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Abstract— Many real-world face and gesture datasets are
by nature imbalanced across classes. Conventional statistical
learning models (e.g., SVM, HMM, CRF), however, are sen-
sitive to imbalanced datasets. In this paper we show how
an imbalanced dataset affects the performance of a standard
learning algorithm, and propose a distribution-sensitive prior
to deal with the imbalanced data problem. This prior analyzes
the training dataset before learning a model, and puts more
weight on the samples from underrepresented classes, allowing
all samples in the dataset to have a balanced impact in the
learning process. We report on two empirical studies regarding
learning with imbalanced data, using two publicly available
recent gesture datasets, the Microsoft Research Cambridge-12
(MSRC-12) and NATOPS aircraft handling signals datasets.
Experimental results show that learning from balanced data
is important, and that the distribution-sensitive prior improves
performance with imbalanced datasets.

I. INTRODUCTION
Collecting a dataset of human behaviors, e.g., facial

expressions and body gestures, is a time-consuming and
expensive procedure. One of the main difficulties is balancing
the class distribution, i.e., the number of samples per class.
In many real-world scenarios, some samples are far more
common than others. In face and gesture datasets [8, 12, 13],
in particular, samples of the normal facial expression will be
abundant, while samples of other expressions (e.g., pain [12]
and various others [8]) will be difficult to obtain. As another
example, in anomaly detection, normal patterns of pedes-
trian movements are common (by definition) compared to
anomalous patterns (e.g., the circulation of non-pedestrian
entities in the walkways or anomalous pedestrian motion
patterns [13]).

While many effective statistical learning algorithms have
been developed, such as decision trees [18], Neural Net-
works [1], Hidden Markov Models [19], Support Vector
Machines [24], and Conditional Random Fields [9], the
standard formulations of these models are sensitive to im-
balanced data. Suppose we have highly skewed data, e.g.,
a 1:10000 ratio of positive and negative samples. Using
standard algorithms, the learning process will be dominated
by the negative class, which in turn will classify most test
samples as negative [25].

One possible solution to this problem is to balance the
original dataset by re-sampling, e.g., by random undersam-
pling or oversampling [10]. However, this approach has its
drawbacks, such as potentially removing important examples
in undersampling, and adding redundant examples in over-
sampling, which may cause overfitting [14].

In this paper we propose a distribution-sensitive prior to
solve this problem, analyzing the training dataset before
learning a model, and putting more weight on the samples
from underrepresented classes. This allows all samples in
the dataset to have balanced impact in the learning process.
We report on two empirical studies regarding learning with
imbalanced data, using two publicly available recent gesture
datasets, the Microsoft Research Cambridge-12 (MSRC-
12) [6] and the Naval Air Training and Operating Procedures
Standardization (NATOPS) [21] datasets. The first experi-
ment aims to show the effect of imbalanced data on the
performance of a learned model; the second experiments
evaluates the use of our distribution-sensitive prior.

Section II reviews some of the previous approaches to
imbalanced data learning, Section III formalizes the problem
and describes our distribution-sensitive prior, and Section IV
discusses the two empirical studies. Section V summarizes
the findings and suggests directions for the future work.

II. RELATED WORK

There are three main groups of solutions to learning with
imbalanced data: sampling methods, cost-sensitive learning,
and one-class learning. In this section, for each group of
solutions, we briefly introduce the core idea, point to some
representative work, and highlight the differences between
our method and previous work. For a comprehensive survey,
readers are referred to [7].

Sampling methods use various mechanisms to modify the
original dataset so that it has a balanced distribution. This
is motivated by empirical studies showing that balanced
data improves overall classification performance [25]. The
simplest technique in this category is random undersampling,
i.e., discard samples chosen randomly from overrepresented
classes, or random oversampling, i.e., replicate samples cho-
sen randomly from underrepresented classes [4]. Advanced
techniques include generating synthetic data for the under-
represented class [3]. Our approach is similar to sampling
methods in that, in the form of normalized weighting, the
distribution-sensitive prior “simulates” duplicating samples
from underrepresented class and discarding samples from
overrepresented class. The difference, however, is that our
approach does not require selecting which samples to dupli-
cate/discard, nor does it require generating synthetic data.

