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Abstract
Sequential anomaly detection is a challenging
problem due to the one-class nature of the data (i.e.,
data is collected from only one class) and the tem-
poral dependence in sequential data. We present
One-Class Conditional Random Fields (OCCRF)
for sequential anomaly detection that learn from a
one-class dataset and capture the temporal depen-
dence structure, in an unsupervised fashion. We
propose a hinge loss in a regularized risk mini-
mization framework that maximizes the margin be-
tween each sequence being classified as “normal”
and “abnormal.” This allows our model to accept
most (but not all) of the training data as normal, yet
keeps the solution space tight. Experimental results
on a number of real-world datasets show our model
outperforming several baselines. We also report an
exploratory study on detecting abnormal organiza-
tional behavior in enterprise social networks.

1 Introduction
Consider an espionage case where an insider performs a se-
ries of events that seem normal individually, yet appear ab-
normal only when considered collectively, as for example,
logging in to a system late at night, downloading files from
a server untouched for a while, and copying large amounts
of data to a USB drive. Detecting this type of sequential
anomaly is an extremely difficult task because of both the
one-class nature of the data [Chandola et al., 2009] and the
temporal dependence in observations [Cheng et al., 2009].

One-class learning refers to the process of using training
data collected from only one class to predict whether or not a
new sample is drawn from the same distribution. Many types
of real-world anomalies occur very infrequently, and hence
are hard to obtain samples from, e.g., rare diseases and net-
work intrusions. Furthermore, even if there are some exam-
ples known as anomalous, they may not represent the under-
lying distribution of that class accurately, making them un-
suitable as training data. For example, malicious hackers may
invent new patterns of attack, so a network intrusion detection
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system trained with only known patterns may not perform re-
liably on new attacks.

A second source of difficulty in sequential anomaly detec-
tion is the temporal dependence in sequential observations.
Much research has highlighted the importance of capturing
dependence structure in the sequential data [Quattoni et al.,
2007]. In many anomaly detection scenarios, in particular, an
anomalous pattern is often defined as a series of events that
are normal individually but abnormal only collectively. For
example, the UNIX command login and passwd are com-
mon and expected input, but many repetitions of them may
indicate malicious intent.

Standard machine learning algorithms (e.g., SVM, HMM,
and CRF) are not suitable for one-class learning because, to
work properly, they require data from all classes. Many ef-
ficient algorithms for one-class learning have been proposed.
One-class SVM [Schölkopf et al., 2001] uses kernels to cap-
ture patterns in a high dimensional feature space, but is not
directly applicable to sequential data because it ignores any
dependence structure in the data. Numerous attempts have
been made to capture dependence structure in the data, e.g.,
by latent SVM [Yu and Joachims, 2009] and CRF [Lafferty et
al., 2001], but their discriminative learning procedure suffers
with one-class datasets [He and Garcia, 2009].

This work presents One-Class Conditional Random Fields
(OCCRF) as a general-purpose sequential anomaly detec-
tion algorithm that deals with the difficulties mentioned
above. Our method is inspired by the idea of both one-class
SVM [Schölkopf et al., 2001] and CRF [Lafferty et al., 2001].
We follow the learning strategy of Scholkopf et al. [2001] and
accept most of the training samples as normal, while favoring
a simple and tight solution space. Dependence structure in the
sequential data is captured using a log-linear model similar to
the CRF formulation. The key to our method is a new hinge
loss function in a regularized risk minimization framework
that maximizes the margin between positive and negative la-
bel assignments to the conditional probability distribution.

We report on experiments with four real-world datasets;
the results show that our method outperforms several base-
lines, including Active Outlier [Abe et al., 2006], Local Out-
lier Factor [Breunig et al., 2000], One-Class SVM [Schölkopf
et al., 2001], and HMM [Rabiner, 1989]. We also report on an
exploratory study on detecting abnormal organizational be-
havior in enterprise social networks.



