursive decomposition creates a hierarchical
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“Cooking a steak”

Prepare Grill Serve

Charcoal Chop Season Steak in Flip Steak out Clean up

Figure 3-2: Hierarchical decomposition of a fictitious action category “cooking a steak”.
In many real-world action recognition tasks, we are given a single categorical label de-
scribing the overall content of the action sequence; mid-level sub-action labels are typically
unknown.

Figure 3-3: A visualization of the ”Brakes On” action sequence from the NATOPS
dataset [100]. For the purpose of visualization we down-sampled the original sequence
by a factor of two.

structure of an action with multiple levels of abstractions. For example, imagine a video

showing someone cooking a steak (see Figure 3-2). It may contain several coarse-level sub-

actions (e.g., preparation, grilling, and serving) and each sub-action may again contain

fine-level sub-actions (e.g., chopping up unions, seasoning the meat, and heating the grill).

The sub-actions at each level represent actions at different spatio-temporal granularities,

providing an intuitive description of an action with different levels of abstraction.

The “cooking a steak” example was chosen to illustrate our point because it has a clear

hierarchical structure with different levels of abstractions (from coarse to fine). Although

they may not be as clear cut as this example, many real-world actions share a similar

characteristic that their action sequence can be decomposed into a hierarchy of sub-actions.

Take as an example the “Brakes On” signal shown in Figure 3-3. This action is composed
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of sub-actions – “arms up”, “hands open”, and “arms down” – with each sub-action again

decomposable as a series of finer-grained body movements.

The goal of work is to exploit this kind of hierarchical structure in human actions. Note

that the labels for sub-actions are not known a priori, nor does the system know the

corresponding segmentation information, e.g., which sub-sequence of video corresponds to

“hands open”? However, we hope to discover them in an unsupervised fashion using latent

variables. Remember that latent variables in a linear chain model represent hidden states

of an action, which can be interpreted as sub-action labels. An algorithm that builds

a hierarchy in a bottom-up fashion, from the original sequence to progressively coarser-

grained representation, may reveal the hierarchical structure of an action.

3.2 Hierarchical Sequence Summarization

We learn spatio-temporal structure of human action data using hierarchical sequence sum-

marization. We construct a hierarchical representation of a video sequence by iteratively

summarizing the contents in a bottom-up fashion, and use the hierarchical representation

to learn spatio-temporal structure from each of the summary representations. Each layer

in the hierarchy is a temporally coarser-grained summary of the sequence from the preced-

ing layer. Intuitively, as the hierarchy builds, we learn ever more abstract spatio-temporal

structure.

Our approach builds the hierarchical representation by alternating two steps: sequence

learning (the L-step) and sequence summarization (the S-step). We start by defining our

notation, then describe the sequence learning step and the sequence summarization step.

We then formally define our model and explain an efficient optimization procedure.
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Figure 3-4: We build a hierarchical representation of action sequence and use it to learn
spatio-temporal pattern from multiple layers of summary representations.
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3.2.1 Notation

Input to our model is a sequence of frames of length T x = [x1; · · · ; xT ] (the length

can vary across sequences); each observation xt ∈ RD is of dimension D and can be any

type of action feature (e.g., body pose configuration [86], bag-of-words representation of

HOG/HOF [66], etc.). Each sequence is labeled from a finite alphabet set, y ∈ Y .

We denote a sequence summary at the l-th layer in the hierarchy by xl = [xl1; · · · ; xlT ]. A

super observation xlt is a group of observations from the preceding layer, and we define

c(xlt) as a reference operator of xlt that returns the group of observations; for l = 1 we set

c(xlt) = xt.

Because our model is defined recursively, most procedures at each layer can be formulated

without specifying the layer index. In what follows, we omit l whenever it is clear from

the context; we also omit it for the original sequence, i.e., l=1.

3.2.2 L-Step: Sequence Learning

We use HCRFs [86] to capture hidden dynamics in each layer in the hierarchy. Using a set

of latent variables h ∈ H, the conditional probability distribution is defined as

p(y|x; w) =
1

Z(x; w)

∑
h

expF (y,h,x; w) (3.1)

where w is a model parameter vector, F (·) is a generic feature function, and Z(x; w) =∑
y′,h expF (y′,h,x; w) is a normalization term.

Feature Function: We define the feature function as

F (y,h,x; w) =
∑
t

f 1(h,x, t; w) +
∑
t

f 2(y,h, t; w) +
∑
t

f 3(y,h, t, t+1; w)

Our definition of feature function is different from that of [86] in order to accommodate the
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Figure 3-5: Illustration of our super observation feature function. (a) Observation
feature function similar to Quattoni et al. [86], (b) our approach uses an additional set of
gate functions to learn an abstract feature representation of super observations.

hierarchical nature of our approach. Specifically, we define the super observation feature

function that is different from [86].

Let 1[·] be an indicator function, and y′ ∈ Y and (h′, h′′) ∈ H be the assignments to the

label and latent variables, respectively. The second and the third terms in Equation 3.2 are

the same as those defined in [86], i.e., the label feature function f 2(·) = wy,h1[y = y′]1[ht =

h′] and the transition feature function f 3(·) = wy,h,h1[y = y′]1[ht = h′]1[ht+1 = h′′].

Our super observation feature function (the first term of Equation 3.2) incorporates a set

of non-linear gate functions G, as used in neural networks, to learn an abstract feature

representation of super observations (see Figure 3-5 (b)). Let ψg(x, t; w) be a function that

computes an average of gated output values from each observation contained in a super

observation x′ ∈ c(xt),

ψg(x, t; w) =
1

|c(xt)|
∑

x′∈c(xt)

g

(∑
d

wg,dx
′
d

)
(3.2)

We adopt the logistic function as our gate function, g(z) = 1/(1 + exp(−z)), which has

been shown to perform well in the representation learning literature [8]. We define our

super observation feature function as

f 1(h,x, t; w) = 1[ht = h′]
∑
g∈G

wg,hψg(x, t; w). (3.3)
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where each g ∈ G has the same form. The set of gate functions G creates an additional

layer between latent variables and observations, and has a similar effect to that of the

neural network. That is, this feature function learns an abstract representation of super

observations, and thus provides more discriminative information for capturing complex

spatio-temporal patterns in human activity data.

To see the effectiveness of the gate functions, consider another definition of the observation

feature function, one without the gate functions (see Figure 3-5 (a)),

f 1(h,x, t; w) =
1

|c(xt)|
1[ht = h′]

∑
x′

∑
d

wh,dx
′
d (3.4)

This does not have the automatic feature learning step, and simply represents the feature

as an average of the linear combinations of features x′d and weights wh,d. As evidenced by

the deep learning literature [8, 68], and consistent with our experimental result, the step

of non-linear feature learning leads to a more discriminative representation.

Complexity Analysis: Our model parameter vector is w = [wg,h;wg,d;wy,h;wy,h,h] and

has the dimension of GH +GD + Y H + Y HH, with the number of gate functions G, the

number of latent states H, the feature dimension D, and the number of class labels Y .

Given a chain-structured sequence x of length T , we can solve the inference problem at

O(Y TH2) using the belief propagation algorithm [84].

3.2.3 S-Step: Sequence Summarization

There are many ways to summarize xl to obtain a temporally coarser-grained sequence

summary xl+1. One simple approach is to group observations from xl at a fixed time

interval, e.g., collapse every two consecutive observations and obtain a sequence with half

the length of xl. However, as we show in our experiments, this approach may fail to

preserve important local information and result in over-grouping and over-smoothing.

We therefore summarize xl by grouping observations at an adaptive interval, based on
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Figure 3-6: Illustration of sequence summarization. We generate a sequence summary
by grouping neighboring observations that have similar semantic labeling in the latent
space.

Algorithm 1: Sequence Summarization Procedure

Input: A weighted graph G = (V , E ,W)
Output: Variable grouping C = {c1, · · · , cT}
C ← V , ct = c(xl+1

t ) = {xlt},∀t ;
O ← sort ascend(E ,W), O = {o1, · · · , oT−1} ;
for q = 1 · · · |O| do

(s, t)← oq ;
if cs 6= ct ∧ wst ≤ MInt(cs, ct) then
C ← merge(cs, ct) ;

how similar the semantic labeling of observations are in the latent space. We work in the

latent space because it has learned to maximize class discrimination and thus provides

more semantically meaningful information. Said slightly differently, the similarity of latent

variables is a measure of the similarity of the corrsponding observations, but in a space

more likely to discriminative appropriately.

Sequence summarization can be seen as a variable grouping problem with a piecewise con-

nectivity constraint. We use the well-established graph-based variable grouping algorithm

by Felzenszwalb et al. [37], with a modification on the similarity metric. The algorithm

has the desirable property that it preserves detail in low-variance groups while ignoring

detail in high-variance groups, producing a grouping of variables that is globally coherent.

The pseudocode of the algorithm is given in Algorithm 1.

The Algorithm: Let G = (V , E ,W) be a weighed graph at the l-th layer, where V is a
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set of nodes (latent variables), E is a set of edges induced by a linear chain, and W is a

set of edge weights defined as the similarity between two nodes. The algorithm produces

a set of super observations C = {c(xl+1
1 ), · · · , c(xl+1

T )}.

The algorithm merges c(xl+1
s ) and c(xl+1

t ) if the difference between the groups is smaller

than the minimum internal difference within the groups. Let the internal difference of a

group c be Int(c) = max(s,t)∈mst(c,Ec) wst, i.e., the largest weight in the minimum spanning

tree of the group c with the corresponding edge set Ec. The minimum internal difference be-

tween two groups cs and ct is defined as MInt(cs, ct) = min (Int(cs) + τ(cs), Int(ct) + τ(ct))

where τ(cs) = τ/|cs| is a threshold function; it controls the degree to which the difference

between two groups must be greater than their internal differences in order for there to be

evidence of a boundary between them.

Similarity Metric: We define the similarity between two nodes (i.e., the weight wst) as

wst =
∑
y,h′

|p(hs=h′ | y,x; w)− p(ht=h′ | y,x; w)| (3.5)

that is, it is the sum of absolute differences of the posterior probabilities between the two

corresponding latent variables, marginalized over the class label. 1

Complexity Analysis: As shown by Felzenszwalb [37], this sequence summarization

algorithm runs quite efficiently in O(T log T ) with the sequence length T .

1Other metrics can also be defined in the latent space. We experimented with different weight functions,
but the performance difference was not significant. We chose this definition because it performed well across
different datasets and is computationally simple.
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3.2.4 Model Definition

We formulate our model, Hierarchical Sequence Summarization (HSS), as the conditional

probability distribution

p(y|x; w) ∝ p(y|x1, · · · ,xL; w) ∝
L∏
l=1

p(y|xl; wl) (3.6)

where p(y|xl; wl) is obtained using Equation 3.1. Note the layer-specific model parameter

vector wl, w = [w1; · · · ; wL].

The first derivation comes from our reformulation of p(y|x; w) using hierarchical sequence

summaries, the second comes from the way we construct the sequence summaries. To see

this, recall that we obtain a sequence summary xl+1 given the posterior of latent variables

p(hl|y,xl; wl), and the posterior is computed based on the parameter vector wl; this implies

that xl+1 is conditionally independent of xl given wl. To make our model tractable, we

assume that parameter vectors from different layers wl are independent of each other. As

a result, we can express the second term as the product of p(y|xl; wl).

3.2.5 Optimization

Given D =
{

(xi, yi) | xi ∈ RD×Ti , yi ∈ Y
}N
i=1

as a training dataset, the standard way to

find the optimal solution w∗ is to define an objective function as

min
w

L(w) = R(w)−
N∑
i=1

log p(yi|xi; w) (3.7)

with a regularization term R(w) = 1
2σ2‖w‖2, i.e., the log of a Gaussian prior with variance

σ2, p(w) ∼ exp( 1
2σ2‖w‖2), then solve it using gradient descent [80].

Unfortunately, because of the hierarchical nature of our approach, the objective function

needs to be changed. In our approach only the original sequence x1 is available at the
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outset; to generate a sequence summary xl+1 we need the posterior p(hl|y,xl; wl), and the

quality of the posterior relies on an estimate of the solution wl obtained so far.

We therefore perform incremental optimization [44], where, at each layer l, we solve for only

the necessary part of the solution while fixing all the others, and iterate the optimization

process, incrementing l. At each layer l of the incremental optimization, we solve

min
wl

L(wl) = R(wl)−
N∑
i=1

log p(yi|xli; wl) (3.8)

This layer-specific optimization problems is solved using gradient descent with a standard

quasi-newton method, L-BFGS [80], chosen because of its empirical success in the litera-

ture [86].

The partial derivative of the second term in Equation 3.8 with respect to the parameter

wl, for a training sample (xi, yi), is computed as

∂ log p(yi|xli; wl)

∂wl
=
∑
hl

p(hl|yi,xli; wl)
∂F (·)
∂wl

−
∑
y′,hl

p(y′,hl|xli; wl)
∂F (·)
∂wl

(3.9)

Specific forms of the partial derivatives ∂F (·)
∂wl with respect to wly,h and wly,h,h are the same

as those in [86], ∂f2(·)
∂wl

y,h
=
∑

t 1[y = y′]1[hlt = h′] and ∂f3(·)
∂wl

y,h,h
=
∑

t 1[y = y′]1[hlt =

h′]1[hlt+1 = h′′]. For wlg,h and wlg,d, they are ∂f1(·)
∂wl

g,h
=
∑

t 1[hlt = h′]ψg(x
l, t; wl) and

∂f1(·)
∂wl

g,d
=
∑

tw
l
g,h

1
|c(xl,t)|

∑
x′ g(wlg,dx

′
d)(1− g(wlg,dx

′
d)), respectively.

Training and Testing: Algorithm 2 and 3 show training and testing procedures, re-

spectively. The training procedure involves, for each l, solving for w∗l and generating

a sequence summary xl+1 for each sample in the dataset. The testing procedure involves

adding up log p(y|xl; w∗l) computed from each layer and finding the optimal sequence label

y with the highest probability.

