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ABSTRACT
Multimodal human behavior analysis is a challenging task due to
the presence of complex nonlinear correlations and interactions across
modalities. We present a novel approach to this problem based on
Kernel Canonical Correlation Analysis (KCCA) and Multi-view
Hidden Conditional Random Fields (MV-HCRF). Our approach
uses a nonlinear kernel to map multimodal data to a high-dimensional
feature space and finds a new projection of the data that maximizes
the correlation across modalities. We use a multi-chain structured
graphical model with disjoint sets of latent variables, one set per
modality, to jointly learn both view-shared and view-specific sub-
structures of the projected data, capturing interaction across modal-
ities explicitly. We evaluate our approach on a task of agreement
and disagreement recognition from nonverbal audio-visual cues us-
ing the Canal 9 dataset. Experimental results show that KCCA
makes capturing nonlinear hidden dynamics easier and MV-HCRF
helps learning interaction across modalities.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Signal processing

Keywords
Multimodal signal processing; multi-view latent variable discrimi-
native models; canonical correlation analysis; kernel methods

1. INTRODUCTION
Human communication is often accompanied by multimodal non-

verbal cues, such as gestures, eye gaze, and facial expressions.
These nonverbal cues play an important role in the way we com-
municate with others and can convey as much information as spo-
ken language. They complement or substitute for spoken language,
help to illustrate or emphasize main points, and provide a rich
source of predictive information for understanding the intentions
of the others. Automatic analysis of human behavior can thus ben-
efit from harnessing multiple modalities.

From the machine learning point of view, multimodal human be-
havior analysis continues to be a challenging task, in part because
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learning the complex relationship across modalities is non-trivial.
Figure 1(a) shows a pair of time-aligned sequences with audio and
visual features (from [11]; details can be found in Section 4.1).
When learning with this type of data, it is important to consider the
correlation and interaction across modalities: An underlying cor-
relation structure between modalities may make the amplitude of
the signal from one modality different in relation to the signal from
another modality, e.g., loud voice with exaggerated gestures. Also,
the interaction between modalities may have certain patterns that
change the direction in which each sequence may evolve over time.

In this paper, we investigate the hypothesis that transforming
the original data to be maximally correlated across modalities, in
a statistical sense, and capturing the interaction across modalities
explicitly from the transformed data improves recognition perfor-
mance on human behavior analysis. To this end, we present a
novel approach to multimodal data learning that captures complex
nonlinear correlations and interactions across modalities, based on
KCCA [3] and MV-HCRF [10]. Our approach uses a nonlinear ker-
nel to map multimodal data to a high-dimensional feature space and
finds a new projection of the data that maximizes the correlation
across modalities. Figure 1(b) shows the projected signals found
by KCCA, where the relative importance of gestures ‘head shake’
and ‘shoulder shrug’ have been emphasized to make the statistical
relevance between the audio and visual signals become as clear as
possible. We then capture the interaction across modalities using
a multi-chain structured latent variable discriminative model. The
model uses disjoint sets of latent variables, one set per view, and
jointly learns both view-shared and view-specific sub-structures of
the projected data.

We evaluated our approach using the Canal 9 dataset [11], where
the task is to recognize agreement and disagreement from nonver-
bal audio-visual cues. We report that using KCCA with MV-HCRF
to learn correlation and interaction across modalities successfully
improves recognition performance compared to baseline methods.

2. RELATED WORK
Due to its theoretical and practical importance, multimodal hu-

man behavior analysis has been a popular research topic. While
audio-visual speech recognition is probably the most well known
and successful example [6], multimodal affect recognition has re-
cently been getting considerable attention [12]. Bousmalis et al. [1]
proposed a system for spontaneous agreement and disagreement
recognition based only on prosodic and gesture cues, as we did
here. They used an HCRF to capture the hidden dynamics of the
multimodal cues. However, their approach did not consider the cor-
relation and interaction across modalities explicitly.