2 Previous Work
Anomaly detection has long been an active research topic in
data mining and machine learning community; see [Chandola
et al., 2009] for a comprehensive survey. A simple approach
is to cast the problem as binary classification and to train a
standard model using both positive (normal) and negative (ab-
normal) data. For example, Liao et al. [2010] used a CRF to
detect anomalies in GPS data. However, these methods re-
quire at least one example from each class to work properly.
Advanced methods include [Abe et al., 2006] that trains an
ensemble of decision trees using one-class data augmented
with artificially generated negative samples. However, it is
non-trivial to generate sequential data. Our method learns
from one-class data and does not require any negative sample
during learning process.

Methods based on kernel density estimation [Parzen, 1962]
detect anomalies by fitting a non-parametric model to pos-
itive samples and rejecting samples using a statistical hy-
pothesis test, while relative density-based methods work by
computing an anomaly score of each sample using its neigh-
bors, with an assumption that normal samples occur in dense
neighborhoods. For example, Breunig et al. [2000] proposed
a method to compute an anomaly score by comparing a lo-
cal density of each sample to an average local density of its
neighbors. These methods have a rigorous theoretical foun-
dation, but are computationally intensive because they require
finding k-nearest neighbors for each test sample, which takes
O(N2) with N samples. Our method is learning-based and
takes only O(1) at test time.

Scholkopf et al. [2001] and Tax and Duin [2004] have inde-
pendently proposed a support vector algorithm for one-class
classification, using kernels to obtain a tight boundary around
normal samples in high dimensional feature space. How-
ever, these models do not consider dependence structure in
the data. Lafferty et al. [2001] proposed a discriminatively
trained conditional log-linear model for sequence labeling
task, while Yu and Joachims [2009] have extended the stan-
dard SVM to learn dependence structure in the data. How-
ever, these methods are developed for multi-class classifica-
tion and are not directly applicable to one-class learning. Our
method is a combination of both one-class SVM and CRF,
and thus can work in sequential anomaly detection setting.

Several efforts have focused on sequential anomaly detec-
tion using categorical input attributes. Chandola [2009] eval-
uated several algorithms to detect anomalies in symbolic se-
quences (e.g., genetic codes), Sun et al. [2006] used proba-
bilistic suffix trees to mine outliers in sequential databases,
and Xu [2010] proposed a Markov reward process model
for intrusion detection. Unfortunately, these methods do not
work on continuous attributes. Our method is based on a log-
linear model and can deal with continuous attributes.

Sliding window-based methods have been popular in se-
quential anomaly detection. Tan et al. [2011] used an en-
semble of half-space trees with a sliding window to detect
anomalies in evolving streaming data. However, since it com-
putes an anomaly score by traversing a tree structure that is
bounded by the maximum depth parameter and the size of
sliding window, it may not capture long range dependence.

Since our method inherits the benefits of CRF models, it can
capture long-range dependence in the sequential data.

3 One-Class Conditional Random Fields
We consider unsupervised learning of a classifier f : X → Y
from a one-class dataset D = {(xi, yi) | xi ∈ Rd×ti , yi =
+1}Ni=1, i.e., all of the samples are assumed to have positive
labels, but we do not in fact have ground-truth labels. The
input domain X consists of multivariate time-series data, of
dimension d and length ti (the length of each sequence can
vary). The output domain Y = {+1,−1} contains, without
loss of generality, the normal class label +1 (i.e., the class it
has learned from) and the abnormal class label -1 (i.e., the
class it has never seen before).

3.1 The Model
It is trivial to learn a function f(x) that accepts all of the
training examples as normal, but it may not generalize well
to unseen samples. Similar to [Schölkopf et al., 2001], our
learning strategy is to accept most of the training examples as
normal, while making the solution space as tight as possible.

Let’s assume for now that we can compute the conditional
probability distribution pw(y |x) with some parameter vector
w (described in Section 3.2). Our learning objective is

min
w,ξ,ρ

L(w) =
λ

2
‖w‖22 +

1

N

N∑
i=1

ξi − ρ (1)

s.t. ∀i : ∆(xi;w) ≥ ρ− ξi, ξi ≥ 0 (2)

∆(xi;w) = pw(yi = +1|xi)− pw(yi = −1|xi) (3)

where ‖w‖22 =
∑
l |wl|2 is a squared L2 norm and ξi’s are

slack variables that are related to the soft margin, i.e., intro-
duced to measure the degree of misclassification.