Note that if the summary produces the same sequence (i.e., xl+1
i is equal to xli), we stop

further grouping the sample xi, both in training and testing procedures. As a result, xl+1
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Algorithm 2: Training Procedure

Input: Training dataset D
Output: Optimal solution w∗

for l = 1 · · · L do
w∗l ← arg minwl L(wl); // Equation 3.8
foreach xi ∈ D do

xl+1
i ← summarize(xli,w

∗l); // Algorithm 1

Algorithm 3: Testing Procedure

Input: Test sequence x, optimal solution w∗

Output: Sequence label y∗

Initialize p(y|x; w∗) to zero;
for l = 1 · · · L do

log p(y|x; w∗) += log p(y|xl; w∗l) ;
xl+1 ← summarize(xl,w∗l); // Algorithm 1

y∗ ← arg maxy log p(y|x; w∗)

is always shorter than xl.

Complexity Analysis: Because of this incremental optimization, the complexity grows

only sublinearly with the number of layers considered. To see this, recall that solving

an inference problem given a sequence takes O(Y TH2) and the sequence summarization

takes O(T log T ). With L layers considered, the complexity is O (LY TH2 + LT log T );

here, T is a strictly decreasing function of the layer variable (because the length of xl+1 is

always shorter than xl), and thus the complexity of our model increases sublinearly with

the number of layers used.

3.3 Experiments

We evaluated the performance of our HSS model on three human activity datasets with

different tasks, using different types of input features.

ArmGesture [86]: The task in this dataset is to recognize various arm gestures based on

upper body joint configuration. It contains 724 sequences from 6 action categories with an
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average of 25 frames per sequence. Each frame is represented as a 20D feature vector: 2D

joint angles and 3D coordinates for left/right shoulders and elbows.

Canal9 [114]2: The task is to recognize agreement and disagreement during a political

debate based on nonverbal audio-visual cues. It contains 145 sequences, with an average

of 96 frames per sequence. Each frame is represented as a 10D feature vector: 2D prosodic

features (F0 and energy) and 8D canonical body gestures, where the presence/absence of

8 gesture categories in each frame was manually annotated with binary values.

NATOPS [100]3: The task is to recognize aircraft handling signals based on upper body

joint configuration and hand shapes. It contains 2,400 sequences from 6 action categories,

with an average of 44 frames per sequence. Each frame is represented as a 20D feature

vector: 3D joint velocities for left/right elbows and wrists, and the probability estimates

of four canonical hand gestures for each hand, encoded as 8D feature vector.

3.3.1 Methodology

We followed experimental protocols used in published work on each dataset: For the Ar-

mGesture and Canal9 datasets we performed 5-fold cross-validation, for the NATOPS

datasets we performed hold-out testing, using the samples from the first 5 subjects for

testing, the second 5 subjects for validation, with the rest for training.

We varied the number of latent states H ∈ {4, 8, 12} and the number of gate functions

G ∈ {4, 8, 12}, and set the number of layers L = 4; for simplicity we set H and G

to be the same across layers. The threshold constant in sequence summarization was

varied τ ∈ {0.1, 0.5, 1.0} (see Algorithm 1). The L2 regularization scale term σ was varied

σ = {10k|k ∈ {1, 2, 3}}.

2The original dataset [114] contains over 43 hours of recording; to facilitate comparison with previous
results we used the subset of the dataset described in [17].

3The original dataset [100] contains 9,600 sequences from 24 action categories; we used the subset of
the dataset used in [102].
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Model Mean Accuracy
HMM (from [86]) 84.83%
CRF (from [86]) 86.03%
MM-HCRF (from [102]) 93.79%
Quattoni et al. [86] 93.81%
Shyr et al. [96] 95.30%
Song et al. [102] 97.65%
HCNF 97.79%
Our HSS Model 99.59%

Table 3.1: Experimental results from the ArmGesture dataset.

Model Mean Accuracy
SVM (from [17]) 51.89%
HMM (from [17]) 52.29%
Bousmalis et al. [17] 64.22%
Song et al. [103] 71.99%
HCNF 73.35%
Our HSS Model 75.56%

Table 3.2: Experimental results from the Canal9 dataset.

Since the objective function (Equation 3.8) is non-convex, we trained each model twice with

different random initializations. The optimal configuration of all the hyper-parameters we

used were chosen based on the highest classification accuracy on the validation dataset.

3.3.2 Results

Table 3.1 and Table 3.2 shows experimental results on the ArmGesture and Canal9 datasets,

respectively. For each dataset we include previous results reported in the literature;, as

well as the result obtained by us using Conditional Neural Fields [85] with latent variables

(HCNF). As can be seen, our approach outperforms all the state-of-the-art results on the

ArmGesture and Canal9 datasets. Notably, our approach achieves a near-perfect accuracy

on the ArmGesture dataset (99.59%).

For the NATOPS dataset, the state-of-the-art result is 87.00% in our ealrier work [102].
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Figure 3-7: Detailed analysis results. The top row (a)-(c) shows experimental results
comparing hierarchical (HSS) and single optimal (top) representation approaches, the bot-
tom row (d)-(f) shows the results on three different sequence summarization approaches.

Our earlier approach used a multi-view HCRF to jointly learn view-shared and view-specific

hidden dynamics, where the two views are defined as upper body joint configuration and

hand shape information. Even without considering the multi-view nature of the dataset (we

perform an early-fusion of the two views), our approach achieved a comparable accuracy of

85.00%. This is still a significant improvement over various previous results using an early-

fusion: HMM (from [102], 76.67%), HCRF (from [102], 76.00%), and HCNF (78.33%).

For detailed analysis we evaluated whether our hierarchical representation is indeed ad-

vantageous over a single representation, and how our sequence summarization in the latent

space differs from the other approaches.

1) Hierarchical vs. single optimal representation: While the performances shown

above show significant improvements over previous sequence learning models, they do not

prove the advantage of learning from hierarchical sequence summary representation, as

opposed to learning from only the optimal layer inside the hierarchy (if any). To this end,
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we compared our approach to the single (top) layer approach by computing during the

testing procedure p(y|x; w) = p(y|xL; wL), varying L = {2, 3, 4}; the training procedure

was the same as Algorithm 2 (otherwise the obtained sequence summary is not optimal).

Figures 3-7 (a)-(c) show the mean classification accuracy as a function of L, the number

of layers, on all three datasets. Our “HSS” approach always outperformed the “Top”

approach. Paired t-tests showed that the differences were statistically significant in all

three datasets (p <.001). This shows that there is no single representation that is as

discriminative as the hierarchical representation.

2) Different sequence summarization algorithms: Our sequence summarization pro-

duces groups of temporally neighboring observations that have similar semantic meaning

in the latent space. We compare this to two different approaches: One approach simply

collapses every l consecutive observations and obtain a sequence of length T/l at each

layer l (“Fixed” in Figure 3-7). Another approach produces groups of observations that

are similar in the feature space, with a similarity metric defined as wst = |xs − xt| and

with the threshold range τ = {1, 5, 10} (“Obs” in Figure 3-7).

As can be seen in Figures 3-7 (d)-(f), our approach outperforms the two other approaches

on the Canal9 and NATOPS datasets; on the ArmGesture dataset, performance saturates

towards near perfect accuracy. The Fixed approach collapses observations as long as there

is more than one, even if they contain discriminative information individually, which may

cause over-grouping. Our result supports this hypothesis, showing that the performance

started to decrease after L > 3 on the Canal9 and NATOPS datasets.

The Obs approach groups observations using input features, not the corresponding pos-

teriors p(h|y,x; w) in the latent space. There are a number of difficulties when dealing

with input features directly, e.g., different scales, range of values, etc, which makes the

approach sensitive to the selected feature space. Our approach, on the other hand, uses

latent variables that are defined in the scale [0:1] and contains discriminative information

learned via mathematical optimization. We can therefore expect that, as can be seen in
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Figure 3-8: Inferred sequence summaries on the NATOPS dataset. Each super
observation represents key transitions of each action class. For the purpose of visualization
we selected the middle frame from each super observation at the 4-th layer.

our results, our approach is more robust to the selection of the scale/range as well as the

threshold parameter τ , resulting in overall better performance.

3.4 Related Work

Learning from a hierarchical feature representation has been a recurring theme in ac-

tion recognition [79, 109, 61, 117, 68]. One approach detects spatio-temporal interest

points (STIP) [65] at local video volumes, constructs a bag-of-words representation of

HOG/HOF features extracted around STIPs, and learns an SVM classifier to categorize

actions [66]. This has been used to construct a hierarchical feature representation that is

more discriminative and context-rich than “flat” representations [109, 117, 61]. Sun et

al. [109] defined three levels of context hierarchy with SIFT-based trajectories, while

Wang et al. [117] learned interactions within local contexts at multiple spatio-temporal

scales. Kovashaka and Grauman [61] proposed to learn class conditional visual words by

grouping local features of motion and appearance at multiple space-time scales. While

these approaches showed significant improvements over the local feature representation,

they use non-temporal machine learning algorithms to classify actions (e.g., SVM and

MKL), limiting their application to real-world scenarios that exhibit complex temporal
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structures [86, 111].

Sequence learning has been a well-studied topic in machine learning (e.g., HMM and CRF),

and has been used successfully in action recognition [86, 119, 111]. Quattoni et al. [86]

incorporated latent variables into CRF (HCRF) to learn hidden spatio-temporal dynam-

ics, while Wang et al. [119] applied the max-margin learning criterion to train HCRFs.

While simple and computationally efficient, the performance of HCRFs has been shown

to decrease when the data has complex input-output relationships [85, 128]. To overcome

this limitation, Peng et al. [85] presented Conditional Neural Fields (CNF) that used gate

functions to extract nonlinear feature representations. However, these approaches are de-

fined over a single representation and thus cannot benefit from the additional information

that hierarchical representation provides.

Our model has many similarities to the deep learning paradigm [8], such as learning from

multiple hidden layers with non-linear operations. Deep belief networks (DBN) [45] have

been shown to outperform other “shallow” models in tasks such as digit recognition [45],

object recognition [89], and face recognition [48]. Recently, Le et al. [68] applied an ex-

tension of Independent Subspace Analysis with DBN to action recognition. However,

obtaining an efficient learning algorithm that is scalable with the number of layers still

remains a challenge [45, 89]. Compared to DBN, the learning complexity of our method

grows sublinearly with the size of the hierarchy.

Previous approaches to learning with multiple representations using HCRF (e.g., [128])

define each layer as a combination of the original observation and the preceding layer’s

posteriors, at the same temporal resolution. Our work learns each layer at temporally

coarser-grained resolutions, making our model capable of learning ever-more high-level

concepts that incorporate the surrounding context (e.g., what comes before/after).

While our approach has shown to work well in action recognition, specifically with single

modality (visual), experimental results show that there is still room for improvement in

several directions. Our model takes the early-fusion approach for data fusion – feature
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vectors from different modalities are concatenated to produce one large feature vector –

and thus discards structures among the modalities, e.g., correlation and interaction. One

direction of improvement is therefore multimodal structure learning, described below.
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Chapter 4

From Unimodal to Multimodal:

Understanding Human Behaviors

We shift our attention from unimodal (visual) to multimodal aspects of video content

analysis, focusing on the task of understanding natural human behaviors recorded in video

data. Human behavior is inherently multimodal: we express our intents and thoughts via

speech, gesture, and facial expressions. Information on human behavior is conveyed in the

form of audio (both verbal and nonverbal), visual (face and body expressions), and text

(speech transcript). To build a system that understands natural human behaviors from

video data, we need algorithms able to sense, learn, and infer from multiple modalities.

This chapter describes the problem of personality recognition based on multimodal human

behavior. Based on a well-developed theory in psychology called the Big Five personality

traits [25, 71], we collected a dataset for personality recognition from YouTube, which we

call the Time10Q dataset. The goal is to predict people’s impression about the personality

of someone appearing in a short video clip; in other words, instead of predicting the true

personality of someone in video, we focus on predicting how people would perceive the

personality of someone in video. We call this task the personality impression recognition.

Below, after briefly reviewing the study of personality from the psychology perspective,
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we introduce the task of automatic personality impression recognition, describe the data

collection procedure, and explain how we extract features from multiple modalities.

4.1 Personality Understanding

People reason about the personality of others virtually everyday, both intentionally and

unintentionally. After watching someone’s behavior even briefly, we can judge whether

someone is friendly or unfriendly, extrovert or introvert, etc. – we are all an expert in

personality assessment.

A tremendous amount of research has been conducted on the effect of someone’s personality

in a variety of social contexts [51, 126, 34]. When making friends we try to see what kind

of personality others have in order to determine if they get along well [51]. In some

fashion a job interview is very much like the personality test [126]; a study shows that

one’s personality strongly affects their job performance [6]. Making the right persona is an

extremely important factor in political campaign [34]. All this evidence suggests that our

perception of others’ personalities have a tremendous effect on our decisions and thoughts.

4.1.1 Human Personality Psychology

The study of human personality dates as far back as the ancient Greek philosophy, where

the early philosophers such as Plato and Aristotle set down fundamental insights into

the human psyche [36]. The field of personality psychology has evolved into a number

of different schools and models over the past centuries, which can be largely categorized

into two contradictory views: idiographic and nomothetic [32]. The former asserts that

human personality is unique in its own right and no two are exactly alike, while the latter

believes that there exists a set of common traits and that a personality can be described

as a combination of quantifiable traits [19, 35].
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Big Five Traits Correlated trait adjectives
Openness Curious, imaginative, artistic, wide interests,
(vs. closedness to experience) excitable, unconventional
Conscientiousness Efficient, organized, not careless, thorough,
(vs. lack of direction) not lazy, not impulsive
Extraversion Sociable, forceful, energetic, adventurous,
(vs. introversion) enthusiastic, outgoing
Agreeableness Forgiving, not demanding, warm, not stubborn,
(vs. antagonism) not show-off, sympathetic
Neuroticism Tense, irritable, not contented, shy, moody,
(vs. emotional stability) not self-confident

Table 4.1: Correlated adjectives to the Big Five traits.

