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Abstract— We present a new approach to multi-signal ges-
ture recognition that attends to simultaneous body and hand
movements. The system examines temporal sequences of dual-
channel input signals obtained via statistical inference that
indicate 3D body pose and hand pose. Learning gesture patterns
from these signals can be quite challenging due to the existence
of long-range temporal-dependencies and low signal-to-noise
ratio (SNR). We incorporate a Gaussian temporal-smoothing
kernel into the inference framework, capturing long-range
temporal-dependencies and increasing the SNR efficiently. An
extensive set of experiments was performed, allowing us to
(1) show that combining body and hand signals significantly
improves the recognition accuracy; (2) report on which features
of body and hands are most informative; and (3) show that using
a Gaussian temporal-smoothing significantly improves gesture
recognition accuracy.

I. INTRODUCTION

Human communication is inherently both multimodal and

multi-signal. Spoken language is often accompanied by

non-verbal cues, such as body and/or hand gestures, eye

gaze, head nod, or facial expressions that can be essential

to understanding. Gestures in turn are often multi-signal,

e.g., using both body and hand poses simultaneously, with

both necessary for gesture understanding. Successful gesture

recognition thus needs to be able to process multi-signal

data seamlessly. Most current gesture recognition systems,

however, concentrate on dealing with only a single signal.
We developed a multi-signal gesture recognition system

that attends to body and hands, allowing a richer gesture

vocabulary and more natural human-computer interaction.

In this paper, we present the signal understanding part of

the system, i.e., learning to recognize patterns of multi-

signal gestures. The signal processing part (i.e., obtaining

a temporal sequence of body and hand features) is described

in a companion paper [16].
Discriminative hidden-state learning approaches (e.g.,

HCRF [14]) have recently shown promising results in many

pattern recognition tasks. The main advantage of discrim-

inative approaches compared over generative approaches

(e.g., HMM [15]) is that they do not make the conditional

independence assumption, which is often both too restrictive

and unrealistic. It has been shown that when conditional

independence does not hold, the asymptotic accuracy of

discriminative models is higher than generative models [10].
In our task, the input signal patterns tend to exhibit long-

range temporal-dependencies (e.g., body parts move coher-

ently as time proceeds, hand poses are articulated in relation

to body poses in a time-sequence, etc.). Thus, although a

gesture label is given, individual observations may not be

independent of each other; observations rather seem to be

important clues to distinguish similar patterns of gestures.

Also, in our task body and hand pose signals are obtained

by performing statistical estimation and classification, which

themselves are not perfectly accurate; thus the input signal

patterns exhibit high-frequency fluctuations in a time series,

with a low SNR.

Previous work on HCRFs for gesture recognition [18] tried

to resolve the first issue, capturing long-range dependencies

among observation by defining a temporal window and con-

catenating signals within the window, creating a single large

input feature. We take a slightly different approach. Instead

of concatenating signals (which increases the dimensionality

of the input feature vectors), we use a Gaussian temporal

smoothing kernel, capturing long-range dependencies and

making our framework less sensitive to the noise. We show

that this improves upon the performance of previous work on

HCRFs for gesture recognition [18], while at the same time

keeping the same computational complexity of the original

HCRF model [14].

The main contribution of this paper lies in this incor-

poration of a Gaussian temporal-smoothing kernel into the

HCRF framework. Based on the results from an extensive

set of experiments using 10 body-and-hand gestures from

the NATOPS database [16], we (1) show that combining

body and hand poses significantly improves the recognition

accuracy; (2) report on which body and hand features are

most informative for this recognition task; and (3) show that

temporal smoothing improves system performance.

Section II describes related work on multi-signal gesture

recognition and inference framework, Section III gives an

overview of our gesture recognition system, Section IV de-

scribes our HCRFs with temporal-smoothing in more detail,

and Section V describes experiments and results. Section VI

concludes with our contributions and suggests directions for

future work.

II. RELATED WORK

Gesture recognition is a broad area of research that is

increasingly used in natural human-computer interaction.

Gestures can range from dynamic human body motion

through pointing device gestures to sign language. In this

work, we are concerned primarily with multi-signal gestures
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involving dynamic body movements and static or dynamic

hand pose configurations. Here we review some of the recent

efforts to the similar goal. For a more comprehensive review

of gesture recognition, see [1], [11].

Recently, many efforts have been made to build mul-

timodal gesture recognizers. In [2], Althoff et al. used

trajectories of head and hands to recognize gestures for in-car

control systems. Two different recognizers were developed,

rule-based and HMM-based. When tested with 5 common

in-car control gestures (left, right, forward, backward, and

wipe) using either head or hand gestures, the two recognizers

achieved similar recognition accuracy (90%). In [9], Li et
al. presented multi-signal pointing-direction estimation in a

human-robot interaction scenario, using a combination of

head orientation, body pose, and hand pose information.