This objective demands most of the training examples to
have a higher probability of being normal (yi = +1), while
favoring a tight solution space with L2 regularization, at the
cost of allowing some examples to have a margin ∆(xi;w)
smaller than an offset parameter ρ ∈ [0, 1). It controls the
tradeoff between these two goals by specifying the minimum
margin between the probability of each sample being classi-
fied as normal or abnormal (regardless of its ground truth la-
bel). Once we find the solution (w, ρ), we can set a decision
rule for our one-class classifier as

f(x) = sgn (∆(x;w)− ρ) (4)

As noted above, our model performs unsupervised learn-
ing, as we do not have ground-truth labels. Because our learn-
ing strategy accepts most (but not necessarily all) of the sam-
ples as positive, some samples are allowed to be negative,
enabling the learned classifier to be more robust to outliers in
training data. In Section 5 we show experimental result that
used training data containing true negative labels.

3.2 Computing Conditional Probability
Now we turn to computing the conditional probability distri-
bution pw(y | x) that is required to obtain ∆(x,w). We can
use either the standard formulation of CRF [Lafferty et al.,



2001] or CRF with latent variables [Quattoni et al., 2007]. We
briefly introduce formulations of both models, discuss their
pros and cons in the context of sequential anomaly detection,
and explain why we chose CRF with latent variables.

The standard CRF formulates the conditional probability
distribution pw(y | x) as

pw(y | x) =
exp

{
w> · Φ(y,x)

}∑
y′∈Y exp {w> · Φ(y′,x)}

(5)

where y is a vector of length t, and the feature function
Φ(y,x) is defined as

Φ(y,x) =
∑
j

φ(yj ,x) +
∑
j,k

φ(yj , yk) (6)

with singleton features φ(yj ,x) and pairwise features
φ(yj , yk); specific definitions of the features depend on ap-
plications, we define these in Section 4.2.

Using the CRF, we can compute ∆(x,w) by obtaining
pw(y | x) via Equation 5, taking an average of the marginals
pw(y | x) = 1

t

∑
j∈t pw(yj | x), and finally computing the

difference pw(yi = +1|xi)− pw(yi = −1|xi).
This standard CRF formulation has the advantage that we

can use many existing convex optimization algorithms with
theoretically sound convergence bounds. However, previous
research suggests that many real-world problems may not be
easily formulated as a simple convex optimization problem
without forcing a reduction in the expressiveness of the mod-
els [Do and Artieres, 2012]. Specifically, evidence has shown
that, despite making the problem no longer convex, incor-
porating latent variables to the model to capture hidden de-
pendence structure in the data often leads to better perfor-
mance [Quattoni et al., 2007; Yu and Joachims, 2009].

A CRF with a set of latent variables h ∈ H is formulated
in [Quattoni et al., 2007] as

pw(y | x) =

∑
h exp

{
w> · Φ(y,h,x)

}∑
y′∈Y,h exp {w> · Φ(y′,h,x)}

(7)

where the feature function Φ(y,h,x) is defined as

Φ(y,h,x) =
∑
j

φ(y, hj ,x) +
∑
j,k

φ(y, hj , hk) (8)

with singleton features φ(y, hj ,x) and pairwise features
φ(y, hj , hk). Using the additional set of latent variables, we
can expect that our model is more expressive (and as a re-
sult, the computed pw(y | x) is more accurate) because, un-
like CRFs, each observation within a sequence is allowed to
have a different label. This is especially crucial in sequential
anomaly detection, where there may exist several possible de-
scriptions of “normal” sequential patterns.

For these reasons, we use a CRF with latent variables in our
experiments, though one can use the standard CRF to com-
pute the conditional probability distribution pw(y | x).