In this work, we take the nomothetic view of human personality that many contemporary

psychologists believe to be appropriate [32], without trying to suggest which view is more

correct.

4.1.2 The Big Five Personality Traits

Many contemporary psychologists agree that there exists five basic dimensions of human

personality, called the Big Five personality traits [25, 71], which include openness (O),

conscientiousness (C), extraversion (E), agreeableness (A), and neuroticism (N) – OCEAN

for short (see Table 4.1). These five dimensions “have been found to contain and subsume

most known personality traits and are assumed to represent the basic structure behind all

personality traits” [81].

Several approaches have been developed to measure the Big Five traits. The most widely

used ones typically have a questionnaire format with a number of self-descriptive ques-

tions [25, 40]. The consensus among the psychologists is that a format with more ques-

tions leads to a more accurate measurement, e.g., the NEO Personality Inventory Revised

version (NEO-PI-R) [25] has 240 questions. But in certain circumstances, asking many

questions may not be realistic, such as in Internet-based psychology studies [40], where

79



Question
Q1 The person is reserved
Q2 The person is generally trusting
Q3 The person tends to be lazy
Q4 The person is relaxed, handles stress well
Q5 The person has few artistic interests
Q6 The person is outgoing, sociable
Q7 The person tends to find fault with others
Q8 The person does a thorough job
Q9 The person gets nervous easily
Q10 The person has an active imagination

Table 4.2: The Big Five Inventory 10-item version (BFI-10) by Rammstedt and John [88].
Each question is rated on a five-point Likert scale: 1 (disagree strongly), 2 (disagree a
little), 3 (neither agree nor disagree), 4 (agree a little), 5 (agree strongly). The five traits
are then computed as: Openness = Q10 - Q5, Conscientiousness = Q8 - Q3, Extraversion
= Q6 - Q1, Agreeableness = Q2 - Q7, Neuroticism = Q9 - Q4.

a shorter version is preferred. The Big Five Inventory 10-item version (BFI-10) [88], for

instance, has only 10 questions and takes less than a minute to finish (see Table 4.2).

Because our work takes a crowd-sourced approach to collecting personality impression mea-

surements (see below), we decided to adopt the BFI-10 questionnaire by Rammstedt and

John [88] to measure the Big Five personality traits. Table 4.2 lists the 10 questions, where

each question is rated on a five-point Likert scale ranging from 1 (disagree strongly) to 5

(agree strongly). The scores for personality traits are computed from the ratings as: Open-

ness = Q10 - Q5, Conscientiousness = Q8 - Q3, Extraversion = Q6 - Q1, Agreeableness =

Q2 - Q7, Neuroticism = Q9 - Q4.

4.1.3 Automatic Recognition of Personality Impression

Why are we interested in automatic recognition of personality impression? One reason

is task automation: psychologists analyze hours of videos to study people’s behaviors;

with an increasing amount of data this becomes quickly prohibitive, making an automated

system attractive. A second reason is ensuring the consistency of assessment: it is a well-
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known phenomenon that the mood of an investigator affects the results of psychological

tests [122], which may cause a serious flaw in experimental analysis. One advantage of an

automated personality analyzer is consistency – once it is programmed, it behaves in the

same way under the same condition. Finally, having an automated system for personality

understanding will improve natural human-computer interaction: studies show that people

find it more natural if a virtual agent displays some degree of empathy [56].

To build such a system, we need an appropriate dataset that we can train and evaluate our

algorithms on. Below we describe a new dataset we collected from the YouTube website.

4.2 Time10Q Dataset

Time Magazine has a series of video episodes called Time 10 Questions. In each episode, a

reporter from Time interviews with a public figure, asking a number of questions collected

from the subscribers. The episodes are available on both Time Magazine’s website and

their Youtube channel.

Several factors make the dataset particularly interesting for our purpose. First, it contains

high quality audio-visual data. The interviews are held at an indoor environment with

controlled lighting and a little to no background noise. The videos are recorded by a team

of professional camera men, audio engineers, and lighting technicians; they capture the

interviewee’s important moments with various postures and gestures, with up-close shots

of the face. This makes it possible to extract a variety of high quality multimodal signals.

Second, the data contains natural conversations with spontaneous expressions. Unlike

other datasets for personality impression recognition that focused on self-speaking scenarios

(e.g., web blog videos [76, 9]), the speakers are having natural conversations in an informal

setting. This makes verbal and non-verbal expressions much more natural. Moreover, most

of the interviewees are professionals who are quite familiar with expressing themselves in

front of a camera; so we can expect that their expressions are not posed nor planned.
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Finally, the public figures in the dataset have the variety of job occupations among in-

terviewees, from actors and musicians to politicians and academics (see Table 4.4). This

allows the dataset to contain a wide spectrum of personalities.

4.2.1 Data Collection and Segmentation

We downloaded 149 episodes from Time’s YouTube channel.1 Each file is encoded using

H.264 YUV420p video codec and AAC 44,100 Hz stereo fltp audio codec, mux-ed into an

MP4 file format. Due to the difference in the production date of each episode, the video

files have slight variations in resolution (varies among 640x360, 480x360, and 480x270)

and FPS (varies between 24 and 30). Table 4.3 shows a list of interviewees included in our

dataset, Table 4.4 shows a list of job occupation frequencies.

Each episode starts with a short introduction of the interviewee narrated by a Time re-

porter, followed by a series of questions and answers. The interviews are in an informal

setting, and the interview formats varies across episodes.

Our focus is on the interviewees, not the interviewers. However, the video recorded both

the interviewee and interviewer. Also, most episodes include B-roll footages, i.e., supple-

mentary footage added to provide additional information about the interviewee. Although

effective for the content delivery purpose, these are actually troublesome for our purpose:

B-rolls typically include photos or videos that do not include the interviewee’s behavior,

or (worse yet) the interviewee acting a particular persona in a public setting, e.g., an actor

playing a role in a movie. Both the footage from interviewer and the B-rolls can distract

and bias the assessment of the interviewee’s personality, especially when the interviewee’s

behavior during the B-Rolls is radically different from the one in the interview.

To minimize unwanted influence from the footage of interviewer and B-rolls, we manually

segmented out only the answer part of each Q&A pair. We further discarded segments

if (a) they were too short (less than 10 seconds) or (b) more than one third of the entire

1http://www.youtube.com/user/TimeMagazine
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No Name No Name No Name
1 A. R. Rahman (7) 51 Hugh Jackman (6) 101 Pete Sampras (5)
2 Al Roker (10) 52 Ian Bremmer (4) 102 Peter Goodwin (3)
3 Alan Mulally (8) 53 Imran Khan (5) 103 Phil Jackson (8)
4 Alex Trebek (8) 54 J. J. Abrams (7) 104 Queen Latifah (8)
5 Alicia Keys (5) 55 Jamaica Kincaid (5) 105 Questlove (8)
6 America Ferrera (7) 56 James Cameron (5) 106 Rachael Ray (5)
7 Amy Poehler (6) 57 Jane Goodall (6) 107 Randy Pausch (5)
8 Andre Gassi (5) 58 Janet Evanovich (6) 108 Ray Kurzweil (7)
9 Annie Leibovitz (5) 59 Jason Reitman (9) 109 Reese Witherspoon (5)
10 Anthony Bourdain (5) 60 Javier Bardem (8) 110 Richard Brandon (5)
11 Aretha Franklin (7) 61 Jeff Bridges (5) 111 Rick Warren (4)
12 Arianna Huffington (5) 62 Jeremy Piven (6) 112 Ricky Gervais (3)
13 Ashton Kutcher (6) 63 Jim Cramer (8) 113 Robert Caro (5)
14 Aziz Ansari (4) 64 Jimmy Wales (8) 114 Robert Groves (6)
15 Bill Gates (4) 65 Jody Williams (6) 115 Robert Kiyosaki (9)
16 Bill Keller (5) 66 John Ashbery (6) 116 Robert Redford (4)
17 Bill O’Reilly (9) 67 John Krasinski (7) 117 Robin Williams (5)
18 Bode Miller (5) 68 John Mellencamp (6) 118 Roger Goodell (7)
19 Brad Anderson (4) 69 John Woo (9) 119 Ron Paul (7)
20 Caitlin Moran (6) 70 Jose Antonio Vargas (1) 120 Salman Rushdie (5)
21 Candace Parker (7) 71 Joshua Bell (7) 121 Sarah Silverman (4)
22 Carrie Fisher (4) 72 Joss Whedon (9) 122 Shakira (4)
23 Chaz Bono (7) 73 Julieta Garibay (1) 123 Shaun White (5)
24 Chris Kyle (6) 74 Julio Salgado (1) 124 Sherman Alexie (10)
25 Chris Rock (7) 75 Kofi Annan (8) 125 Shimon Peres (6)
26 Colin Powell (7) 76 Lang Lang (3) 126 Simon Pegg (6)
27 Dalai Lama (6) 77 Larry King (8) 127 Smokey Robinson (7)
28 Daniel Kahneman (8) 78 Li Na (8) 128 Stephenie Meyer (5)
29 Daniel Radcliffe (9) 79 Louis C.K. (6) 129 Steven Spielberg (5)
30 Danny Boyle (6) 80 Madeleine Albright (8) 130 Sting (5)
31 Darren Aronofsky (4) 81 Magic Johnson (9) 131 Susan Rice (5)
32 Dave Grohl (10) 82 Mandeep Chahal (1) 132 Susan Sarandon (5)
33 David Adjaye (7) 83 Maya Angelou (6) 133 Suze Orman (7)
34 David Brooks (3) 84 Maya Rudolph (3) 134 Taylor Swift (8)
35 David McCullough (6) 85 Michael Chabon (6) 135 Ted Williams (5)
36 David Stern (5) 86 Michael J. Fox (7) 136 Tolu Olobumni (1)
37 Denis Leary (5) 87 Michael Vick (4) 137 Tom Friedman (5)
38 Diane Sawyer (4) 88 Michelle Williams (4) 138 Tom Wolfe (4)
39 Donatella Versace (4) 89 Mickey Rourke (7) 139 Toni Morrison (5)
40 Doug Ulman (7) 90 Mike Tyson (9) 140 Tony Hawk (7)
41 Emma Watson (8) 91 Mitt Romney (7) 141 Ty Burrell (4)
42 Ewan McGregor (7) 92 Muhammad Yunus (6) 142 Van Morrison (6)
43 Gaby Pacheco (1) 93 Nancy Pelosi (5) 143 Victor Palafox (1)
44 Gavin Newsom (8) 94 Nassim Taleb (5) 144 Viggo Mortensen (6)
45 Gordon Brown (5) 95 Natalie Maines (5) 145 Werner Herzog (5)
46 Harrison Ford (7) 96 Natalie Portman (3) 146 Wladimir Klitschko (4)
47 Helen Mirren (5) 97 Neil deGrasse Tyson (6) 147 Woody Allen (9)
48 Henry Paulson (7) 98 Nigella Lawson (6) 148 Zac Efron (6)
49 Hilary Swank (6) 99 Paul Farmer (3) 149 will.i.am (7)
50 Hugh Hefner (8) 100 Perez Hilton (8)

Table 4.3: A list of 149 interviewees in the Time10Q dataset. We segment each episode
(numbers in parenthesis indicate the number of video segments produced from each
episode); the total number of segments is 866.
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Job Occupation Count Job Occupation Count Job Occupation Count
Actor/Actress 25 Comedian 9 Commissioner 2
Musician 16 Civilian 8 Coach 1
Book Writer 15 TV Presenter 7 Photographer 1
Athletic 12 Journalist 7 Architect 1
Politician 11 Entrepreneur 7 Sniper 1
Scholar 11 Chef 2
Film Director 10 Religious Leader 2

Table 4.4: A list of job occupations in the Time10Q dataset.

segment contains B-roll material. This resulted in a total of 866 video segments (9 hours

22 minutes in total). Table 4.3 shows the number of video segments we produced from

each episode.

The segmentation effectively gives us the “thin slices”, a term in psychology that refers

to an effective length of movie clips for psychological studies. Ambady et al. [2] have

found that the results of clinical and social psychological studies did not differ whether the

subjects have watched someone’s behavior from a short (less than 30-second) or a long (4-

and 5-minute) movie clips. The average duration of each episode is 6 minutes, while the

average duration of each segment is 38 seconds, with about 90% less than a minute long.

Figure 4-1 shows the histogram of segment durations.

4.3 Multimodal Feature Extraction

We next describe in detail how we extract features from each of the modalities – face, body,

and speech (both verbal and non-verbal).

4.3.1 Features from Facial Expression

There is a large body of literature on how informative the human face is in revealing one’s

emotion and personality [30, 31]. Because our video data contains an upper body shot
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Figure 4-1: A histogram of video segment durations. Our dataset contains 866 video
segments. About 90% of the segments are less than a minute long, the average duration is
38 seconds.

of the interviewees for a vast majority of time, we can track the face region and extract

appearance features in that region.

For each frame of video, we obtain 49 facial landmarks (see Figure 4-2 (a)) using the

IntraFace software package developed by Xiong and De La Torre [124], which uses a su-

pervised descent method to minimize a nonlinear least squares function. We then perform

affine transformation on the bounded face patch and normalize its size to 120x120 pixels

so that the centers of the eyes are in the same location in all the patches. The resulting

face patch is converted to gray scale. From the normalized images, we extract the Pyramid

version of Histogram of Oriented Gradients (PHOG) features [14] with eight bins on three

different pyramid levels. This results in a 680-dimensional feature vector.
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Figure 4-2: (a) 49 landmarks tracked by the IntraFace [124]. (b) example results on the
Time10Q dataset.