Canonical correlation analysis (CCA) has been successfully ap-
plied to multimedia content analysis [3, 13]. Hardoon et al. [3]
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Figure 1: An overview of our approach. (a) An audio-visual observation sequence from the Canal 9 dataset [11]. KCCA uses
a nonlinear kernel to map the original data to a high-dimensional feature space, and finds a new projection of the data in the
feature space that maximizes the correlation between audio and visual channels. (b) The projected data shows that emphasizing the
amplitude of the ‘head shake’ and ‘shoulder shrug’ gestures maximized the correlation between audio and visual channels. (c) multi-
view HCRF for jointly learning both view-shared and view-specific sub-structures of the projected data. at and vt are observation
variables from audio and visual channels, and ha

t and hv
t are hidden variables for audio and visual channels.

used kernel CCA (KCCA) for learning the semantic representation
of images and their associated text. However, their approach did
not consider capturing hidden dynamics in the data. Latent vari-
able discriminative models, e.g., HCRF [7], have shown promising
results in human behavior analysis tasks, for their ability to capture
the hidden dynamics (e.g., spatio-temporal dynamics). Recently,
the multi-view counterpart [10] showed a significant improvement
over single-view methods in recognizing human actions. However,
their work did not learn nonlinear correlation across modalities. We
extend this body of work, enabling it to modeling multimodal hu-
man behavior analysis.

3. OUR APPROACH
Consider a labeled sequential dataset D = {(xi, yi)}Ni=1 where

xi is a multivariate observation sequence and yi ∈ Y is a sequence
label from a finite label set Y . Since we have audio-visual data,
we use the notation xi = (ai,vi) where ai ∈ R

na×T and vi ∈
R

nv×T are audio and visual sequences of length T , respectively.
Figure 1 shows an overview of our approach. We first find a new

projection of the original observation sequence x′ = (a′,v′) using
KCCA [3] such that the correlation between a′ and v′ is maximized
in the projected space (Section 3.1). Then we use this projected
data as an input to MV-HCRF [10] to capture hidden dynamics and
interaction between audio and visual data (Section 3.2).

3.1 KCCA
Given a set of paired samples {(ai,vi)}Ni=1, A = [a1, · · · ,aN ]

and V = [v1, · · · ,vN ], Canonical Correlation Analysis (CCA)
aims to find a pair of transformations wa and wv such that the cor-
relation between the corresponding projections ρ(w�

a A,w�
v V) is

maximized. However, since CCA finds wa and wv that are linear
in the vector space, it may not reveal nonlinear relationships in the
data [9].

Kernel CCA (KCCA) [3] uses the kernel trick [9] to overcome
this limitation by projecting the original data onto a high dimen-
sional feature space before running CCA. A kernel is a function
K(xi,xj) that, for all xi,xj ∈ R,

K(xi,xj) = 〈Φ(xi),Φ(xj)〉

where 〈·, ·〉 denotes an inner product, and Φ is a nonlinear mapping
function to a Hilbert space F , Φ : x ∈ R �→ Φ(x) ∈ F .

To apply the kernel trick, the standard KCCA then rewrites wa

(and wv) as an inner product of the data A (and V) with a direction
α (and β),

wa = A�α, wv = V�β (1)

If we assume that a’s and v’s are centered (i.e., mean zero), the
goal is to maximize the correlation coefficient

ρ(·, ·) = max
wa,wv

E[w�
a av�wv]√

E[w�
a aa�wa]

√
E[w�

v vv�wv]

= max
wa,wv

w�
a AV�wv√

w�
a AA�waw�

v VV�wv

= max
α,β

αAA�VV�β√
αAA�AA�α · βVV�VV�β

= max
α,β

α�KaKvβ√
α�K2

aα · β�K2
vβ

. (2)

where Ka = K(A,A) and Kv = K(V,V) are kernel matrices.
Since Equation 2 is scale invariant with respect to α and β (they

cancel out), the optimization problem is equivalent to:

max
α,β

α�KaKvβ subject to α�K2
aα = β�K2

vβ = 1 (3)

The corresponding Lagrangian dual form is

L(α, β, θ) = α�KaKvβ− θα
2
(α�K2

aα−1)− θβ
2
(β�K2

vβ−1)

(4)
The solution to Equation 3 is found by taking derivatives of Equa-
tion 4 with respect to α and β, and solving a standard eigenvalue
problem [5]. However, when Ka and Kv are non-invertible, as is
common in practice with large datasets, problems can arise such
as computational issues or degeneracy. This problem is solved by
applying the partial Gram-Schmidt orthogonalization (PGSO) with
a precision parameter η to reduce the dimensionality of the kernel
matrices and approximate the correlation.



After we find α and β, we plug the solution back in to Equation 1
to obtain wa and wv , and finally obtain new projections:

A′ = [〈wa,a1〉 , · · · , 〈wa,aN 〉] (5)

V′ = [〈wv,v1〉 , · · · , 〈wv,vN〉] .
3.2 Multi-view HCRF

Given the new projection’s audio-visual featuresA′ and V′ (Equa-
tion 5), the next step is to learn the hidden dynamics and interaction
across modalities (see Figure 1 (b) and (c)).