3.3 Solving Regularized Risk Minimization
We can cast our objective in Equation 1 as a regularized risk
minimization problem,

min
w

L(w) =
λ

2
‖w‖22 +

1

N

N∑
i=1

l(xi, yi;w) (9)

l(xi, yi;w) = max

[
0, log

(
1 + ρ

1− ρ

)
− Γ(xi;w)

]
(10)

Γ(xi;w) = log

(
pw(yi = +1 | xi)
pw(yi = −1 | xi)

)
(11)

where l(xi, yi;w) ≥ 0 is a hinge loss that penalizes the cases
when the constraints in Equation 2 is violated. It is derived
from l(xi, yi;w) = max [0, ρ−∆(xi;w)]; we converted
this to a log scale for numerical stability. Note that our loss
function is undefined when pw(yi | xi) is either 0 or 1; we
require it to be in the range of an open bounded interval (0,1).

To solve Equation 9 we use the bundle method [Teo et
al., 2010; Do and Artieres, 2012], which converges to a
solution with an accuracy ε at the rate O(1/ε) for gen-
eral non-differentiable convex problems (note that our hinge
loss is non-differentiable at the hinge point). The method
aims at iteratively building an increasingly accurate piece-
wise quadratic lower bound of L(w) based on its subgradient
∂wL(w). The subgradient of l(xi, yi;w) is obtained as

∂wl(xi, yi;w) = −∂wΓ(xi;w) (12)

The specific form of ∂wΓ(xi;w) depends on whether we use
Equation 5 or Equation 7 to compute pw(y|x). For the former
case,

∂wΓ(xi;w) = Φ(+1,x)− Φ(−1,x) (13)
and for the latter case,

∂wΓ(xi;w) = α(+1)− α(−1) (14)

α(y′) =
∑
h

Ehvpw(h|y′,x)[Φ(y′, h,x)]

Since we are interested in time-series data as input, we can
restrict the underlying graph structure as a linear chain and
use an efficient exact inference algorithms, such as belief
propagation [Pearl, 1982], to obtain the marginal probabili-
ties pw(y|x) and pw(h|y,x).

4 Experiments
Table 1 shows the descriptive statistics of the datasets we used
in our experiments. Following the typical experimental set-
ting in one-class learning literature, for multi-class datasets
we set one of the classes as normal and all other classes as
abnormal, and we repeated this for all classes. We compared
our approach to four well-established baseline methods that
are publicly available. Below we detail the datasets, describe
the baselines and the parameter values we validated, explain
the experimental methodology, and discuss results.

4.1 Datasets
CUAVE [Patterson et al., 2002]1: This dataset contains
audio-visual data of ten spoken digits (zero through nine).
We used the clean version (i.e., no noise added) of the iso-
lated digits collection from individual speaker data. Audio
features contain 14 MFCCs and their first and second deriva-
tives, resulting in a 42D feature vector. Visual features are
computed from a 16x16 gray-scale mouth subregion and con-
tain 35 DCT coefficients and their first derivatives, resulting

1We based our data on the version of [Saenko and Livescu, 2006]



Data Y d N avg(ti) avg(N+) avg(N−)
C 10 112 1,790 45.86 179 1,611
A 6 20 724 25.14 121 603
N 24 20 9,600 49.51 400 9,200
S 2 29 17,087 29.32 16,921 166

Table 1: Descriptive statistics of the datasets we used (C:
CUAVE, A: ArmGesture, N: NATOPS, S: SOIT). Y is the
number of classes, d the number of features,N the number of
sequence samples, avg(ti) is the average length of sequence,
avg(N+) and avg(N−) are the average number of normal and
abnormal samples when one class is selected as normal and
all others as abnormal.