4.3.2 Features from Body Motion

Human body motion provides vital information on non-verbal communication, called Ki-

nesics [10]. In addition to the features from facial expression, we extract local visual

features to describe body motion. Local feature descriptors have shown to perform well in

challenging scenarios in action recognition [1], such as detecting activities from Hollywood

movie clips [66]. Part of our contribution is evaluating local feature descriptors in the

personality recognition setting.

Note that in the previous chapter we tracked skeleton upper body postures and used them

to recognize a predefined vocabulary of body actions. That approach has the advantage

that it provides a compact way of representing body motion. But the scenario presented in

this chapter makes it difficult to apply the same technique. The video data has the “in the

wild” characteristic in the sense that the camera viewpoint changes frequently, and some

body parts are often occluded or not recorded, making it harder to estimate skeleton body

postures.

We extract local features from densely sampled interest points using the Dense Trajec-

tory software package developed by Wang et al. [116]. It samples dense points from each

video frame and tracks them based on displacement information from a dense optical flow

field. It then extracts three different feature descriptors: Histogram of Oriented Gradients
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(HOG), Histogram of Optical Flow (HOF), and Motion Boundary Histograms (MBH). We

sample the dense trajectories at a 10-pixel stride, and track each trajectory for 15 frames.

Descriptors are computed at 32x32 pixel region around each trajectory. The dimension of

each local feature vector is 396 (96 for HOG, 108 for HOF, and 192 for MBH).

4.3.3 Features from Utterances

Utterances have shown to provide important information about human personality [70].

Note that the utterance has much coarser granularity than other modalities (e.g., we can

speak only a few words in a second) and that the surrounding context is crucial (e.g., a word

can have a completely opposite meaning given different surrounding words). Therefore, we

extract the utterance features from the words spoken in an entire video segment (about 38

seconds to 1.5 minutes).

Most episodes on the Time 10 Questions series uploaded on the YouTube website come

with automatically recognized verbal transcripts. We downloaded the transcripts, removed

common English stopwords2, and segmented transcripts from each episode to match with

the corresponding video segment. The transcripts are then processed using Latent Dirichlet

Allocation (LDA) [11] with 50 latent topic classes to extract 50-dimensional feature vector,

using the Matlab Topic Modeling Toolbox [42].

4.3.4 Features from Prosody of Speech

The term prosody refers to the rhythm, stress, and intonation of speech. The role of

prosody in personality understanding has been studied extensively [90, 73]. In this work

we extract the fundamental frequency (F0), the Noise-to-Harmonic Ratio (NHR), and the

loudness contour from the audio channel using the OpenSmile software package [33], with

a window of size 50ms at 10ms interval. F0 represents the lowest frequency produced

2Downloaded from http://www.textfixer.com/resources/common-english-words.txt
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by air flowing through the vocal folds, the NHR represents the voice quality, and the

loudness contour is the sequence of short-term loudness values extracted on a frame-by-

frame basis [92]. This results in a 3-dimensional feature vector. For more details in prosody

features, see Schuller [92].

4.4 Crowd-Sourced Personality Impression Measure-

ment

For personality label data collection, we use untrained crowd workers on Amazon’s Me-

chanical Turk. Psychology experts and trained labelers might provide higher quality and

more reliable data [41], but these solutions are neither cost-effective nor scalable [59]. A

major advantage in crowdsourcing data collection is scalability: our Mechanical Turk study

presents a scalable method to collect large-scale data on personality impression. Moreover,

crowdsourcing provides additional data on how people’s personality impression agrees or

disagrees with others. A drawback is individual variances and quality control, which we

address with several techniques presented below.

4.4.1 Task Setup

On Mechanical Turk, a task requester (researcher) recruits workers (Turkers) by paying

money to solve Human Intelligence Tasks (HITs). The task design and configuration

parameters determine the quality and speed of data collection. Here we present major

task parameters used in our HIT.

• Upon completion of the HIT, a Turker was paid $0.10. Note that a Turker can

complete multiple HITs but was not permitted to do the same HIT multiple times.

• Instead of asking a Turker to watch an entire episode of an interview , we decompose

a clip into the 38 second - 1.5 minute video segments mentioned above. Assigning a

88



short, separate HIT for each short video segment makes the task more attractive to

Turkers.

• We ask 10 Turkers to complete the task for each video segment. This reduces the

chance of a spammer’s data tainting the data quality [41]. As a routine practice, we

compute inter-rater reliability to see how much the Turkers agree on their answers,

shown below.

• As a majority of the interviewees in the video set were well-known in America and

represent the American culture, we recruited workers who reside in the U.S. to con-

trol for cultural biases. Additionally, we only accepted workers with 95% or higher

approval rating for quality control.

4.4.2 Task Implementation

Mechanical Turk allows tasks created in their built-in interface or linked to an external

website. We hosted an external task website to have more control in the task design. The

HIT was implemented using YouTube’s API and HTML/CSS/Javascript. We used the

MTurk command line tool 3 to create, manage, and review results.

4.4.3 Task Walk-through

The HIT is designed to collect a Turker’s responses to the BFI-10 questionnaire after

watching a short video clip of an interviewee answering a question. We designed the HIT

to maximize the quality of the answers by using a variety of techniques, including not

revealing the questionnaire until the video is done, not enabling watching fast forward, etc

(see below). Figure 4-5 shows the overall task.

3http://aws.amazon.com/developertools/Amazon-Mechanical-Turk/694
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Figure 4-3: A screen shot of the tutorial HIT (page 1 of 2).

Tutorial HIT

To help the Turker get familiar with the personality questions, the HIT presents a short

tutorial with a dummy video clip (not used in the actual study) and the BFI-10 question-

naire (Figure 4-3). We keep track of all Turkers who completed the tutorial, and show the

tutorial to each of them only once.

Main HIT

The main HIT starts by giving a short description of the task, along with a notification

saying that “This HIT expires in 7 minutes”. In our preliminary study without the short

HIT expiration time, we noticed that some Turkers’ task completion time was too long,

even longer than an hour, suggesting those Turkers were not paying close attention to the

task. To solve this problem, we set the HIT expiration time to 7 minutes, which ensures

consistency in the ratings by forcing the Turker to complete the HIT in one sitting.
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Figure 4-4: A screen shot of the tutorial HIT (page 2 of 2).
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Figure 4-5: A screen shot of the main HIT (page 1 of 3).
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Figure 4-6: A screen shot of the main HIT (page 2 of 3). The 10 questions are shown in
two-column to save space; in the web form they were shown in one-column.
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Figure 4-7: A screen shot of the main HIT (page 3 of 3).

The system starts by showing the name and a photo of the interviewee and asking “Do you

know this person?” If the Turker answers “Yes”, it then asks “How confident are you that

you could describe the personality of this person?” on the scale of 1 (not very confident)

to 5 (very confident). These questions collect information about the preconception of the

Turker to the interviewee.

Then the task presents instructions by asking the Turker to “think ahead” and “avoid

preconception,” followed by showing the 10 questions. This allows the Turker to focus

on the questions they will answer while watching the video. Our pilot tests showed that

without this design (show the questions only after watching the video), they often resorted

to random answers because they did not pay attention to those aspects that our questions

address while watching the video clip.

The Turker then clicks on the play button from the embedded video player. While the

Turker can pause and play the clip, the control bar is hidden to prevent the Turker from

skipping ahead. The HIT opens the answer form only after the end of the clip, again to
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Figure 4-8: A cumulative distribution of HITs/Turker (left) and a histogram of task com-
pletion time (right).

ensure that the Turker watches the entire clip before answering the questions.

The main questionnaire shows each question statement (e.g., “The person is reserved”)

with five choices (Disagree strongly - Disagree a little - Neither agree nor disagree - Agree a

little - Agree strongly). We positioned the questions and the choices vertically, which makes

choosing a random choice as difficult as choosing the right choice. Making spamming as

tedious as correctly answering is a recommended practice in crowdsourcing task design [59].

Post-Task Questionnaire Survey

Once the form detects that all answers are provided, it asks for optional, self-reported

demographic information (gender, ethnicity, and age) and free-form comments. The Turker

needs to click on the “submit” button below the optional form to complete the HIT.

4.5 Results from Mechanical Turk Study

A total of 441 unique Turkers completed 8,660 HITs in 14 hours. There were a few very

active Turkers who completed a majority of the HITs: 14 Turkers finished more than 100

HITs each, 1937 HITs collectively (about 23% of total HITs), while 193 Turkers finished
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Figure 4-9: Score distributions across all five personality traits.

Trait Mean SD Skew Min Max
O 1.37 1.94 -0.41 -4.00 4.00
C 2.35 1.48 -0.96 -4.00 4.00
E 0.99 2.11 -0.27 -4.00 4.00
A 0.74 2.04 -0.38 -4.00 4.00
N -1.75 1.85 0.80 -4.00 4.00

Table 4.5: Descriptive statistics of the computed five personality traits.

less than 5 HITs each. Figure 4-8 (left) shows a cumulative distribution of HITs per Turker.

Figure 4-8 (right) shows a histogram of task completion times. About 80 of the HITs were

finished in between one and two minutes; about 9% were finished in less than one minute,

and about 10% were finished in more than 3 minutes. Considering the average length of

video segments (38 seconds), and observations in the literature that it takes less than one

minute to answer the BFI-10 questionnaire [88], we believe that most Turkers have finished

HITs in one sitting with a reasonable amount of attention.

We computed numeric scores of the five personality traits based on the Turkers’ annota-

tions, using the formulas given by Rammstedt and John [88] (see Table 4.2). Figure 4-9 and

Table 4.5 show distributions of the computed scores and their descriptive statistics across

8,760 annotations. Our Turkers had a tendency to give positive ratings to the interviewees

in the videos: the distributions are skewed to the positive side of each dimension (a lower

value in the Neuroticism dimension is the positive side).

Perhaps the most important question to ask is: How reliable are the scores? Do the
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Cronbach’s Alpha ICC(1,k)
O C E A N O C E A N

Aran [3] .54 .19 .72 .66 .09 .54 .19 .73 .66 .05
Biel [9] .48 .63 .58 .46 .61 .47 .45 .76 .64 .42
Ours .79 .49 .77 .74 .52 .79 .49 .76 .74 .52

Table 4.6: Cronbach’s alpha coefficients and ICC(1,k) measures. The higher the value is,
the more reliable the results are. The rule of thumb is that test scores have good reliability
if the coefficient is between 0.7 and 0.9.

Turkers agree on their judgment of the interviewee’s personality? To assess the reliability

of the scores, we measured both the internal consistency (Cronbach’s alpha) and inter-rater

reliability (intraclass correlation) of the test scores.

Cronbach’s alpha is a coefficient of an internal consistency based on average correlation

among test items, while Intraclass Correlation Coefficient (ICC) measures homogeneity of

the test scores in the same group. There are six different ways to compute ICC, depending

on the design of the study and measurement types. Because each video segment is assessed

by a different set of Turkers and we take an average of the scores given by 10 Turkers, we

compute ICC(1,k) (k=10 in this case).

Table 4.6 shows both Cronbach’s alpha and ICC(1,k) measures. As a calibration point, we

also provide the results reported in Aran and Gatica-Perez [3] and Biel and Grtica-Perez [9]

who collected similar data using Mechanical Turk. We can see that the scores are more

reliable than previous datasets: our scores have higher ICC(1,k) measures than the two

other datasets on every personality dimension.

4.6 Experiments

Our goal is to build a system that predicts people’s impression about the personality of

public figures from their multimodal behavior displayed in a short video clip. In this

section, we evaluate how well our extracted features would perform in predicting the big
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five personality scores of each video segment.

4.6.1 Problem Formulation

Different kinds of problems can be explored with our dataset, e.g., classification, regression,

clustering, and ranking. In this work, we pose our problem as a classification problem with

two categories for each of the five dimensions: whether a score is below or above the average

of everyone’s score in the dataset. Our decision to use the average as the categorization

boundary comes from the fact that score distributions of all five dimensions are skewed, as

shown in Figure 4-9. Categorizing scores with respect to an absolute boundary (e.g., score

0) would result in a heavily imbalanced data, compounding the experiment and making it

harder to study the quality of the extracted features.

Because we use the average score as a categorization boundary, the number of samples

per class is well balanced. The numbers of samples above and below the average for each

dimension were: 399 vs. 467 (O), 406 vs. 460 (C), 414 vs. 452 (E), 378 vs. 488 (A), 452

vs. 414 (N).

4.6.2 Bag-of-Words Feature Representation

The features we extracted from four modalities (face, body motion, utterance, and prosody)

have different representation formats. In terms of the sampling rate, the face features are

extracted per frame, the body motion features per trajectory length (lengths vary among

trajectories), the utterance features per sequence, and the prosody features per window (of

size 50ms at 10ms interval). The body motion features are extracted from local trajectories,

so there are varying numbers of features extracted from each video segment. In order to

obtain a unified representation of this heterogeneous set of features, we use the bag-of-words

approach.

For all three modalities except the utterance, we perform vector quantization using the
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K-means algorithm: learn K centroids for each modality and assign the closest centroid

ID to each feature vector. The number of centroids K is cross-validated across 100, 200,

and 500. When learning the centroids, we subsample by a factor of 100 from the entire

set of feature vectors: this results in about 10,000 samples for face, 35,000 samples for

body motion, and 30,000 samples for prosody. After the vector quantization, we produce

a histogram representation of the features from each modality by aggregating the centroid

IDs into the K bins and normalizing the counts to sum up to one.

Note that we do not perform feature bagging for the the utterance modality because the

LDA feature vector is represented per-video – this matches the sampling granularity of the

histogram representation of three other modalities.

Finally, we obtain a per-video feature vector representation by concatenating the three

histograms and one LDA feature vector into one vector. This results in a vector of size

3×K + 50 (LDA). The data is then normalized to have zero mean and standard deviation

of one (i.e., the z-score).