Cost-sensitive learning takes an opposite approach by
learning from imbalanced data directly, and using a misclas-
sification cost metric that varies depending on applications
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and algorithms. Elkan [5] gives a rigorous theoretical foun-
dation for this method. Turney [23] proposed an approach
that utilizes misclassification costs in the fitness function of
the genetic algorithm, while Ling et al. [11] incorporated
misclassification costs in building a decision tree. The idea
of cost-sensitive learning has been applied to face recogni-
tion [26] in computer vision community. Our approach is
similar to cost-sensitive learning in that minority samples
are weighted higher in the learning process. The difference,
however, is that we weight minority samples higher whether
or not they are misclassified. This allows all samples to have
balanced impacts in the learning process.

Finally, one-class learning takes the problem to an ex-
treme and learns from the data collected from one class
only. It is typically used in an outlier/anomaly detection
setting. Schölkopf et al. [20] and Tax and Duin [22] have
independently proposed a method extending a support vector
algorithm to obtain a tight boundary of the one-class sample
space, accepting most samples in the training dataset. Usu-
ally, kernel methods are used to obtain the boundary in a high
dimensional space. We concentrate on multi-class learning
rather than one-class learning, with an assumption that we
have at least one sample per class.

III. DISTRIBUTION-SENSITIVE PRIOR

In this section, we formalize the problem of learning
with imbalanced data, and introduce the distribution-sensitive
prior to deal with this problem, which can be used in
conjunction with many standard learning algorithms

A. Standard Formulation of Statistical Learning Algorithms

The heart of many statistical learning algorithms involves
solving an optimization problem with an objective function
L(w) with respect to the model parameters w. Given a
training dataset of D = {(xi, yi) | xi ∈ Rd, yi ∈ Y}Ni=1,
where xi is a real-valued d-dimensional input feature vector
and yi is the output label, the standard way to formulate an
objective is

min
w

L(w) = Ω(w) +Qemp(D,w) (1)

where Ω(w) is a regularizer that prevents overfitting, and
Qemp(D,w) is an empirical quality measure of the solution
w derived from the training dataset D. There exist many
different definitions of both the regularizer Ω(w) and the
empirical quality measure Qemp(D,w). Typical examples
of Ω(w) include the L1 norm and the L2 norm [15]. The
empirical quality measure Qemp(D,w) is defined differently
in different learning algorithms, including the empirical
risk [24], the energy [2], and the negative conditional log-
likelihood probability [9, 17, 19].

B. Imbalanced Data Problem

In this paper, for ease of understanding, we concentrate
on the classification problem, where Y is a finite alphabet

set, and explain our idea using the negative conditional log
probability,

Qemp(D,w) = −
N∑
i=1

log p(yi | xi) (2)

Since we minimize Qemp(D,w), this formulation maximizes
a linear sum of the conditional log probabilities computed
from each of the training samples (xi, yi) using the current
solution w.

Unfortunately, this formulation is distribution-insensitive:
It treats each p(yi | xi) as equally important and computes
a linear sum of them, with an assumption that the training
dataset is uniformly distributed across classes. As a result, if
the dataset is highly skewed (e.g., 1:10000 ratio of positive
and negative samples), the linear sum in Equation 2, and
hence the solution w, will be dominated by the most frequent
classes. This will in turn classify most test samples as one
of the dominating classes (as shown in [25]).

C. Distribution-Sensitive Prior

To deal with the imbalanced data problem, we define a
distribution-sensitive prior γi as

γi =

(
N

Nyi

)k
, N =

1

|Y|
∑
y

Ny (3)

where Ny is the number of samples with a class label y
(similarly for yi), |Y| is the number of classes, and N is an
average number of samples per class. The degree k controls
the magnitude of the distribution-sensitive prior. This is then
multiplied with the log probability for each sample (xi, yi),

Qemp(D,w) = −
N∑
i=1

γi log p(yi | xi), (4)

When the dataset has a uniform distribution (i.e., all Ny’s
are the same), or when k = 0, Equation 4 is reduced to
the standard formulation of Equation 2. This prior puts
more weight on the samples from underrepresented classes,
allowing all samples in the dataset to have balanced impact
in the learning process.

In this work, we use a standard sequence classification al-
gorithm, the Hidden Conditional Random Field (HCRF) [17],
to evaluate the distribution-sensitive prior. We augment the
standard formulation of HCRF with our distribution-sensitive
prior γi:

min
w

L(w) =
1

2σ2
‖w‖2 −

N∑
i=1

γi log p(yi | xi) (5)

The first term in Equation 5 is the log of a Gaussian prior
with variance σ2, p(w) ∼ exp( 1

2σ2 ‖w‖2), and p(yi | xi) in
the second term is defined as

p(yi | xi) =

∑
h exp(w · Φ(yi, h, xi))∑
y,h exp(w · Φ(y, h, xi))

(6)

where h ∈ H is a set of additional latent variables that
capture the hidden dynamics in the data. The feature function
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Fig. 1. Class distributions of training data with varying α. The blue lines
show distributions of the imbalanced data, and the red dashed lines show
the balanced version of the same data, i.e., the total amount is the same.
The bias for/against particular classes is an artifact of the random seed that
we set manually.