in a 70D feature vector. PCA was used to reduce the dimen-
sion to 20, which accounted for 95% of the variation.
ArmGesture [Quattoni et al., 2007]: This dataset contains
six classes of upper body gestures. Observation features are
2D joint angles and 3D euclidean coordinates for left/right
shoulders and elbows, resulting in a 20D feature vector. We
normalized each dimension to have a mean zero and standard
deviation one.
NATOPS [Song et al., 2011]: This dataset contains twenty-
four classes of body-and-hand gestures used by the US Navy
in aircraft handling aboard aircraft carriers. Body features
include 3D velocities of four body joints (left/right elbows
and wrists), resulting in a 12D feature vector. Hand features
include probability estimates of four predefined hand shapes
(opened/closed palm, and thumb up/down), resulting in an
8D feature vector. We normalized each dimension to have a
mean zero and standard deviation one.
SOIT: The Synthetic Organizational Insider Threat (SOIT)
dataset contains data created by a research consortium fo-
cusing on insider threat detection. To generate a benchmark
dataset, the consortium appointed a group of domain experts
(in computer security, counter intelligence, data simulation,
etc) to create synthetic data simulating the digital footprints
of employee’s organizational behavior. In our experiments,
we used a subset of the data on 1,000 employee’s activi-
ties over 500 days, which contained records of approximately
2.6M emails, 0.5M file access, 28.4M web access, 0.9M log
on/off, etc. The subset contained 70 realistic insider threat
scenarios (e.g., corporate espionage, information leakage) for
which exact periods were available. The 29D feature vector
included various features related to email, web access, file ac-
cess, session logs, etc. We divided each employee’s sequence
of records by finding sequences containing at most 30 days
with the same label. This resulted in 16,921 normal instances
and 166 anomalies. We normalized each dimension to have a
mean zero and standard deviation one.

4.2 Models
Active Outlier (AO) [Abe et al., 2006]2: This method, based
on an ensemble-based minimum margin active learning, aug-
ments the given one-class dataset with synthetic abnormal
samples generated by rejection sampling. We use the deci-
sion tree as base learner, and assume the sampling distribu-

2We used an implementation of [Erdogan, 2011].

tion as uniform. We varied the number of ensemble learners
nbLearners=[4 8 12] and the outlier threshold from
0.1 to 0.9, increasing by 0.1.

Local Outlier Factor (LOF) [Breunig et al., 2000]2: This
density-based method measures the degree of a sample being
an outlier. It is defined as the average ratio of the local den-
sity of a sample x and those of x’s MinPts-nearest neigh-
bors. We compute the LOF of each test sample according to
the training dataset. After the LOFs of all test samples are
computed, we normalize them to have the value between [0,
1] and classify each sample as abnormal if the normalized
LOF is higher than a threshold. Following the guideline
described in [Breunig et al., 2000], we set the lower bound
MinPtsLB=10 and the upper bound MinPtsUB=30, with a
step size of 5. The outlier threshold was varied from 0.1
to 0.9, increasing by 0.1.
Hidden Markov Model (HMM) [Rabiner, 1989]3: We
trained HMMs using normal training sequences, and com-
puted p(y|x) of each test sequence as the normalized nega-
tive log-likelihood. Sequences were classified as abnormal if
p(y = −1 | x) > 0.5. We varied the number of hidden states
|H|=[4 8 12] and the number of Gaussian mixtures per state
nbMixtures=[1 2 3].
One-Class SVM (OCSVM) [Schölkopf et al., 2001]4: This
support vector method estimates a subset of input space such
that a test sample lies outside the subset equals a pre-specified
parameter ρ ∈ [0,1). As in [Schölkopf et al., 2001], we used
a Gaussian kernel K(xi,xj) = exp(−γ ‖xi − xj‖2), which
makes the data always separable from the origin in feature
space. We validated the kernel width γ=[.01 .1 .5 1 2] and the
offset parameter ρ from 0.1 to 0.9, increasing by 0.1.
One-Class CRF (OCCRF): For our OCCRF, we used three
types of feature functions defined in [Quattoni et al., 2007].
Let 1[·] be an indicator function, and y′ ∈ Y and h′, h′′ ∈ H.
The observation function φ(ht,xt) = 1[ht = h′]xt cap-
tures the compatibility between a latent variable ht and an
observation xt; the label feature function φ(y, ht) = 1[y =
y′ ∧ ht = h′] captures the compatibility between a label y
and a latent variable ht; and the transition feature function
φ(y, hs, ht) = 1[y = y′ ∧ hs = h′ ∧ ht = h′′] captures the
compatibility among a label y and two latent variables hs, ht.
We varied the number of latent states |H|=[4 8 12], the reg-
ularization factor λ=[.01 .1 .5 1 2], and the margin offset ρ
from 0.1 to 0.9, increasing by 0.1.