4.6.3 Methodology

We use a Support Vector Machine (SVM) [113] with the RBF kernel as our prediction

model.4 The RBF kernel width was fixed to one over feature dimension, which has empir-

ically shown to produce good performance [20]. We cross-validated the penalty parameter

of the error term C = 10c with c = [1 · · · 6].

In order to choose the optimal values of the hyper-parameters (the number of K-means

centroids and the penalty term C in the SVM), we perform 10-fold cross-validation in the

subject-independent setting: we first evenly split the 866 samples into 10 subsets, then

further refine them by moving the samples across the subsets so that no two subsets share

video segments of the same person. Since the number of segments per person is roughly

uniform, our splitting scheme produced a uniform distribution of samples per subset: [92

4We use the LIBSVM software package developed by Chang and Lin [20].
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83 87 85 89 80 94 78 88 90]. We use one subset for testing, another subset for validation,

the rest for training the model, repeating ten times. The optimal combination of parameter

values is then chosen as the one that gives the best performance on the validation split,

averaged out across 10 folds; below we report performance on both the validation split and

the test split for completeness.

Our goal in this experiment is to see which combination of modalities has the best predictive

power. To this end, we run experiments on each of the fifteen combinations of the four

modalities. The performances are reported for each combination. The total number of

test cases is 13,500: 10 (fold) × 3 (K-means centroid) × 15 (modality combinations) × 6

(SVM cost term C) × 5 (OCEAN).

4.6.4 Results and Discussion

Table 4.7 shows the accuracy and the F1 score performances from each of the fifteen

combinations of modalities, across all five personality dimensions; Figure 4-10 and Figure 4-

11 show bar graphs.

There was no single combination of modalities that performed the best across all five

dimensions, but on average a combination of all four modalities performed the best in

terms of F1 score on the test split.

It is interesting to see that unimodal features often outperformed multimodal features:

in terms of the accuracy on the test split, the face features performed the best on both

the extraversion and the neuroticism dimension, and the utterance features performed the

best on the agreeableness dimension. In terms of the F1 score on the test split, the face

features performed the best on both the conscientiousness and the neuroticism dimension,

and the utterance features performed the best on both the openness and agreeableness

dimension. As shown in Figure 4-10 and Figure 4-11, however, the differences between the

best performing combinations and other combinations were not significant.
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Validation Split Test Split
O C E A N Avg. O C E A N Avg.

Face (F) 0.60 0.54 0.55 0.54 0.56 0.56 0.58 0.54 0.57 0.54 0.56 0.56
Body (B) 0.60 0.53 0.49 0.58 0.55 0.55 0.62 0.48 0.48 0.56 0.55 0.54
Pros. (P) 0.59 0.53 0.59 0.57 0.55 0.57 0.59 0.52 0.56 0.56 0.55 0.56

A Utte. (U) 0.62 0.53 0.53 0.63 0.50 0.56 0.65 0.53 0.54 0.64 0.49 0.57
c FB 0.61 0.52 0.55 0.59 0.52 0.56 0.61 0.50 0.56 0.54 0.52 0.55
c FP 0.62 0.55 0.57 0.55 0.54 0.57 0.61 0.53 0.55 0.53 0.53 0.55
u FU 0.61 0.53 0.55 0.60 0.50 0.56 0.60 0.53 0.52 0.59 0.51 0.55
r BP 0.57 0.51 0.56 0.53 0.54 0.54 0.58 0.51 0.54 0.53 0.53 0.54
a BU 0.61 0.52 0.51 0.62 0.51 0.55 0.64 0.47 0.53 0.58 0.48 0.54
c PU 0.64 0.52 0.58 0.61 0.54 0.58 0.63 0.50 0.55 0.62 0.55 0.57
y FBP 0.59 0.54 0.59 0.57 0.51 0.56 0.58 0.53 0.56 0.55 0.53 0.55

FBU 0.63 0.53 0.55 0.60 0.53 0.57 0.62 0.50 0.53 0.59 0.52 0.55
FPU 0.62 0.54 0.57 0.57 0.53 0.57 0.64 0.55 0.57 0.58 0.54 0.58
BPU 0.61 0.51 0.58 0.57 0.53 0.56 0.65 0.52 0.57 0.56 0.54 0.57

FBPU 0.61 0.51 0.60 0.58 0.53 0.56 0.63 0.52 0.55 0.57 0.53 0.56

Face (F) 0.65 0.63 0.52 0.62 0.50 0.58 0.59 0.63 0.51 0.59 0.54 0.57
Body (B) 0.64 0.59 0.52 0.64 0.52 0.58 0.62 0.52 0.51 0.55 0.49 0.54
Pros. (P) 0.59 0.59 0.60 0.59 0.53 0.58 0.56 0.60 0.56 0.59 0.45 0.55

F Utte. (U) 0.66 0.60 0.58 0.70 0.46 0.60 0.68 0.59 0.58 0.70 0.47 0.61
1 FB 0.66 0.55 0.58 0.67 0.50 0.59 0.63 0.56 0.55 0.62 0.48 0.57

FP 0.66 0.60 0.59 0.63 0.45 0.59 0.63 0.59 0.59 0.60 0.47 0.58
S FU 0.65 0.58 0.56 0.67 0.49 0.59 0.62 0.56 0.56 0.67 0.48 0.58
c BP 0.58 0.55 0.57 0.60 0.52 0.57 0.57 0.58 0.54 0.61 0.47 0.55
o BU 0.66 0.57 0.55 0.66 0.46 0.58 0.61 0.54 0.53 0.63 0.44 0.55
r PU 0.65 0.55 0.61 0.66 0.54 0.60 0.65 0.54 0.56 0.67 0.52 0.59
e FBP 0.65 0.57 0.61 0.69 0.47 0.60 0.63 0.61 0.63 0.66 0.47 0.60

FBU 0.67 0.56 0.58 0.70 0.47 0.60 0.66 0.54 0.56 0.69 0.46 0.58
FPU 0.66 0.59 0.59 0.69 0.45 0.60 0.67 0.60 0.55 0.67 0.48 0.59
BPU 0.62 0.54 0.60 0.63 0.51 0.58 0.60 0.58 0.57 0.65 0.49 0.58

FBPU 0.66 0.57 0.63 0.70 0.46 0.60 0.68 0.61 0.57 0.69 0.48 0.61

Table 4.7: Accuracy and F1 score results. Bold faced values indicate the best modality
combination for predicting each personality dimension.
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In this experiment, we took the early fusion approach: features from different modalities

were concatenated into a single vector, which was then used as an input to an SVM as

if the features were from a single modality. Although we used information from all four

modalities, we did not fully leverage the structure in multimodal data, e.g., correlation and

interaction across modalities. We focus on exploiting this sort of multimodal structure in

the next chapter.
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Figure 4-10: Accuracy results. Legend: Face (F), Body (B), Prosody (P), and Utterance
(U). Error bars indicate 95% confidence intervals.
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Figure 4-11: F1 score results. Legend: Face (F), Body (B), Prosody (P), and Utterance
(U). Error bars indicate 95% confidence intervals.
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Chapter 5

Learning Multimodal Structure of

Human Behavior

Human communication involves a complex interplay of multiple modalities, e.g., neither

speech nor facial expression alone entirely conveys the true intention behind sarcastic ex-

pressions like “that was great” (said with an uninterested facial expression); the sarcasm

is conveyed only through multimodal signal as a whole. As such, building a system for

understanding human behaviors requires reasoning about information from multiple modal-

ities [129]. While it is evident that “the more the better” strategy fits well into this scenario,

the question remains: how should we combine information from multiple modalities?

This chapter presents a novel data fusion algorithm that uses structured sparsity to combine

information from multiple modalities. The key observation behind this work is group

sparsity in multimodal features: features from just a few of the modalities can contain all

the information needed at any given time. It is not always the case that all modalities

convey useful information; sometimes we express emotions while remaining silent.

Structured sparsity has emerged as a powerful technique for representing this kind of struc-

ture in a parsimonious way, and has found numerous applications in signal processing and

pattern recognition [121, 53, 4]. We use structured sparsity both to construct a dictionary
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of multimodal expressions and to transform a set of multimodal features into a sparse set

of coefficients with respect to the dictionary.

The main novelty in our work is the hierarchical formulation of factorized multimodal

subspaces via structured sparsity: we factorize the multimodal feature space into modality-

shared subspaces and modality-private subspaces, then learn a hierarchical structure among

them based on the superset/subset relationship. The dictionary can be seen as a collection

of basis vectors embedded in a hierarchy of multimodal subspaces; using structured sparsity,

we encourage the hierarchy to capture the intrinsic structure of a multimodal feature

space. In essence, the hierarchical formulation allows our dictionary to capture complex

dependence/independence structure across multiple modalities in a principled manner.

We start by introducing the data fusion problem in the context of multimodal signal un-

derstanding and briefly review related work, and provide an intuition behind our approach

that exploits the hierarchical structure among multiple modalities. We then describe our

mixed-norm formulation that uses structured sparsity to perform data fusion, and provide

experimental results and discuss the effectiveness of our approach.

5.1 Data Fusion for Human Behavior Understanding

The goal of data fusion is to combine a set of multiple heterogeneous features in a such way

that it makes the best use of the richness of information available. Two simple and often

used approaches are early and late fusion [97]: early fusion treats information from multiple

modalities as if they were from a single modality and simply concatenate them into one

feature vector, while late fusion treats information from each modality independently until

a decision is made. Experience suggests that both approaches fail to account for statistical

relationship among the modalities [125]: in early fusion, a modality with strong dynamics

(e.g., high variance) can dominate the inference procedure [22]; while late fusion discards

any statistical relationship between modalities (e.g., correlation) [97].
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Part of the difficulty in data fusion comes from the fact that information can be comple-

mentary, redundant, and contradictory across modalities [129]. Several approaches have

been developed to exploit these properties of multimodal data. Co-training [12] and Multi-

ple Kernel Learning (MKL) [64, 108] have shown promising results when the modalities are

independent, i.e., they provide different and complementary information. However, when

the modalities are not independent, as is common in human behavior understanding, these

methods often fail to learn from the data correctly [62]. Canonical Correlation Analysis

(CCA) [43] and Independent Component Analysis (ICA) [49] have shown a powerful gen-

eralization ability to model correlation and independence between modalities, respectively.

However, the assumptions made by these techniques are rather strict in many real-world

scenarios.

5.1.1 Multimodal Subspaces

Recently, there has been a surge of interest in learning a multimodal dictionary by exploit-

ing group sparsity in multimodal signals. In particular, it has been shown that factorizing

a multimodal signal space into parts corresponding to an individual modality and parts

that are shared across multiple modalities leads to improvements in multimodal signal

understanding [74, 54, 110, 131, 21]. We call such factorized spaces the multimodal sub-

spaces, and the two kinds of subspaces modality-private and modality-shared subspaces,

respectively. Intuitively, modality-private subspaces account for the patterns within each

modality that are independent of other modalities, while modality-shared subspaces ac-

count for the patterns that are dependent on other modalities.

Jia et al. [54] showed that such subspaces can be found in a convex optimization frame-

work using structured sparsity, imposing a group-wise sparsity-inducing norm on the basis

vectors (i.e., the columns) of a dictionary matrix. Once such a dictionary is constructed,

a multimodal signal vector can be represented as a linear combination of the basis vectors

using sparse coding [112, 82]. Their approach is illustrated in Figure 5-1 (b), where signals
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(a) Shared Subspace (b) Shared-Private Subspace (c) Hierarchical Shared-Private Subspace

Figure 5-1: Factor graph representations of three two-modality subspace models: (a) shared
subspace model, (b) shared-private subspace model [54], (c) our hierarchical shared-private
subspace model. An input signal from two modalities [x(1); x(2)] is represented in terms
of basis vectors from a shared subspace D(s) and basis vectors from a private subspace
[D(1); D(2)] via the coefficient term α(·).

Figure 5-2: Multimodal subspaces form a hierarchical tree structure induced by the super-
set/subset relationship.

from both modalities [x(1); x(2)] are represented in terms of basis vectors from a shared

subspace D(s) and basis vectors from a private subspace [D(1); D(2)] via the coefficient

term [α(1); α(s); α(2)]. They showed that this sparse representation effectively accounts

for dependence and independence among multiple modalities [54].

108



5.1.2 Intuition: Hierarchical Multimodal Subspaces

We observe that multimodal subspaces have a superset/subset relationship that induces

a hierarchical structure of the sort shown in Figure 5-1 (c): a subspace D(s) is a superset

of two subspaces defined over the corresponding modalities [D(1); D(2)], thus D(s) can be

seen as a parent of [D(1); D(2)]. Figure 5-2 illustrates a hierarchy of tri-modal subspaces

constructed following the superset/subset rule.

Our intuition is that leveraging this hierarchical structure will enable the multimodal sub-

spaces to capture the dependence/independence relationships across modalities accurately.

From the hierarchical structure we can use the hierarchical sparsity rule [53]: a subspace

D(i) will participate in reconstructing an input signal x (i.e., the corresponding weight

term α(·) is non-zero), only if all of its parent subspaces D(j) are participating as well,

where j’s are the indices of the parent of the i-th node. For example, in order for the

subspace D(3) under D(2,3) to participate, its parent subspaces D(2,3) and D(1,2,3) have to

participate as well. The sparsity constraint ensures that only a few paths (from the root

to the leaves) are active in reconstructing the original signal. This effectively allows the

sparse representation to select the most important subset of modalities that best represent

the given signal.

We show that it is possible to learn global and local patterns of multimodal data by

constructing a multimodal dictionary using the hierarchical sparsity constraint. Two char-

acteristics make this possible: (i) the range of modalities that each subspace covers, and

(ii) the frequency of each subspace being active in signal reconstruction. High-level sub-

spaces span over a wider range of modalities than low-level subspaces, and are active

more frequently than low-level subspaces in signal construction. These two characteris-

tics encourage high-level subspaces to capture the global patterns shared across multiple

modalities, and low-level subspaces to capture the local details narrowed down to specific

modalities. For example, a multimodal signal representing “laughing out loud” will be

reconstructed as a combination of a high-level subspace “highly aroused” and low-level
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subspaces “the appearance of mouth” and “the pitch of the voice.”