Φ(y, h, x) is derived from an underlying graph structure,
which we chose a linear chain model, as is common for
sequence data. Following [17], we define three types of
feature functions. Let 1[·] be an indicator function, and y′ ∈
Y and h′, h′′ ∈ H. The observation function φ(ht, xt) =
1[ht = h′]xt captures the compatibility between a latent
variable ht and an observation xt; the label feature function
φ(y, ht) = 1[y = y′ ∧ ht = h′] captures the compatibility
between a label y and a latent variable ht; and the edge
feature function φ(y, hs, ht) = 1[y = y′∧hs = h′∧ht = h′′]
captures the compatibility among a label y and two latent
variables hs, ht. We use the limited-memory BFGS (L-
BFGS) [16] to optimize Equation 5.

IV. EXPERIMENTS

In this section, we present two empirical studies on learn-
ing with imbalanced datasets: The first experiment shows the
effect of imbalanced data on the performance of a learned
classifier, the second evaluates the ability of the distribution-
sensitive prior to deal with imbalanced data problem. We
used two publicly available recent gesture datasets, MSRC-
12 [6] and NATOPS [21], selected because they are well
balanced; this allows us to control the degree of imbalance
manually, and see precisely how the imbalanced data affects
the performance of a standard learning algorithm.

A. Datasets

MSRC-12 [6]: The Microsoft Research Cambridge-12
(MSRC-12) gesture dataset contains 12 classes of gestures
divided into two categories: the iconic gesture category
(crouch or hide, shoot a pistol, throw an object, change

weapon, kick, and put on night vision goggles) and the
metaphoric gesture category (start music/raise volume, nav-
igate to next menu, wind up the music, take a bow to end
music session, protest the music, and move up the tempo
of the song). The dataset includes automatically tracked full
body postures, estimated using the Kinect pose estimation
pipeline. The body feature includes 3D locations of twenty
body joints and is represented as a 60D feature vector. We
defined each sequence as the frames in between two segment
points provided in the dataset; we dropped 22 sequences
whose length was longer than 400 frames. This resulted
in a class distribution of [498 508 511 515 498 502] for
the iconic gestures and [497 552 646 507 506 512] for the
metaphoric gestures. The original data was recorded at 30
Hz; we subsampled the data by the factor of 3, resulting in 10
Hz. The average frame length of the resulting sequences was
33 for the iconic gestures and 35 for the metaphoric gestures.
We normalized each dimension to have a mean zero and
standard deviation one. We performed experiments on each
category of gesture individually; we name these MSRC-12a
(iconic gestures) and MSRC-12b (metaphoric gestures).

NATOPS [21]: The NATOPS aircraft handling signals
dataset contains 24 classes of gestures used in routine
practice on the deck of an aircraft carrier, e.g., turn left/right,
brakes on/off, insert/remove chocks, etc. (see [21] for a
complete list). The dataset includes automatically tracked
upper body postures and the shapes of both hands. The
body feature includes 3D velocities of four body joints
– left/right elbows and wrists – and is represented as a
12D feature vector. The hand feature includes probability
estimates of five predefined hand shapes – opened/closed
palm, thumb up/down, and “no hand”. The fifth shape, no
hand, was dropped in the final representation, resulting in an
8D feature vector. The dataset has a perfectly balanced class
distribution; there are 400 samples per class, obtained from
20 subjects repeating each gesture 20 times. The original data
was recorded at 20 Hz; we subsampled the data by the factor
of 2, resulting in 10 Hz. The average frame length of the
resulting sequences was 25. We normalized each dimension
to have a mean zero and standard deviation one.

B. Experiment I: Effect of Imbalanced Data

This experiment examines the effect of imbalanced data
on the classification performance. Specifically, we vary the
degree of imbalance by discarding samples at random with
a specified degree α, and compare classifier performance to
that obtained from a balanced version of the same dataset, in
which the total number of training samples are the same but
the class distribution is balanced across classes. This allows
us to perform fair comparisons under the same amount of
training samples.

1) Methodology: We performed 5-fold cross validation,
where three-fifths of the entire dataset is used for training,
one-fifth is used for validation, with the rest used for testing,
repeated five times.