Head orientation was determined by tracking eye-gaze using

FaceLAB; body pose was estimated using a particle filter;

and hand pose was classified using a multi-resolution image

querying method. These three signals were then used to

determine the pointing direction. However, all of these efforts

were either tested on fairly simple tasks (i.e., recognizing

single-signal or static gestures) or used statistical inference

frameworks that were not particularly well suited to these

tasks (i.e., unable to capture complex long-range dependen-

cies in the input signals).

There have also been active efforts to build a robust

inference framework for pattern analysis tasks based on

discriminative learning. In [8], Lafferty et al. introduced

CRFs, a discriminative learning approach that does not make

conditional independence assumptions. In [14], Quattoni et
al. introduced HCRFs, an extension to CRFs that incorpo-

rates hidden variables. Many other variants of HCRFs have

been introduced since then [18], [12], [5], but most of these

were tested only on single-signal pattern recognition tasks

(e.g., POS tagging [8], object recognition [14], body gesture

recognition [18], [12], and phone classification [5]) and paid

less attention to dealing with noisy input signals.

In this work, we demonstrate that discriminative hidden-

state learning approaches are well suited to multi-signal

gesture recognition tasks, and that significant improvements

in recognition accuracy can be achieved by incorporating

Gaussian temporal-smoothing into the inference framework.

III. SYSTEM OVERVIEW

Fig. 1 shows an overview of our gesture recognition

system. The system starts by receiving pairs of time-

synchronized images recorded from a Bumblebee2 stereo

camera1, producing 320 x 240 pixel resolution images at

20 FPS.

For the first part in the pipeline, image pre-processing,

depth maps are calculated, and the images are background

subtracted using depth information and a codebook back-

ground model that is trained off-line. For the second part, 3D

body pose estimation, we construct a generative model of the

human upper body, and compare various features extracted

1http://www.ptgrey.com

Fig. 1. Multi-signal gesture recognition framework.

from the model to corresponding features extracted from

input image. We estimate body pose in a multi-hypothesis

Bayesian inference framework with a particle filter [7]. For

the third part, hand pose classification, we define two small

search regions around estimated wrist joint positions and

slide a window within each region to search for hands.

A multi-class SVM classifier [17] is trained off-line based

on HOG descriptors [4] extracted from manually-segmented

images of hands, and is used to classify hand poses. In

the last part, multi-signal gesture recognition, we perform

recognition with a combination of body and hand pose

information. An HCRF with a Gaussian temporal-smoothing

kernel is trained off-line using a supervised gesture data set,
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and is used to perform gesture recognition.

The system builds on our previous work [16]; this paper

reports on the gesture recognition part of the system. A

detailed description of the 3D body pose estimation and

hand pose classification part of the system is in a companion

paper [16].

IV. MULTI-SIGNAL GESTURE RECOGNITION

The goal here is to learn a classifier p(y | x) that predicts

a gesture label y ∈ Y given a temporal sequence of input

images x = {x1, · · · ,xT }. For each image xt, we extract

body pose features φ(x1
t ) ∈ RN1 and hand pose features

φ(x2
t ) ∈ RN2 ; each xt is represented as a multi-signal

feature-vector

φ(xt) =
(
φ(x1

t ) φ(x
2
t )
)T

. (1)

We briefly review HCRF to set the context for our work,

and describe the formulation of our model in detail.

A. HCRFs: A Review

An HCRF [14] is a discriminative framework for building

probabilistic models to label segmented sequential data (i.e.,

data that has been divided at signal boundaries, such as

gesture start and end). The framework extends CRF models

[8], which assumes a tree-structured undirected graph G,

by incorporating hidden state variables into the graphical

structure. The framework is designed to capture complex

dependencies in observations efficiently, without attempting

to specify exact conditional dependencies. The goal is to

learn a mapping function of observations x to class labels

y ∈ Y , by introducing hidden state variables h ∈ H to

compactly represent the distribution of observations. The

conditional probability distribution p(y |x; θ) of a class label

y given a set of observation x with parameter vector θ is

constructed as

p(y | x; θ) =
∑

h

p(y,h | x; θ) = 1

Z

∑

h

eΨ(y,h,x;θ) (2)

where Z is a partition function defined as

Z =
∑

y∈Y

∑

h

p(y,h | x; θ) (3)

and Ψ(y,h,x; θ) is a potential function defined as

Ψ(y,h,x; θ) =
∑

v∈V
θV · f (v,h|v, y,x)

+
∑

(i,j)∈E
θE · f

(
(i, j),h|(i,j), y,x

)
. (4)

The potential function models dependencies in the graphi-

cal structure, where θV and θE are parameters that determine

dependencies within h|S , a set of components of h associated

with the vertices and edges in subgraph S of G. Therefore,

it is crucial to design the potential function carefully. We

describe our potential function below.