5.2 Data Fusion by Structured Sparsity

Our goal is to obtain a discriminative representation of multimodal signal that makes it

easier to discover its important patterns in the subsequent analysis step, e.g., classification.

In this section, we describe our approach to performing data fusion with structured sparsity,

learning hierarchical multimodal subspaces. We start by defining the notations used in

this chapter, and briefly review the current dictionary learning and group sparse coding

techniques, which becomes the foundation of our approach. We then describe a mixed-norm

formulation of this work.

5.2.1 Notation

Lower-case letters denote scalars, lower-case bold-face letters denote vectors, and upper-

case bold-face letters denote matrices. For a vector x, we use a subscript xj to denote the

j-th element; for a matrix X, we use the subscript Xj (X·,j) to denote the j-th column

(row). Given a set of indices Ω, we denote a subvector or a submatrix formed by taking only

Ω elements in similar ways. For multimodal features, we use a superscript in parenthesis

X(v) to emphasize that the features are from the v-th modality.

5.2.2 Problem Formulation

Suppose the data consists of N real-valued d-dimensional feature vectors stacked column-

wise into a matrix X ∈ Rd×N ; each column vector Xi ∈ Rd is a concatenation of signals

collected from multiple modalities.

Given the input data X, our goal is to find a dictionary D ∈ Rd×k of k real-valued basis
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vectors Dj ∈ Rd, and coefficients α ∈ Rk×N that determines the relative influence of the

basis vectors in reconstructing the input X. We formulate this objective as the matrix

factorization problem [94] that decomposes X into D and α:

min
D,α
‖X−Dα‖2

F (5.1)

where ‖X‖2
F =

∑
i,j |Xi,j|2 is the squared Frobenius norm.

Our focus is to learn the dictionary D that successfully encodes intrinsic properties of the

multimodal data X, which in turn allows for coefficients α to have the maximal discrimi-

natory power.

5.2.3 Sparse Coding

Recently, sparse representations have proven successful in numerous computer vision and

machine learning tasks [121]. They assume that an input space is inherently sparse, and

represent an input signal as a linear combination of a few most relevant basis vectors.

Following this line of research, we can rewrite Equation 5.1 using sparse coding [69]:

min
D,α

1

2
‖X−Dα‖2

F + λ ‖α‖1,1

s.t. ‖Dj‖2 ≤ 1 ∀j ∈ {1 · · · k}, λ > 0

(5.2)

where ‖α‖1,1 =
∑

i,j |αi,j| is an l1,1 norm that encourages element-wise sparsity (most

elements equal zero), and λ controls the relative importance of the reconstruction error

and sparsity. For numerical stability, the Dj are often constrained to have an l2 norm less

than one, i.e., ‖Dj‖2 ≤ 1.

In the context of multimodal learning, the data possess a strong group structure induced

by the modality configuration, e.g., groups of audio and visual signals. Unfortunately,

standard (l1 norm based) sparse coding cannot model any structural information in the

111



data, which leads us to describe structured sparsity that overcomes this shortcoming.

5.2.4 Structured Sparsity

Group sparse coding [52, 7] encourages sparsity at the group level rather than at the

element level, capturing intrinsic properties in groups of correlated variables. This has

shown to be useful in many scenarios, e.g., encoding an image using a group of dictionary

entries trained on the same object category [7].

In the context of multimodal learning, Jia et al. [54] used group sparse coding to learn a

dictionary of multimodal basis vectors. Let V = {Ωv}Vv=1 be a set of disjoint index groups,

where each Ωv specifies the indices j ∈ {1 · · · d} of the vector Xi ∈ Rd that corresponds

to the v-th modality. As a toy example, consider a two-modality case where the first

modality (v = 1) is of dimension 10 and the second modality (v = 2) is of dimension 20.

Concatenated vertically, the feature vector Xi is of dimension d = 30, and the index set

Ω1 = [1 · · · 10] and Ω2 = [11 · · · 30].

Jia et al.defines an objective function using an l1,p norm on the dictionary ΦV(D):

min
D,α

1

2
‖X−Dα‖2

F + λ1ΦV(D) + λ2‖α‖1,1 (5.3)

where ΦV(D) =
∑k

j=1 ‖Dj‖1,p is the sum of an l1,p norm induced by group V (p is usually

2 or ∞), defined as

‖Dj‖1,p =
V∑
v=1

‖Dj,Ωv‖p =
V∑
v=1

∑
l∈Ωg

|Dj,l|p
1/p

(5.4)

The l1,p norm imposed on each basis vector Dj makes certain groups of elements zero (or

non-zero) simultaneously. Continuing our toy example above, the dictionary D will be

divided into three subspaces: D(1,2) where all elements are non-zero; D(1) where elements

are non-zero for Ω1 and zero for Ω2; and D(2) where elements are non-zero for Ω2 and
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zero for Ω1. This enables the dictionary to learn multimodal basis vectors factorized into

modality-private ones that correspond to a specific modality and modality-shared ones that

span over multiple modalities. This model is illustrated in a factor graph representation

in Figure 5-1 (b).

Note that, while the formulation above considers a row-wise group structure on the dic-

tionary D, producing multimodal subspaces, it fails to consider any column-wise structure

among the subspaces. Our goal is to exploit the hierarchical structure among the columns

of the dictionary. Next we introduce the concept of hierarchical structured sparsity [53],

and show that there exists a hierarchical structure among the basis vectors that we can

encode using hierarchical structured sparsity.

5.2.5 Learning Hierarchical Multimodal Subspaces

We now turn to multimodal dictionary learning using hierarchical structured sparsity [53].

We start by observing that a dictionary D defined in Equation 5.3 has an inherent hierarchi-

cal structure among multimodal basis vectors (among columns). This structure is formed

by the superset-subset relations induced by the power set of the modality groups P(V),

e.g., given a power set P(V) = {{Ω1,Ω2}, {Ω1}, {Ω2}, ∅}, the set {Ω1,Ω2} is a superset of

{Ω1} and {Ω2} (see Figure 5-2).

Let T = {Ωg}Gg=1 be a rooted tree-structured set of groups1, and T (Ωg) be a subset of T

that contains Ωg and all the groups that are parents in the tree (all the way up to the

root). Jenatton et al. [53] defines the hierarchical group sparsity norm ΨT (x) that obeys

the following constraint:

∀Ωg ∈ T ,αΩg 6= 0⇒ [αΩk
6= 0, ∀Ωk ∈ T (Ωg)] (5.5)

In words, all non-zero coefficients in a vector α follow the property that if the elements

1A rooted tree is an undirected connected graph without cycles and with a unique root node.
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of a set Ωg are non-zero, all other elements of the sets in T (Ωg) are likewise non-zero.

This constraint effectively enforces that basis vectors belonging to a higher-level subspace

are used more frequently than the ones belonging to a lower-level subspace. Thus we can

expect that basis vectors from a high-level subspace capture generic concepts that span

across multiple modalities, while basis vectors from a low-level subspace capture details

specific to a narrower subset (or a single) modalities.

More formally, given a set of modality groups V , we define TV as the power set P(V) with

a rooted tree structure. Note that, for more than two modalities, the powerset hierarchy

is no longer a tree (e.g., D(1) is a child node of both D(1,2) and D(1,3)). To make it a

tree structure, we evenly split basis vectors from these nodes and assign them to their

corresponding parents (see Figure 5-2 for example). An important thing to note is that, by

splitting the child nodes, we allow the basis vectors to adapt to the context the modality

is in. For example, basis vectors from D(1) under D(1,2) and under D(1,3) will contain

information under the context of its parent subspace.

Using the rules we describe above, we define our mixed-norm formulation for learning

hierarchical multimodal subspace as

min
D,α

1

2
‖X−Dα‖2

F + λ1ΦV(D) + λ2ΨTV (α) (5.6)

The first term ensures that we are minimizing over the reconstruction error; the second

term is the same as the corresponding term in Equation 5.3 and ensures the shared/private

factorization of multimodal feature space; the third term is the hierarchical group sparsity

norm with the rule in Equation 5.5 and ensures that the columns of the matrix D are

organized in a hierarchical tree structure.

The optimization problem in Equation 5.6 is convex in D with α fixed, and vice versa.

We therefore solve the optimization by alternating between minimizing the objective with

respect to D and α.
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Empty

Figure 5-3: When a subspace node in the hierarchy becomes empty (no basis vector for
that subspace), we delete that node and assign the descendant nodes to the parent node.

5.2.6 Tree Building Procedure

We now explain the procedure for building a hierarchical tree structure from a dictionary

of basis vectors. To explain the procedure, we use a hierarchical tree structure constructed

from subspaces of the three modalities shown in Figure 5-2. To be concrete, we assume

that each modality is represented as a 10-dimensional feature vector. Note in the figure

that there are several duplicate subspaces among leaf nodes, e.g., a node for subspace D(1)

appears both under D(1,2) and D(1,3).

Given a dictionary of basis vectors, we first find for each basis vector which subspace(s)

each basis vector belongs to. This is done by checking which elements in the vector are

non-zero and by finding the modalities that the non-zero indices correspond to. In the

example above, for instance, if a basis vector has non-zero elements in indices 11:30, it

belongs to the subspace D(2,3), because features from modality 2 span over the indices

11:20 and features from modality 3 span over the indices 21:30. We then assign the basis

vectors to their corresponding subspaces in a hierarchy. For the duplicate subspace case,

we evenly distribute the basis vectors across the corresponding subspace nodes.

When a subspace node in the hierarchy becomes empty (no basis vector for that subspace),

we delete that node and assign the descendant nodes to the parent node (see Figure 5-3).

For example, if there is no basis vector for the subspace D(1,2) (labeled as “empty” in

Figure 5-3), its two descendants D(1) and D(2) are connected to the root node. Compare
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this approach to a different approach where the descendants are combined with existing

nodes with the same subspace, e.g., basis vectors of the subspace D(1) under an empty

subspace D(1,2) are assigned to the subspace D(1) under the subspace D(1,3). We believe

that our approach makes the basis vectors “contextualized” with respect to their locations

in the tree. Nodes at different locations in the tree have different ancestors, and because of

the hierarchical sparsity constraint (Equation 5.5), basis vectors in a node will participate

in reconstruction together with basis vectors in its ancestor nodes. So basis vectors from

different locations are participating in reconstruction in different contexts.

Our tree building procedure is performed at each iteration of the optimization. After the

first iteration, we initialize the hierarchical structure by constructing the powerset P(V).

Throughout the optimization, the structure gets refined to best explain the data. Note

that, as the objective function converges to its minima, basis functions from some subspace

D(·) will be dropped if not necessary in the signal reconstruction. In this case, the child

nodes of that subspace are assigned to the parent of the dropped node, as in the example

above.

5.3 Experiments

We evaluated our hierarchical multimodal subspace learning approach on the Time10Q

dataset. In particular, in order to study the benefit of using structured sparsity for data

fusion, we compared our approach to two other sparsity approaches shown in Figure 5-1.

We first describe the data preprocessing procedure necessary to use the Time10Q dataset on

our approach. We then explain the dictionary learning and feature coding procedure with

three different models we evaluate (shown in Figure 5-1). Next we detail our experimental

methodology and discuss the result.
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5.3.1 Data Preprocessing

As features from different modalities in the Time10Q dataset have different sampling rates,

we need proper time synchronization of multimodal features. The face features (PHOG)

are extracted per frame, the body motion features (HOG/HOF/MBH) are extracted per

local voxel, the prosody features (F0/NHR/loudness contour) are extracted every 10ms,

and the utterance features (LDA) are extracted per sequence (see the previous chapter for

details).

We first align the face and body motion features. Each body motion feature vector is

associated with meta information indicating where the voxel is located in a video sequence:

an exact location of the voxel in time (frame number) and space (pixel coordinate) as well

as the size of the voxel in time (duration) and space (width and height). To align the body

motion features to the face features, we collect all the body motion features that overlap

with each frame of the video, and obtain per-frame feature representation by performing

max pooling over the collection of features.

Given a set of vectors, max pooling creates a single vector with the same dimension as

each of the given vectors, taking the maximum absolute value for each dimension across

all the given vectors. Another pooling method often used is average pooling, which in-

stead takes the average of the values. Research has shown that max pooling provides a

better representation than average pooling, one that is robust to image transformations,

noise, and clutter [127]. A theoretical analysis given by Boureau et al. [15] highlights the

superiority of max pooling over average pooling. We note that different pooling methods

can also be used, such as pooling from a pyramid of multiple spatio-temporal scale similar

to Lazebnik et al. [67], which has been shown to help capture surrounding context; for a

thorough discussion of various feature encoding and pooling methods, see [23, 55].

Next, we align the visual features (the face and body motion features we aligned) to

the prosody features. The prosody features have a higher sampling rate than the visual

features: they are extracted every 10ms (100 times a second), while visual features are
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extracted every 33ms to 42ms (24 to 30 times a second), depending on the codec used. We

therefore upsample the visual features by linear interpolation, to match the sampling rate of

the prosody features. (Another way would be downsampling the prosody features to match

the sampling rate of the visual features. We chose to upsample instead of downsample

because downsampling could miss out on vital information in acoustic signals such as high

spikes.)

The last to align is the utterance features, which is extracted per sequence. For the same

reason described above, we upsample the utterance features by replicating the LDA vector

as many times as the length of the video sequence.

5.3.2 Dictionary Learning and Feature Coding

We compare three approaches: LASSO [112], the factorized multimodal subspace (FMS)

approach by Jia et al. [54], and our hierarchical multimodal subspace (HMS) approach.

All three approaches consist of two steps: dictionary learning and feature coding.