To simulate each training split having an imbalanced
distribution with a degree of α ∼ [0, 1], for each class y,
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Fig. 2. The mean F1 scores as the function of α, obtained from the imbalanced and the balanced training data of the same amount. The difference of
classification performance between the imbalanced and the balanced data becomes bigger as the degree of imbalanced distribution increases.

we used only the first N ′
y = Ny − rand(0, αNy) samples

in the original training split, where Ny is the number of
samples with a class label y in the original training split,
and rand(a, b) is a random integer number between a and
b. To obtain a balanced version of the same training split,
we used the first N ′ = 1

|Y|
∑
y N

′
y samples (i.e., the average

of N ′
y’s) from each class in the original training split. This

made the total number of samples the same as the imbalanced
version of the same split. While we altered the training split
to control the degree of imbalance, the validation and testing
splits were the same across different settings (and hence
were always balanced). Figure 1 shows class distributions
of training data with varying α, where we averaged out the
numbers from the five splits. 1

We varied the degree of imbalanced distribution α from
0 to 1 with an increment of 0.2 (α = 0 is same the original
dataset). To allow direct comparisons between imbalanced
and balanced distribution for each of the α values, we fixed
all other hyper parameters of HCRF, i.e., the cardinality
of the latent variables |H| = 8 and the L2 regularization
factor σ2 = 10. 2 The L-BFGS optimization solver was set
to terminate after 500 iterations.

2) Results and discussion: Figure 2 shows the mean F1
scores as a function of α, obtained from the imbalanced and
the balanced training splits. It shows that, for the imbalanced
data, the classification performance gets worse as the degree
of imbalance increases (although in the case of MSRC-12a,
the performance did not decrease until α = 0.4, which indi-
cates that the training dataset may contain some redundant
samples). A comparison to the corresponding balanced data
shows that this decrease in performance is not due solely
to the reduced amount of training data. The balanced data
achieved better performance than the imbalanced data with

1To make this experiment reproducible, we provide a Matlab script
for generating the same data splits used in our experiments at
http://people.csail.mit.edu/yalesong

2These parameter values were chosen based on a preliminary experiment
validating |H| = [6 8 10] and σ2 = [1 10 100] on the “full” version of
the three datasets with α = 0. We then chose the parameter values that
performed the best across five splits and three datasets.

the same amount of training data. Even though balancing the
distribution reduced the number of samples for some classes,
it improved the overall classification performance, indicating
that having a uniformly distributed data is important.

Figure 3 shows a per-class mean accuracy plot obtained
from the NATOPS dataset with α = 1. The exact difference
of mean accuracies between the balanced and imbalanced
data was [.5 9.8 3.3 5.0 0.3 -8.8 -0.3 1.5 12.5 11.5 -1.8 12.0
40.8 1.3 16.3 -5.8 3.3 36.0 -5.5 19.0 -5.5 11.3 20.5 4.8]. In
general, the amount of the accuracy difference between the
imbalanced and the balanced data roughly corresponds to the
amount of the number of samples difference shown in Fig-
ure 1. Notably, the top two highest accuracy improvements
(40.8 for class 13 and 36.0 for class 18) correspond to the
two steepest valleys in Figure 1, which indicates that samples
from the two classes in the imbalanced version of the data
had very little impact during the learning process. The six
classes with decreased accuracy (class 6, 7, 11, 16, 19, and
21) correspond to the hills above the red dashed line, i.e.,
the classes whose number of samples was reduced after the
balancing was done. However, the decrease in accuracy for
the six classes was minimal (an average of 4.46%) compared
to the remaining classes (an average of 11.65%), resulting in
overall a better performance.

C. Experiment II: Distribution-Sensitive Prior

Our second experiment evaluated the distribution-sensitive
prior for learning with imbalanced data, comparing it to three
baseline methods; learning with imbalanced data without
using the distribution-sensitive prior (k = 0), and learning
with balanced data with random undersampling and random
oversampling. We studied how sensitive the classification
performance is to the degree k of the distribution-sensitive
prior (see Equation 3). We use the α = 1 version of the
datasets from our previous experiment to simulate highly
imbalanced data.