A Multi-View Hidden Conditional Random Field [10] (MV-HCRF)
is a conditional probability distribution that factorizes according to
a multi-chain structured undirected graph G = (V, E), where each
chain is a discrete representation of each view. We use disjoint sets
of latent variables ha ∈ Ha for audio and hv ∈ Hv for visual
channel to learn both view-shared and view-specific sub-structures
in audio-visual data. An MV-HCRF defines p(y | a′,v′) as

p(y | a′,v′) =

∑
h exp{ΛᵀΦ(y,h,a′,v′)}∑

y′,h exp{ΛᵀΦ(y′,h,a′,v′)}
where h = {ha,hv} and Λ = [λ, ω] is a model parameter vector.
The function ΛᵀΦ(y,h,a′,v′) is factorized with feature functions
fk(·) and gk(·) as

ΛᵀΦ(y,h,a′,v′) =
∑

s∈V

∑

k

λkfk(y, hs,a
′,v′)

+
∑

(s,t)∈E

∑

k

ωkgk(y, hs, ht,a
′,v′).

Following [10], we define three types of feature functions. The la-
bel feature function fk(y, hs) encodes the relationship between a
latent variable hs and a label y. The observation feature function
fk(hs,a

′,v′) encodes the relationship between a latent variable
hs and observations x. The edge feature function gk(y, hs, ht)
encodes the transition between two latent variables hs and ht. We
use the linked topology from [10] to define the edge set E (shown in
Figure 1(c)), which models contemporaneous connections between
audio and visual observations, i.e., the concurrent latent states in
the audio and visual channel mutually affect each other. Note that
the fk(·) are modeled under the assumption that views are condi-
tionally independent given respective sets of latent variables, and
thus encode the view-specific sub-structures. The feature function
gk(·) encodes both view-shared and view-specific sub-structures.

The optimal parameter set Λ∗ is found by minimizing the nega-
tive conditional log-likelihood

min
Λ

L(Λ) =
1

2σ2
‖Λ‖2 −

N∑

i=1

log p(yi | a′
i,v

′
i; Λ) (6)

where the first term is the Gaussian prior over Λ that works as an
L2-norm regularization. We find the optimal parameters Λ∗ us-
ing gradient descent with a quasi-newton optimization method, the
limited-memory BFGS algorithm [5]. The marginal probability of
each node is obtained by performing an inference task using the
Junction Tree algorithm [2].

4. EXPERIMENT
In this section, we describe the dataset, detail our experimental

methodology, and discuss our results.

4.1 Dataset
We evaluated our approach using the Canal9 dataset [11], where

the task is to recognize agreement and disagreement from nonver-
bal audio-visual cues during spontaneous political debates. The

Canal9 dataset is a collection of 72 political debates recorded by
the Canal 9 TV station in Switzerland, with a total of roughly
42 hours of recordings. In each debate there is a moderator and
two groups of participants who argue about a controversial politi-
cal question. The dataset contains highly spontaneous verbal and
non-verbal multimodal human behavior data.

In order to facilitate comparison, we used the same part of the
Canal9 dataset with nonverbal audio-visual features as was selected
for use in Bousmalis et al. [1]. This consisted of 53 episodes of
agreements and 94 episodes of disagreement collected over 11 de-
bates. Bousmalis et al. selected the episodes based on two criteria:
(a) the verbal content clearly indicates agreement/disagreement,
which ensures that the ground truth label for the episode is known;
(b) the episode includes only one person, with a close-up shot of
the speaker. The audio channel was encoded with 2-dimensional
prosodic features, including the fundamental frequency (F0) and
the energy. The visual channel was encoded with 8 gestures: ‘Head
Nod’, ‘Head Shake’, ‘Forefinger Raise’, ‘Forefinger Raise-Like’,
‘Forefinger Wag’, ‘Hand Wag’, ‘Hands Scissor’, and ‘Shoulder
Shrug’, where the presence/absence of the actions in each frame
was manually annotated with binary values. We downsampled the
data from the original sampling rate of 25 kHz to 12.5 kHz.

4.2 Methodology
The first step in our approach is to run KCCA to obtain a new

projection of the data. We used a Gaussian RBF kernel as our
kernel function K(xi,xj) = exp

(−‖xi − xj‖ /2γ2
)

because of
its empirical success in the literature [9]. We validated the kernel
width γ = 10k, k = [−1, 0, 1] and the PGSO precision parameter
η = [1 : 6] using grid search. The optimal parameter values were
chosen based on the maximum correlation coefficient value.