4.3 Methodology
Similar to [Ghasemi et al., 2012], we measure the perfor-
mance of models using the F1 score in the top k returned
results (F1@k), setting the k to the number of abnormal sam-
ples in the test set. We also show both the precision and recall
in the top k (Prec@k and Rec@k) for completeness.

We performed 10-fold cross validation, where one-tenth of
the normal samples are used for training split, and the rest
is split evenly between validation and test splits, repeating
10 times. Note that the training split contained only normal

3We used an implementation of [Murphy, 1998].
4We used an implementation of [Chang and Lin, 2011].



Datasets Models Validation Split Test Split
Prec@k Rec@k F1@k Prec@k Rec@k F1@k

AO .9527 ± .02 .5426 ± .09 .6865 ± .07 .9592 ± .02 .5359 ± .09 .6827 ± .08
LOF .9127 ± .02 .4597 ± .15 .5948 ± .13 .9340 ± .02 .4801 ± .15 .6173 ± .13

CUAVE HMM .9598 ± .04 .1552 ± .04 .2593 ± .05 .9890 ± .01 .1547 ± .04 .2642 ± .06
OCSVM .9025 ± .01 .7372 ± .10 .8048 ± .06 .8896 ± .01 .7433 ± .10 .8034 ± .06
OCCRF .9037 ± .01 .8763 ± .06 .8875 ± .03 .9008 ± .01 .8836 ± .06 .8900 ± .03

AO .9954 ± .01 .7272 ± .16 .8257 ± .12 .9932 ± .01 .7406 ± .16 .8367 ± .11
LOF† .9944 ± .01 .7512 ± .09 .8398 ± .07 .9939 ± .01 .7662 ± .09 .8487 ± .07

ArmGesture HMM .9976 ± .01 .1712 ± .11 .2680 ± .14 .9606 ± .05 .1672 ± .12 .2568 ± .15
OCSVM .5917 ± .09 .3869 ± .12 .4550 ± .11 .5701 ± .10 .3696 ± .12 .4333 ± .12
OCCRF .8397 ± .00 .9999 ± .00 .9114 ± .00 .8454 ± .00 1.000 ± .00 .9153 ± .00

AO .9042 ± .20 .6755 ± .41 .6957 ± .40 .8958 ± .23 .6756 ± .41 .6957 ± .40
LOF .9893 ± .00 .5799 ± .07 .7099 ± .05 .9916 ± .00 .5802 ± .07 .7097 ± .06

NATOPS HMM .9908 ± .00 .2972 ± .05 .4427 ± .06 .9957 ± .00 .2877 ± .05 .4294 ± .06
OCSVM† .9582 ± .00 .9218 ± .01 .9387 ± .01 .9577 ± .00 .9223 ± .01 .9387 ± .00
OCCRF .9609 ± .00 .9343 ± .03 .9464 ± .02 .9605 ± .00 .9329 ± .03 .9454 ± .02

AO .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00
LOF .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00 .0000 ± .00

SOIT HMM .1809 ± .12 .7000 ± .26 .2604 ± .10 .2718 ± .32 .3667 ± .20 .2518 ± .21
OCSVM .0132 ± .01 .7250 ± .45 .0247 ± .02 .2012 ± .28 .5121 ± .28 .1748 ± .08
OCCRF .6725 ± .05 .7745 ± .08 .7154 ± .01 .6607 ± .02 .7554 ± .09 .7024 ± .03

Table 2: A summary of experimental results on both validation and test splits, showing our OCCRF consistently outperforming
four other baseline models in terms of the F1@k score. The differences were statistically significant, except for the LOF on the
ArmGesture dataset and the OCSVM on the NATOPS dataset (marked with †).

samples; only the validation and test splits contained abnor-
mal samples. The optimal hyper-parameter setting of each
fold was selected based on the highest F1@k on the valida-
tion split. For temporal models, i.e., HMM and OCCRF, we
treated each sequence as an individual sample (as was given).
For non-temporal models, i.e., LOF, AO, OCSVM, we treated
each frame of a sequence as an individual sample; when com-
puting an anomaly score of a test sequence, we computed the
score of each frame and took an average of them.