1) Methodology: We varied the degree k = [0 0.5 1 2]
of our distribution-sensitive prior, where k = 0 means no
distribution-sensitive prior was used. For the undersampling
(and the oversampling) methods, we set the number of
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Fig. 3. Per-class mean accuracy obtained from the NATOPS dataset with α
= 1, comparing the imbalanced and balanced data of the same amount. The
amount of the accuracy difference between the imbalanced and the balanced
data roughly corresponds to the amount of the sample count difference
between the imbalanced and the balanced data shown in Figure 1.

samples per class as the minimum (and the maximum) of
N ′
y’s, and discarded (and duplicated) samples at random to

make the sample distribution even.
We validated the two hyper parameters of HCRF, the

cardinality of the latent variables |H|=[6 8 10] and the L2

regularization factor σ2 = [1 10 100]. We then selected, for
each split and for each k, the optimal hyper parameter values
based on the F1 score on the validation split. Similar to the
previous experiment, we performed 5-fold cross validation,
and the L-BFGS optimization solver was set to terminate
after 500 iterations.

2) Results and discussion: Table I shows the mean
F1 scores with standard deviations obtained from the best
performing models in each method, averaged over the 5
splits. It shows that our method of using the distribution-
sensitive prior outperformed the three baseline methods in all
three datasets. The undersampling method performed much
worse than the two others. We believe this was due to the too
small amount of training samples, and that the undersampling
may have discarded too many important samples.

Our method also outperformed the other baseline method,
i.e., learning with imbalanced data without using a
distribution-sensitive prior (k = 0). While paired t-tests
between the two methods, under the same settings of |H| and
σ2, revealed that differences were not statistically significant
(p=.55 for MSRC-12a, p=.22 for MSRC-12b, and p=.17
for NATOPS), our method did improve the performance in
majority cases. Even when our method performed worse
in individual test cases, the decrease in performance was
minimal. For example, on the MSRC12a, 10 out of 45 cases
decreased the F1 scores with an average of .016; on the
MSRC-12b, 8 out of 45 cases decreased the F1 scores with
an average of .022; and on the NATOPS, only 7 out of 45

TABLE I
MEAN F1 SCORES WITH STANDARD DEVIATIONS FROM EXPERIMENT II.

Methods MSRC-12a MSRC-12b NATOPS
Imbalanced, k = 0 .7808 (.14) .5589 (.05) .5427 (.10)

Undersampling .6595 (.17) .3556 (.12) .3970 (.06)
Oversampling .7902 (.11) .5381 (.07) .5779 (.08)

Dist.-sen. prior .7977 (.16) .5721 (.06) .5899 (.06)
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Fig. 5. Confusion matrices obtained from the NATOPS dataset at α =
1 (imbalanced), with k=0 (above; no distribution-sensitive prior used) and
k=1 (bottom). Better viewed when zoomed in on a computer screen.

cases decreased the F1 scores with an average of .004).
Figure 4 shows the mean F1 scores as a function of

k, the degree of the distribution-sensitive prior. We found
that setting k = 1 in general performed well, although the
differences were not significant across different values of k.

Figure 5 shows two confusion matrices obtained from the
NATOPS dataset at α = 1 (imbalanced), comparing k = 0
(no distribution-sensitive prior used) to k = 1. The per-class
accuracy improvement was [.06 .07 -.02 .08 .02 .07 -.05 .09
.04 .08 .01 .10 .06 .01 .07 .01 -.01 .12 .09 .12 -.08 .04 -.05
0], which shows that the per-class accuracy was improved
for 18 out of 24 classes. Interestingly, the accuracies of the
underrepresented classes (the number of samples are lower
than the average, i.e., the class below the red dashed line for
α=1 in Figure 1) were all improved, except for the class 23.

V. CONCLUSIONS

In this paper, we showed how an imbalanced dataset
affects the performance of a standard sequence classification
algorithm using HCRF, and proposed a distribution-sensitive
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Fig. 4. Mean F1 scores as a function of k obtained from the Experiment II. See the text for details.

prior that deals with the imbalanced data problem. This puts
more weight on the samples from underrepresented classes,
allowing all samples in the dataset to have a balanced impact
in the learning process. Experimental results on two recent
gesture datasets, MSRC-12 and NATOPS, showed that, under
the same amount of training data, the balanced data achieved
better performance than the imbalanced data, indicating that
learning from balanced data is important. We also showed
that the distribution-sensitive prior improves the performance
on the imbalanced data as well as the balanced data obtained
using random undersampling.

Finding the optimal degree of the distribution-sensitive
prior k (see Equation 3) is empirical and needs cross-
validation at the current stage of our method. However, this
can be automatically learned using meta-learning methods
such as boosting approach. We plan to improve our approach
by combining it with other techniques in imbalanced data
learning literature.
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