Following previous work on CRFs [8], parameter opti-

mization is performed using:

L(θ) =
N∑

i=1

log p(yi | xi; θ)− 1

2σ2
||θ||2 (5)

where the second term, the regularization factor, is intro-

duced to prevent overfitting of the training data. The optimal

parameter values are obtained by solving the maximum

log-likelihood function θ∗ = argmaxθ L(θ) using belief

propagation [13]. Finally, a class label for a new observation

is determined as

y∗ = argmax
y∈Y

p(y | x; θ). (6)

Similar to [8], we assume that the underlying graph

satisfies the first-order Markov property, forming a tree-

structured chain. Therefore, belief propagation [13] can be

used for efficient parameter estimation and inference.

B. HCRFs with Gaussian Temporal-Smoothing
Our potential function is defined as

Ψ(y,h,x; θ) =
∑

t

K (φ(x), g(ω), t) · θ(ht)

+
∑

t

θ(y, ht) +
∑

t−1,t

θ(y, ht−1, ht) (7)

where K (φ(x), g(ω), t) is a Gaussian temporal-smoothing

kernel, which performs a convolution of the input feature

vector φ(x) and the ω-point Gaussian window g(ω). The

Gaussian window is computed as

g(ω)[n] = e−
1
2 (α

n
ω/2 )

2

(8)

where −ω−1
2 ≤ n ≤ ω−1

2 , and α is inversely proportional to

the standard deviation of a Gaussian random variable. 2 The

Gaussian window g(ω) is normalized so that
∑

n g(ω)[n] =
1. Intuitively, the kernel computes for each time frame a

weighted mean of ω neighboring feature vectors with a

Gaussian filter, centering the filter at the current time frame.

This process produces a feature vector at each time frame

that both incorporates observations some time distance away

from the current frame, and reduces signal noise.
The first term in Eq. 7 captures dependencies between the

temporal smoothed input feature vectors and hidden state

variables; the second term captures dependencies between

class labels and hidden states variables; and the last term

captures dependencies among class labels and two time-

consecutive hidden state variables.

V. EXPERIMENT AND RESULT

We conducted an extensive set of experiments using our

gesture recognition system with a body-and-hand gesture

dataset [16]. We briefly describe the dataset, and (1) show

that combining body and hand poses significantly improves

the recognition accuracy; (2) describe which body and hand

features are most informative for this recognition task; and

(3) show that temporal smoothing significanly improves

performance.

2Following [6], we set α=2.5.
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#2 All Clear #4 Spread Wings #10 Remove Chocks #18 Engage Nosegear Steering #20 Brakes On

#3 Not Clear #5 Fold Wings #11 Insert Chocks #19 Hot Brakes #21 Brakes Off

Fig. 2. Ten NATOPS aircraft handling signal gestures [16]. Body movements are illustrated in yellow arrows, and hand poses are illustrated with
synthesized images of hands. Red rectangles indicate hand poses are important in distinguishing the gesture pair.

A. NATOPS Aircraft Handling Signal Dataset

We used the NATOPS dataset [16], a body-and-hand

gesture dataset containing an official gesture vocabulary

used for communication between carrier deck personnel and

Navy pilots (e.g., yes/no signs, taxing signs, fueling signs,

etc.). The dataset contains 24 gestures, with each gesture

performed by 20 subjects 20 times, resulting in 400 samples

per gesture. Each sample had a unique duration; the average

length of all samples was 2.34 sec (σ2=0.62).

We selected five pairs of gestures (see Fig. 2) that are

particularly interesting because in general the gestures in

each pair are very similar, and in fact two pairs (#2 &

#3 and #20 & #21) are indistinguishable in the absence of

knowledge of hand pose. For example, gestures #20 (“brakes

on”) and #21 (“brakes off”) are performed by raising both

hands, with either open palms that are closed (“brakes off”),

or vice versa (“brakes on”). Here, the role of hand pose

is crucial to distinguishing two very similar gestures with

opposite meanings. As a more subtle case, gestures #10

(“insert chocks”) and #11 (“remove chocks”) are performed

with both arms down and waving them in/outward. The only

difference is the position of thumbs: inward (“insert chocks”)

and outward (“remove chocks”).

Experiments were conducted using combinations of body

and hand features extracted in our previous work [16]. There

were 4 body features and 2 hand features. The four body

features were joint angles (T), angular velocities (dT), joint

coordinates (P), and the corresponding velocities (dP).