4.4 Results and Discussion
Table 2 shows experimental results on both validation and
test splits. It shows that our OCCRF outperformed all four
baseline models across all datasets in terms of F1@k scores.
A two-sample t-test was used to determine if the differences
between our model and the baselines are statistically signif-
icant in terms of the F1@k scores; most of the comparisons
showed statistical significance except for the LOF on the Ar-
mGesture dataset and the OCSVM on the NATOPS dataset
(marked with † in Table 2).

On the three multi-class datasets (i.e., CUAVE, ArmGes-
ture, NATOPS), the HMM showed high precision rates but
low recall rates, resulting in low F1@k scores. This indicates
that training a standard multi-class classification model using
one-class data does not perform well. The three other base-
lines (i.e., AO, LOF, OCSVM) performed similarly depend-
ing on datasets, but no model performed consistently well
across datasets, indicating high sensitivity of the models to
the data type. The performance of our OCCRF was consistent
across datasets and hence indicates low sensitivity compared
to the baselines. These findings were consistent between the
validation and test splits, showing that there was no sampling

bias between the two splits.
The class distribution of the SOIT dataset was quite dif-

ferent from the rest. The mean percentage of abnormal sam-
ples in the test split was only 1.08% for the SOIT dataset
(83 anomalies out of 7,698 samples), while it was 90.09%
for the CUAVE dataset, 83.00% for the ArmGesture dataset,
and 95.82% for the NATOPS dataset. The SOIT dataset,
therefore, better reflected a realistic scenario of sequential
anomaly detection, where only a fraction of observations are
true anomalies. Our results show that both the AO and the
LOF failed to detect any of the 83 anomalies during test-
ing (both on validation and test splits); the HMM and the
OCSVM also showed quite unsatisfactory performance com-
pared to our OCCRF model.

5 A Qualitative Exploratory Study
In this section we report on an exploratory study on detecting
employees’ abnormal organizational behavior in enterprise
social networks [Lin et al., 2012]. Specifically, we aim to
identify two types of anomalies: positive anomalies, employ-
ees who can potentially contribute to the success of the orga-
nization; and negative anomalies, employees who are in need
of attention and help, or who can become a possible insider
threat. To give a loose definition of the two types of anoma-
lies, we assume that positive anomalies result in promotion
and/or change in job role/location, and that negative anoma-
lies are indicated by resignation or new employees (joined the
company within a year) changing their managers. We assume
that such anomalies can be observed from organizational be-
havior, and that email conversation is a good proxy for it since
employees spend a lot of their work time on email.



Because it is desirable to detect anomalies well before an
actual action is executed, we set our goal as an early detection
of the four above anomalous action categories, i.e., promo-
tion, change in job role/location, resignation, new employee
change manager. To this end, we compute an anomaly score
p(y = −1 |x) of each employee during a specific period, sin-
gle out employees with high anomaly score, and look up the
corporation’s database to see if the employees match one of
the four anomalous action categories after that period.

To evaluate our model’s ability to detect sequentially
anomalous patterns, we compare the list of anomalous em-
ployees obtained from our OCCRF to that of OCSVM.
Specifically, we check to see if there are sequentially anoma-
lous traits of emails from each employee that are detected by
OCCRF but not by OCSVM.

5.1 Dataset and Methodology
We collected two year’s worth of email communication of
8,952 volunteer employees within a global technology com-
pany that spans over 400,000 employees and 70 countries.
After eliminating spam emails and mass announcements, the
dataset contained approximately 20M email samples. Each
sample contained the sender, receiver(s), time stamps, and
the body of email. We augmented each sample with sender’s
personal attributes, including job role, departmental affilia-
tion, and report-to relation with managers. Email addresses
were hashed to ensure privacy. Because of the exploratory
nature of this dataset, the ground-truth labels were not avail-
able; however, the majority of employees (more than 60%)
remained in stable positions during this period.