We trained the dictionaries for all three approaches using 10% of data (316,000 ran-

domly selected samples). The size of the dictionary K was cross-validated across K =

[100, 200, 500], the same range of values we evaluated for the K-means algorithm in the

previous chapter. The weight parameter λ for the LASSO (see Equation 5.2) was cross-

validated across λ = [0.1, 1, 10]; for both the FMS (Equation 5.3) and HMS (Equation 5.6)

approaches we set λ1 = λ2 = λ and cross-validated its value across λ = [0.1, 1, 10]. We

use the online learning method to solve the optimization problem, using the SPAMS li-

brary [69].

After the dictionaries are trained, we performed feature coding by solving Equations 5.2

(for LASSO), Equation 5.3 (for FMS), and Equation 5.6 (our HMS) with the dictionary

D fixed, again using the SPAMS library [69].
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Accuracy F1 Score
O C E A N Avg. O C E A N Avg.

Raw 0.63 0.52 0.55 0.57 0.53 0.56 0.68 0.61 0.57 0.69 0.48 0.61
LASSO [112] 0.63 0.53 0.65 0.61 0.52 0.59 0.68 0.69 0.66 0.72 0.42 0.64

FMS [54] 0.62 0.53 0.63 0.62 0.49 0.58 0.70 0.69 0.68 0.73 0.45 0.65

HMS (Ours) 0.64 0.55 0.65 0.62 0.54 0.60 0.71 0.69 0.68 0.74 0.48 0.66

Table 5.1: Mean accuracy and mean F1 score results on the Time10Q dataset. Bold faced
values indicate the best method for predicting each personality dimension. Our approach
(HMS) outperforms all the others on every measure.

5.3.3 Methodology

In order to ensure that the experimental results are comparable to the results from our

previous chapter, we followed the same experimental methodology using the Support Vector

Machine (SVM) [113] with the RBF kernel as our prediction model. The RBF kernel width

was fixed to one over feature dimension, which has empirically shown to produce good

performance [20]. We cross-validated the penalty parameter of the error term C = 10c

with c = [1 · · · 6].

We performed 10 cross-validation, with the same set of data splits as in Chapter 4. The

total number of test cases was 8,100: 3 (three dictionary learning approaches)× 10 (number

of folds) × 3 (dictionary size K) × 3 (sparse code weight term λ) × 6 (SVM cost term C)

× 5 (five traits – OCEAN).

5.3.4 Results and Discussion

Table 5.1 shows the recognition performance across all five personality dimensions, com-

pared against Raw (results are from the previous chapter), LASSO [112], FMS [54], and

our hierarchical multimodal subspace learning approach. Figure 5-4 shows bar plots of F1

scores. Our approach (HMS) outperformed all the other approaches on every dimension

both in terms of mean accuracy and mean F1 score, but the differences were statistically

not significant.
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Figure 5-4: F1 score results across all five personality dimensions and an average of the
five dimensions on the Time10Q dataset.

Figure 5-5 shows a visualization of the learned dictionary split into four modalities, which

lets us visually confirm that the learned dictionary contains basis vectors that are shared

across multiple modalities and basis vectors private to a single modality. Note that most

basis vectors for the prosody and utterance modalities are zero. We believe that this is

due to the lower-dimensional observational features of these two modalities (the prosody

feature is 3-dimensional and the utterance feature is 50-dimensional), compared to the

body (680-dimensional) and face (396-dimensional), which makes their contribution to the

reconstruction error term relatively smaller (see Equation 5.6).

Figure 5-6 shows a hierarchical tree structure of the learned dictionary shown in Figure 5-5.

Note that there are two nodes with the same subspace label D(1,2), one directly under the

root node, another under a subspace D(1,2,4). This is due to the tree building procedure we

explained above. When a node is empty (no basis vector for the corresponding subspace),

we remove the node and connect the node’s descendants (D(1,2),D(1,3), and D(2,3)) to the

node’s parent (D(1,2,3,4)), instead of combining the node’s descendants with other nodes

with the same subspace but under different non-empty parent node. As discussed, we

believe that this makes the basis vectors contextualized with respect to the location in
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Figure 5-5: A visualization of the learned dictionary divided into four modalities. White
columns indicate the basis vector has all-zero values. We can see that the dictionary
contains basis vectors factorized into modality-private/shared subspaces, e.g., the ones in
column 1∼13 are shared across all four modalities, the ones in column 14∼156 are shared
between the two modalities (face and body), while the ones in column 157∼210 are private
to a single modality (face).
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Figure 5-6: A hierarchical tree structure of the learned dictionary shown in Figure 5-5.
Superscript numbers indicate modalities: (1) face, (2) body motion, (3) prosody, (4) and
utterance.

the tree, allowing the sparse coefficients to have more discriminatory power, improving

recognition performance in subsequence analyses.
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Chapter 6

Learning Correlation and Interaction

Across Modalities

This chapter describes a framework for learning correlation and interaction across modali-

ties for multimodal sentiment analysis. Our framework is based on Canonical Correlation

Analysis [43] (CCA) and Hidden Conditional Random Fields [86] (HCRFs): CCA is used to

find a projection of multimodal signal that maximizes correlation across modalities, while

a multi-chain structured HCRF is used to learn interaction across modalities. The multi-

chain structured HCRF incorporates disjoint sets of latent variables, one set per modality,

to jointly learn both modality-shared and modality-private substructures in the data. We

evaluated our approach on sentiment analysis (agreement-disagreement classification) from

non-verbal audio-visual cues based on the Canal 9 dataset [114]. Experimental results show

that CCA makes capturing non-linear hidden dynamics easier, while a multi-chain HCRF

helps learning interaction across modalities.
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6.1 Task and Motivation

6.1.1 Agreement and Disagreement Recognition

In the previous two chapters, we used the Time10Q dataset for personality recognition as

our application scenario. This chapter uses the Canal 9 dataset,1 where the task is to rec-

ognize agreement and disagreement from non-verbal audio-visual cues during spontaneous

political debates [114].

The Canal 9 dataset is a collection of 72 political debates produced by the Canal 9 TV

station in Switzerland, with a total of roughly 42 hours of recordings. In each debate there

is a moderator and two groups of participants who argue about a controversial political

question. The dataset contains highly spontaneous verbal and non-verbal multimodal

human behaviors.

We used a subset of the dataset used by Bousmalis et al. [16], which includes 11 debates

segmented into 53 sequences of agreement and 94 sequences of disagreement. Bousmalis et

al.selected the episodes based on two criteria: (a) the verbal content clearly indicates

agreement/disagreement, which ensures that the ground truth label for each segment is

known and evident; (b) each segment includes a single speaker with a close-up shot of the

upper body, which ensures that the extracted audio-visual features represent the speaker’s

behavior.

We use the extracted audio-visual features provided by Bousmalis et al. [16]. The audio

features include 2-dimensional prosodic features: the fundamental frequency (F0) and

the energy. The visual features include 8 canonical body gestures: ‘Head Nod’, ’Head

Shake’, ’Forefinger Raise’, ’Forefinger Raise-Like’, ’Forefinger Wag’, ’Hand Wag’, ’Hands

Scissor’, and ’Shoulder Shrug’, where the presence/absence of the gestures in each frame

was manually annotated into a 8-bit vector.

1The work described in this chapter was done before the Time10Q dataset was collected.
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6.1.2 Correlation and Interaction between Audio-Visual Signals

We believe that human behavioral signals of the sort similar to the Canal 9 data contains

information that correlates between modalities and interacts over time. For example, when

someone is angry the voice tends to get loud and the gestures are exaggerated. When

learning with this type of data, we believe that it is important to consider the correlation

and interaction patterns across modalities.

In this chapter, we show that we can improve recognition performance on sentiment anal-

ysis by projecting the original data to be maximally correlated across modalities, and by

capturing the interaction across modalities explicitly from the projected data. We present

a novel approach to multimodal sentiment analysis that captures non-linear correlations

and interactions across modalities, based on Kernel CCA (KCCA) [43] and a Multimodal

HCRF (MM-HCRF) we developed.

Our approach uses a non-linear kernel to map a multimodal signal to a high-dimensional

feature space and finds a projection of the signal that maximizes the correlation across

modalities. Figure 6-1(b) shows the projected signals found by KCCA, where the relative

importance of gestures ‘head shake’ and ‘shoulder shrug’ have been emphasized to make the

statistical relationship (correlation) between the audio and visual signals become as clear as

possible. We then capture the interaction across modalities using a multi-chain structured

HCRF. The model uses disjoint sets of latent variables, one set per modality, and jointly

learns both modality-shared and modality-private substructures of the projected data.

6.2 Our Approach

Consider a dataset of N labeled sequences D = {(xi, yi)|xi ∈ Rd×Ti , y ∈ Y}Ni=1 where xi is

a multivariate observational sequence of length Ti and yi is a categorical label. Since we

have audio-visual data, we use the notation xi = (ai,vi) where ai ∈ Rda×Ti is the audio

feature sequence vi ∈ Rdv×Ti is the visual feature sequence. The sequences in a dataset
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Figure 6-1: An overview of our approach. (a) An audio-visual observation sequence from
the Canal 9 dataset [16]. KCCA uses a non-linear kernel to map the original data to a
high-dimensional feature space, and finds a new projection of the data in the feature space
that maximizes the correlation between audio and visual channels. (b) The projected data
shows that emphasizing the amplitude of the ‘head shake’ and ‘shoulder shrug’ gestures
maximized the correlation between audio and visual channels. (c) MM-HCRF for jointly
learning both modality-shared and modality-private substructures of the projected data.
at and vt are observation variables from audio and visual channels, and hat and hvt are
latent variables for audio and visual channels.

have variable lengths Ti.

Figure 6-1 shows an overview of our approach. We first find a new projection of the original

input sequence using KCCA [43] such that the correlation between audio and visual signals

is maximized in the projected space. The projected signal is then fed into a MM-HCRF

to learn interaction between audio and visual signals.

6.2.1 Kernel CCA

Given a set of paired samples {xi = (ai,vi)}Ni=1, written as A = [a1, · · · , aN ] and V =

[v1, · · · ,vN ], Canonical Correlation Analysis (CCA) aims to find a pair of transformations

wa and wv such that the correlation between the corresponding projections ρ(w>a A,w>v V)

is maximized. However, since CCA finds wa and wv that are linear in the vector space, it

may not reveal non-linear relationships in the data [91].

Kernel CCA (KCCA) [43] uses the kernel trick [91] to overcome this limitation by projecting
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the original data onto a high-dimensional feature space before running CCA. A kernel is a

function K(xi,xj) that, for all xi,xj ∈ R,

K(xi,xj) = 〈Φ(xi),Φ(xj)〉

where 〈·, ·〉 denotes an inner product, and Φ is a non-linear mapping function to a Hilbert

space F , Φ : x ∈ R 7→ Φ(x) ∈ F .

To apply the kernel trick, KCCA rewrites wa (and wv) as a product of the data A (and

V) with a direction α (and β),

wa = A>α, wv = V>β (6.1)

If we assume that a’s and v’s are centered (i.e., mean zero), the goal is to maximize the

correlation coefficient

ρ(·, ·) = max
wa,wv

E[w>a av>wv]√
E[w>a aa>wa]

√
E[w>v vv>wv]

= max
wa,wv

w>a AV>wv√
w>a AA>waw>v VV>wv

= max
α,β

αAA>VV>β√
αAA>AA>α · βVV>VV>β

= max
α,β

α>KaKvβ√
α>K2

aα · β>K2
vβ
. (6.2)

where Ka = K(A,A) and Kv = K(V,V) are kernel matrices.

Since Equation 6.2 is scale invariant with respect to α and β (they cancel out), the opti-

mization problem is equivalent to:

max
α,β

α>KaKvβ subject to α>K2
aα = β>K2

vβ = 1 (6.3)
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The corresponding Lagrangian dual form is

L(α, β, θ) = α>KaKvβ −
θα
2

(α>K2
aα− 1)− θβ

2
(β>K2

vβ − 1) (6.4)

The solution to Equation 6.3 is found by taking derivatives of Equation 6.4 with respect

to α and β, and solving a standard eigenvalue problem [80]. However, when Ka and

Kv are non-invertible, as is common in practice with large datasets, problems can arise

such as computational issues or degeneracy. This problem is solved by applying the par-

tial Gram-Schmidt orthogonalization (PGSO) with a precision parameter η to reduce the

dimensionality of the kernel matrices and approximate the correlation [43].

After we find α and β, we plug the solution back in to Equation 6.1 to obtain wa and wv,

and finally obtain new projections:

A′ = [〈wa, a1〉 , · · · , 〈wa, aN〉] , V′ = [〈wv,v1〉 , · · · , 〈wv,vN〉] (6.5)

6.2.2 Multimodal HCRF

Given the new projection’s audio-visual features A′ and V′ (Equation 6.5), the next step

is to learn the hidden dynamics and interaction across modalities (see Figure 6-1 (b) and

(c)).

We developed a Multimodal Hidden Conditional Random Field [102] (MM-HCRF), a con-

ditional probability distribution that factorizes according to a multi-chain structured undi-

rected graph G = (V , E), where each chain is a discrete representation of each modality. We

use disjoint sets of latent variables ha ∈ Ha for audio and hv ∈ Hv for visual to learn both

modality-shared and modality-specific substructures in the data. An MM-HCRF defines

p(y | a′,v′) as

p(y | a′,v′) =

∑
h exp{ΛᵀΦ(y,h, a′,v′)}∑

y′,h exp{ΛᵀΦ(y′,h, a′,v′)}
(6.6)

where h = {ha,hv} and Λ = [λ, ω] is a model parameter vector. The function ΛᵀΦ(y,h, a′,v′)
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is factorized with feature functions fk(·) and gk(·) as

ΛᵀΦ(y,h, a′,v′) =
∑
s∈V

∑
k

λkfk(y, hs, a
′,v′) +

∑
(s,t)∈E

∑
k

ωkgk(y, hs, ht, a
′,v′). (6.7)

We define three types of feature functions. Let 1[·] be an indicator function, and y′ ∈ Y

and (h′, h′′) ∈ H be the assignments to the label and latent variables, respectively. The

label feature function fk(y, hs) = 1[y = y′]1[hs = h′] encodes the relationship between a

latent variable hs and a label y. The observation feature function fk(hs, a
′,v′) = 1[hs]a

′

or 1[hs]v
′ encodes the relationship between a latent variable hs and observations x. The

edge feature function gk(y, hs, ht) = 1[y = y′]1[hs = h′]1[ht = h′′] encodes the transition

between two latent variables hs and ht.