Our experiments followed a leave-two-debates-out cross-validation
approach, where we selected 2 debates of the 11 debates as the test
split, 3 debates for the validation split, and the remaining 6 de-
bates for the training split. This was repeated five times on the 11
debates. The F1 scores were averaged to get the final result. We
chose four baseline models: Hidden Markov Models (HMM) [8],
Conditional Random Fields (CRF) [4], Hidden Conditional Ran-
dom Fields (HCRF) [7], and Multi-view HCRF (MV-HCRF) [10].
We compared this to our KCCA with MV-HCRF approach. Note
that HMM and CRF perform per-frame classification, while HCRF
and MV-HCRF perform per-sequence classification. The classifi-
cation results of each model in turn were measured accordingly.

We automatically validated the hyper-parameters of all models.
For all CRF-family models, we varied the L2-norm regularization
factor σ = 10k, k = [0, 1, 2] (see Equation 6). For HMM and
HCRF, the number of hidden states were varied |H| = [2 : 6]; for
MV-HCRF, they were

(|HA|, |HV |) = ([2 : 4], [2 : 4]). Since the
optimization problems in HMM, HCRF and MV-HCRF are non-
convex, we performed two random initializations of each model;
the best model was selected based on the F1 score on the validation
split. The L-BFGS solver was set to terminate after 500 iterations.

4.3 Result and Discussion
We first compared our approach to existing methods: HMM [8],

CRF [4], HCRF [7], and MV-HCRF [10]. Figure 2 shows a bar plot
of mean F1 scores and their standard deviations. We can see that
our approach clearly outperforms all other models.

For further analysis, we investigated whether learning nonlinear
correlation was important, comparing KCCA to CCA and the origi-
nal data. Table 1 shows that models trained with KCCA always out-
performed the others, suggesting that learning nonlinear correlation
in the data was important. Figure 1(b) shows the data projected in
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Figure 2: A bar plot of mean F1 scores with error bars showing
standard deviations. This shows empirically that our approach
successfully learned correlations and interactions between au-
dio and visual features using KCCA and MV-HCRF.

Models Original Data CCA KCCA

HMM .59 (.09) .59 (.12) .61 (.13)
CRF .61 (.04) .63 (.03) .67 (.08)

HCRF .64 (.13) .65 (.07) .69 (.06)

MV-HCRF .68 (.13) .71 (.07) .72 (.07)

Table 1: Experimental results (means and standard deviations
of F1 scores) comparing KCCA to CCA and the original data.
The results show that learning nonlinear correlation in the data
was important in our task.

a new space found by KCCA, where the ‘head shake’ and ‘shoul-
der shrug’ gestures were relatively emphasized compared to ‘head
nod’, which maximized the correlation between the audio and vi-
sual signals. We believe that this made our data more descriptive,
allowing the learning algorithm to capture the hidden dynamics and
interactions between modalities more effectively.

We also investigated whether our approach captures interaction
between audio-visual signals successfully. We compared the mod-
els trained with a unimodal feature (audio or visual) to the models
trained with audio-visual features. Table 2 shows means and stan-
dard deviations of the F1 scores. In the three single-chain mod-
els, HMM, CRF, and HCRF, there was an improvement when both
audio and visual features were used, confirming that using a com-
bination of audio and visual features for our task is indeed impor-
tant. Also, MV-HCRF outperformed HMM, CRF, HCRF, showing
empirically that learning interaction between audio-visual signals
explicitly improved the performance.

5. CONCLUSIONS
We presented a novel approach to multimodal human behavior

analysis using KCCA and MV-HCRF, and evaluated it on a task
of recognizing agreement and disagreement from nonverbal audio-
visual cues using the Canal9 dataset. On this dataset, we showed
that preprocessing multimodal data with KCCA, by projecting the
data to a new space where the correlation across modalities is max-
imized, helps capture complex nonlinear relationship in the data.
We also showed that KCCA with MV-HCRF, which jointly learns
view-shared and view-specific interactions explicitly, improves the
recognition performance, showing that our approach successfully
captured complex nonlinear interaction across modalities. We look
forward to applying our technique to other applications in multi-
modal human behavior analysis for further analysis.

Models Audio Video Audio+Video

HMM .54 (.08) .58 (.11) .59 (.09)
CRF .48 (.05) .58 (.15) .61 (.04)

HCRF .52 (.09) .60 (.09) .64 (.13)
MV-HCRF · · .68 (.13)

KCCA + MV-HCRF · · .72 (.07)

Table 2: Experimental results (means and standard deviations
of F1 scores) comparing unimodal (audio or video) features to
the audio-visual features. The results confirms that using both
audio and visual features are important in our task.
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