We used the data from the last quarter of the first year,
which contained about 1M email records from 5,047 employ-
ees. This period was particularly interesting because it was
about the peak of financial crisis, where there could be more
anomalies (especially resignations). Since our goal was to
identify anomalous employees based on a series of emails,
we defined sequence as emails from each employee sorted in
chronological order. The content of each email was processed
using LDA [Blei et al., 2003] with 200 latent topic classes to
extract a 200D feature vector, with each dimension indicat-
ing the weight to each topic class.5 The median length of
sequence was 110. PCA was used to reduce the dimension of
the LDA feature vector to 100, which accounted for 90% of
the variation in the dataset.

Experiments were performed following the 10-fold hold-
out approach, where one-tenth of the dataset was held out for
testing and the rest was used for training, repeating 10 times.
We trained both the OCSVM and the OCCRF assuming most
of the data in the training split is positive. For OCSVM,
we set the offset parameter ρ=0.9 and the Gaussian kernel
width γ=0.1. For OCCRF, we set the number of latent states
|H|=12, the regularization factor λ=0.1, and the margin offset
parameter ρ=0.9. There was no cross-validation of the param-
eters because the ground-truth label was not available. After
evaluating each test split, we picked those employees with an
anomaly score p(y = −1 | x) higher than 0.9.

5We used PLDA+ [Liu et al., 2011] with a default configuration.

5.2 Result and Discussion
Our OCCRF identified 151 employees as anomalous, of
which 45 employees were positive anomalies (26 promo-
tions, 19 changes in job role/location) and 67 employees
were negative anomalies (53 resignations, 14 new employees
changed manager); the remaining 39 employees were nor-
mal, i.e., falsely identified as anomalies. This resulted in a
precision@k rate of 0.7417, where k is set to the number of
employees whose anomaly score was higher than 0.9 (151).
On the other hand, the OCSVM identified 21 employees as
anomalous, of which 3 employees were positive anomalies (2
promotions, 1 change in job role/location), 9 employees were
negative anomalies (7 resignations, 2 new employees changed
manager), and 9 falsely identified anomalies, resulting in a
precision@k rate of 0.5714. This comparison shows that our
OCCRF identified more anomalies with higher precision.

Since the majority type of anomalies detected using OC-
CRF was in the category ‘resignation’ (53 out of 112), we
further analyzed the input sequence (LDA features) of the
53 resigned employees. To understand the characteristic of
each sequence, we examined the maximum weighted LDA
topic in each frame. Interestingly, 9 out of 53 sequences con-
tained a topic class interview (topic words: candidate, po-
sition, recruit) and later followed by a topic class decision
(topic words: position, potential, proposal, recommend), in-
dicating that those employees have sent emails related to job
interview, and later sent other emails related to the decision of
interviews. Although this is a simple and illustrative example,
the OCSVM did not show such cases, which demonstrates the
ability of our model to capture anomalous temporal patterns.6

6 Conclusion
We presented One-Class Conditional Random Fields for se-
quential anomaly detection. It follows the learning strategy of
Scholkopf et al. [2001] and accepts most of the training ex-
amples as normal, while making the solution space as tight as
possible. Our main contribution is an extension of this learn-
ing strategy to the temporal sequence domain using CRFs.
We developed a hinge loss in a regularized risk minimiza-
tion framework that maximizes the margin between each se-
quence being classified as “normal” and “abnormal,” which
allows our model to deal with one-class data and capture the
temporal dependence structure. Experimental results on var-
ious real-world datasets show our model outperforming sev-
eral state-of-the-art baseline methods.

One advantage of our model is the ability to make use of
various advances in CRF models, as for example the use of
kernels [Lafferty et al., 2004] or neural networks [Peng et
al., 2009] to capture non-linear relationship in complex real-
world data. We look forward to experimenting with these ex-
tensions on various real-world anomaly detection scenarios.

6Subsequent investigation using the corporation’s database re-
vealed that resigned employees identified by OCCRF have sent
many emails to their weak-ties within and outside of the company,
with whom they had little interactions before. To determine the
weak-ties we used the tie strength measure in [Lin et al., 2012].
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