We use the linked topology from [102] to define the edge set E (shown in Figure 6-1(c)),

which models contemporaneous connections between audio and visual observations, i.e.,

the concurrent latent states in the audio and visual channel mutually affect each other.

Note that the fk(·) are modeled under the assumption that modalities are conditionally

independent given respective sets of latent variables, and thus encode the modality-specific

substructures. The feature function gk(·) encodes both modality-shared and modality-

specific substructures.

The optimal parameter set Λ∗ is found by minimizing the negative conditional log-probability

min
Λ
L(Λ) =

1

2σ2
‖Λ‖2 −

N∑
i=1

log p(yi | a′i,v′i; Λ) (6.8)

where the first term is the Gaussian prior over Λ that works as an L2-norm regularization.

We find the optimal parameters Λ∗ using gradient descent with a quasi-newton optimization

method, the limited-memory BFGS algorithm [80]. The marginal probability of each node

is obtained by performing an inference task using the Junction Tree algorithm [26].
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6.3 Experiment

6.3.1 Methodology

The first step in our approach is to run KCCA to obtain a new projection of the data.

We used a Gaussian RBF kernel as our kernel function K(xi,xj) = exp (−‖xi − xj‖ /2γ2)

because of its empirical success in the literature [91]. We validated the kernel width

γ = 10k, k = [−1, 0, 1] and the PGSO precision parameter η = [1 : 6] using grid search.

The optimal parameter values were chosen based on the maximum correlation coefficient

value.

Our experiments followed a leave-two-debates-out cross-validation approach, where we se-

lected 2 debates of the 11 debates as the test split, 3 debates for the validation split, and the

remaining 6 debates for the training split. This was repeated five times on the 11 debates.

The F1 scores were averaged to get the final result. We chose four baseline models: Hidden

Markov Models (HMM) [87], Conditional Random Fields (CRF) [63], Hidden Conditional

Random Fields (HCRF) [86], and Multimodal HCRF (MM-HCRF) [102]. We compared

this to our KCCA with MM-HCRF approach. Note that HMM and CRF perform per-

frame classification, while HCRF and MM-HCRF perform per-sequence classification. The

classification results of each model in turn were measured accordingly.

We automatically validated the hyper-parameters of all models. For all CRF-family models,

we varied the L2-norm regularization factor σ = 10k, k = [0, 1, 2] (see Equation 6.8). For

HMM and HCRF, the number of hidden states were varied |H| = [2 : 6]; for MV-HCRF,

they were
(
|HA|, |HV |

)
= ([2 : 4], [2 : 4]). Since the optimization problems in HMM, HCRF

and MV-HCRF are non-convex, we performed two random initializations of each model;

the best model was selected based on the F1 score on the validation split. The L-BFGS

solver was set to terminate after 500 iterations.
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Models Original Data CCA KCCA

HMM .59 (.09) .59 (.12) .61 (.13)
CRF .61 (.04) .63 (.03) .67 (.08)

HCRF .64 (.13) .65 (.07) .69 (.06)

MM-HCRF .68 (.13) .71 (.07) .72 (.07)

Table 6.1: Experimental results (means and standard deviations of F1 scores) comparing
KCCA to CCA and the original data. The results show that learning nonlinear correlation
in the data was important in our task.

Models Audio Video Audio+Video

HMM .54 (.08) .58 (.11) .59 (.09)
CRF .48 (.05) .58 (.15) .61 (.04)

HCRF .52 (.09) .60 (.09) .64 (.13)
MM-HCRF · · .68 (.13)

KCCA + MM-HCRF · · .72 (.07)

Table 6.2: Experimental results (means and standard deviations of F1 scores) comparing
unimodal (audio or video) features to the audio-visual features. The results confirms that
using both audio and visual features are important in our task.

6.3.2 Result and Discussion

We first compared our approach to existing methods: HMM [87], CRF [63], HCRF [86], and

MM-HCRF. Figure 6-2 shows a bar plot of mean F1 scores and their standard deviations.

We can see that our approach achieves a higher F1 score (.72) than four baseline methods.

For further analysis, we investigated whether learning nonlinear correlation was important,

comparing KCCA to CCA and the original data. Table 6.1 shows that models trained with

KCCA always outperformed the others, suggesting that learning non-linear correlation in

the data was important. Figure 6-1(b) shows the data projected in a new space found by

KCCA, where the ‘head shake’ and ‘shoulder shrug’ gestures were relatively emphasized

compared to ‘head nod’, which maximized the correlation between the audio and visual sig-

nals. We believe that this made our data more descriptive, allowing the learning algorithm

to capture the hidden dynamics and interactions between modalities more effectively.
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Figure 6-2: A bar plot of mean F1 scores with error bars showing standard deviations.
This shows empirically that our approach successfully learned correlations and interactions
between audio and visual features using KCCA and MM-HCRF.

We also investigated whether our approach captures interaction between audio-visual sig-

nals successfully. We compared the models trained with a unimodal feature (audio or

visual) to the models trained with audio-visual features. Table 6.2 shows means and stan-

dard deviations of the F1 scores. In the three single-chain models, HMM, CRF, and HCRF,

there was an improvement when both audio and visual features were used, confirming that

using a combination of audio and visual features for our task is indeed important. Also,

MV-HCRF outperformed HMM, CRF, HCRF, showing empirically that learning interac-

tion between audio-visual signals explicitly improved the performance.

6.4 Related Work

Due to its theoretical and practical importance, multimodal human behavior analysis has

been a popular research topic. While audio-visual speech recognition is probably the most

well known and successful example, multimodal affect recognition has recently been getting

considerable attention [129]. Bousmalis et al. [16] proposed a system for spontaneous

agreement and disagreement recognition based only on prosodic and gesture cues, as we

did here. They used an HCRF to capture the hidden dynamics of the multimodal cues.

However, their approach did not consider the correlation and interaction across modalities

explicitly.
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Canonical correlation analysis (CCA) has been successfully applied to multimedia content

analysis [43, 130]. Hardoon et al. [43] used kernel CCA (KCCA) for learning the semantic

representation of images and their associated text. However, their approach did not con-

sider capturing hidden dynamics in the data. Latent variable discriminative models, e.g.,

HCRF [86], have shown promising results in human behavior analysis tasks, for their abil-

ity to capture the hidden dynamics (e.g., spatio-temporal dynamics). Recently, we showed

that the multi-modal counterpart [102] gives a significant improvement over single-view

methods in recognizing human actions. However, our previous work did not learn non-

linear correlation across modalities. We extend this body of work, enabling it to modeling

multimodal human behavior analysis.
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Chapter 7

Conclusion and Future Work

This thesis presented a collection of work on video content analysis. The focus has been

two-fold: learning spatio-temporal structure of human action (Chapter 3) and learning

multimodal structure of human multimodal behavior (Chapter 5 and Chapter 6). Under

each focus, we presented novel application scenarios for the algorithms: aircraft handling

signals recognition (Chapter 2) and personality impression recognition (Chapter 4). This

chapter summarizes our contributions and discuss future direction of our research.

7.1 Summary of Contributions

Aircraft Handling Signals Recognition

Chapter 2 introduced the task of recognizing aircraft handling signals from body and hand

movements, and presented the NATOPS dataset that contains the vocabulary of visual

signals used by the US Navy. Unlike other datasets in the human action and gesture

recognition literature, our dataset is a unique in that information about both body poses

and hand shapes are required to classify visual signals correctly. We outlined the back-

ground of the project, described the data collection procedure, and explained our body
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and hand tracking procedure.

Learning Spatio-Temporal Structure of Human Action

Chapter 3 presented a novel probabilistic graphical model that learns spatio-temporal

structure of human action in a fine-to-coarse manner. The main contribution is in the

formulation of sequence classification problem by constructing a hierarchical summary

representation of video content and by learning the spatio-temporal structure from each

of the summary representation. We showed that our approach achieves state-of-the-art

recognition performances on three human action datasets, including a near-perfect recog-

nition accuracy on the ArmGesture dataset [86], improving upon previous state-of-the-art

results.

Personality Impression Recognition

Chapter 4 introduced the task of predicting personality impression in an interview setting,

and presented the Time10Q dataset containing 866 video clips with human annotated la-

bels. We presented the design of experiments to obtain human annotation of personality

impression and showed that the labels we collected have a higher inter-rater reliability

than other personality dataset in the literature. We also presented procedures for ex-

tracting multimodal features (face, body motion, utterance, and prosody of speech), and

a framework for recognizing personality impression. We showed that combining the four

modalities achieves the best recognition performance, achieving an F1 score of 0.61.

Learning Multimodal Structure of Human Behavior

Chapter 5 presented a novel data fusion algorithm that uses structured sparsity to combine

information from multiple modalities. The main novelty is in the hierarchical formulation

of multimodal subspaces via structured sparsity: we factorize the multimodal feature space
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into modality-shared and modality-private subspaces, then learn a hierarchical structure

among the multimodal subspaces. The learned dictionary can be seen as a collection of

basis vectors embedded in a hierarchy of multimodal subspaces; using structured sparsity,

we encourage the hierarchy to capture the intrinsic structure of a multimodal feature

space. In essence, the hierarchical formulation allows our dictionary to capture complex

dependence/independence structure across multiple modalities in a principled manner. We

showed that our approach improves the performance on personality impression recognition,

achieving an F1 score of 0.66 compared to using the original feature representation (0.61).

Learning Correlation and Interaction Across Modalities

Chapter 6 presented a novel framework for multimodal sentiment analysis that learns cor-

relation and interaction across modalities. We use Kernel Canonical Correlation Analysis

(KCCA) [43] to find a projection of multimodal signal that maximizes correlation across

modalities. The projected signal is then fed into our novel multi-chain structured HCRF

that learns interaction across modalities. The multi-chain structured HCRF incorporates

disjoint sets of latent variables, one set per modality, to jointly learn both modality-shared

and modality-private substructures in the data. We evaluated our approach on sentiment

analysis (agreement-disagreement classification) from non-verbal audio-visual cues based

on the Canal 9 dataset [114]. Experimental results show that CCA makes capturing non-

linear hidden dynamics easier, while a multi-chain HCRF helps learning interaction across

modalities.

7.2 Directions for Future Work

Aircraft Handling Signals Recognition

We collected the NATOPS dataset (Chapter 2) in an indoor environment under a controlled

lighting condition. A stereo camera at a fixed location recorded a single person at a time,
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whose location is also fixed. This simplified setting allowed us to obtain clean video data

that is easier to work with.

In the real-world setting, however, things are much more complex. On an aircraft carrier

deck, strong sun glare and steam produced by catapults can severely obstruct the camera

view. The locations of the camera (mounted on the aircraft) and the marshallers change

continuously. And there is more than one person moving in the camera view. These real-

world conditions make it difficult to detect the person of interest and to track their body

movements, both of which are necessary steps for recognizing aircraft handling signals.

There is much work to be done to make our framework work in the real-world setting.

We believe that using contextual information can help perform the task on a carrier deck

environment, such as the color of the jersey worn by the aircraft marshallers. In the

US Navy, the role of each marshaller is color-coded into their jerseys: a yellow jersey is

worn by aircraft handling officers, a purple jersey is worn by aviation fuels, etc. This

information can help narrow down possibilities, e.g., whose gestures to follow. Other

contextual information we can leverage is the routine sequence of operations. There is

a kind of grammar to actions in practice; for example, once the “brakes on” action is

performed, a number of other actions are effectively ruled out (e.g., “move ahead”). We

look forward to exploring these possibilities in future work.

Hierarchical Sequence Summarization

Our hierarchical sequence summarization approach (Chapter 3) is designed to work on

a sequence classification task where each sequence is associated with a categorical label.

In other words, our approach assumes that the sequence boundaries are known a priori.

In many real-world action recognition scenarios, however, action boundaries are unknown

and should be inferred as a part of the recognition process. We would like to extend our

approach to work in this continuous setting. One possible way is to use a sliding window:

Our previous work [101] has explored one way to perform continuous sequence labeling and
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segmentation by using a sliding window and multi-layered filtering. But that approach did

not explore the hierarchical structure of video. We look forward to extend our hierarchical

approach to enable continuous action recognition.

Personality Impression Recognition

We posed the problem of recognizing personality impression as a binary classification task

(Chapter 4): whether someone has a personality trait that is below or above an average of

the ones in a given population. However, the Time10Q dataset contains real-valued labels

on every trait ranging from -4 to +4, which is more informative than binary labels. In the

future, we would like to explore other ways to formulate the problem, such as regression

(predicting the real-valued labels directly) and relative ranking (comparing the relative

intensity of someone’s personality trait compared to the others).

Data Fusion with Structured Sparsity

This thesis has focused on data fusion to improve the discriminatory power of multimodal

signals. In the future, we would like to work on reconstruction of the original video using

the learned dictionary. In particular, we want to explore ways to modify video contents such

that a certain personality trait is more or less pronounced (e.g., modify the appearance

of Woody Allen’s face to be less neurotic). Recently, , inspired by the work in human

memory from the cognitive science literature [115], Khosla et al. [57] presented an approach

to modify the memorability of individual face photographs based on Active Appearance

Models (AAMs) [24] and Histograms of Oriented Gradients (HOG) [27]. We would like to

achieve similar effects in the personality domain.

Several questions need to be answered. What makes a person appear as an introvert? How

can we modify the appearance of the face, body motion, and the prosody of speech so that

they are natural to human eyes? This would make very interesting future work.
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