The joint angle features (T and dT) are 8 DOF vectors

(3 for shoulder and 1 for elbow, for each arm), and the

joint coordinate features (P and dP) are 12 DOF vectors

(3D coordinates of elbows and wrists for both arms). The

uniform-length relative joints are obtained by configuring

a generative model with the estimated joint angles with

uniform limb lengths (so that their joint coordinates have

less variance), and recording joint coordinates relative to the

chest point.

The two hand features were a “soft decision” and “hard

decision.” The soft decision (S) is an 8 DOF vector with

probability estimates obtained from the SVM (4 hand poses

for each hand), while the hard decision (H) is a 2 DOF

vector obtained by selecting the highest probability estimate

for each hand. Intuitively, S has richer information about the

shape of hands, while H has a lower degree of freedom,

which can reduce the computational cost in an estimation

step.

All experiments were conducted with n-fold cross valida-

tion (n-CV), allowing us to perform a cross-subject analysis,

i.e., train the model with a dataset that does not include ges-

ture examples performed by subjects in a test dataset, result-

ing in more accurate measurement of performances. We mea-

sured accuracy with an F1 score (F1=2∗ precision·recall
precision + recall

).

In all tests, we set the regularization factor in Eq. 5 at 1,000

which, based on our preliminary experiments, helps prevent

overfitting.

B. Does Combining Body and hand Pose Really Help?

The first question was whether combining body and hand

poses helps to improve recognition performance. To de-

termine this, we compared recognition performance under

two conditions: body feature only (BO) and body and hand

features (BH), i.e., BO contained only body features, while

BH contained body and hand features. Since there were two

hand features (S and H), we averaged the two test results

for the BH condition. For each test, we performed 4-CV

analysis, varying the number of hidden states from 3 to 4

and taking an average. Since a 4-CV analysis performs four

repetitive tests, we get variances in the results; we performed

independent samples T-tests to see if the differences between

two conditions (BO and BH) were statistically significant.

Table I shows means and standard deviations for overall

recognition accuracy rates averaged over 10 gestures, as
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TABLE I

BODYONLY VS. BODYHAND

Body Feature
Hand Feature

T-test result
BO, μ(σ2) BH, μ(σ2)

T 20.09 (3.57) 27.02 (3.83) t(22)=1.00, p=.326

P 23.26 (11.07) 32.73 (20.57) t(22)=1.21, p=.240

dT 62.47 (7.21) 76.23 (8.10) t(22)=4.06, p=.001

dP 70.94 (6.73) 80.65 (5.30) t(22)=3.82, p=.001

Fig. 3. Per-gesture comparisons of BodyOnly and BodyHand.

well as the results from independent samples T-tests. In all

our test cases, using body and hand pose together resulted

in higher recognition accuracy rates. For two of the body

pose features (dT and dP) the differences were statistically

significant (p=.001).

Fig. 3 shows per gesture comparisons of the two conditions

(BO and BH). Note that the graph used only the higher

performing body features dT and dP. As expected, the

performance difference was significant for the 4 gestures (#2,

#3, #20, and #21) where the hand pose plays an important

role in defining the gesture (see Fig. 3). The difference

is especially obvious for gesture pair #2 and #3, where

recognition without knowing hand pose was no better than

random. Our result indicated that using body and hand pose

together on these 4 gestures achieved on average 27.5%

higher accuracy; for the other 6 gestures there were slight

differences, but none were significant.

C. Which features are most informative?

Various types of body or hand features have been explored

in gesture recognition research, but there is no clear sense

as to which features are most informative. In response, we

compared the system’s recognition accuracy using various

combinations of three body features (dT, dP, and dTdP) and

two hand features (S and H). For each test case we performed

10-CV analysis, varying the number of hidden states from 3

to 5 and taking an average.

Table II shows comparisons of the resulting perfor-

mance. Hand feature S performed significantly better than H

(t(178)=2.24, p=.018), achieving on average 3.44% higher

accuracy rate. For body pose, dP performed the best, while

the performances obtained using dT and dTdP were similar.

We found no statistical significant in body feature differ-

ences.

TABLE II

VARIOUS COMBINATIONS OF BODY AND HAND FEATURES

Body Feature
Hand Feature

H, μ(σ2) S, μ(σ2) Average

dT 78.02 (10.97) 82.27 (10.42) 80.15 (10.82)

dP 80.72 (9.85) 86.02 (8.32) 83.37 (9.37)

dTdP 80.08 (8.21) 80.86 (9.51) 80.47 (8.82)

Average 79.61 (9.67) 83.05 (9.60 ) ·

Fig. 4. Recognition accuracy for different window sizes.

For the features we used, a combination of dP (uniform-

length relative body joint velocity) and S (probability esti-

mates of a hand pose) was the most informative feature for

this task.

D. Does Gaussian Temporal-Smoothing Help?

The third experiment aimed to measure the advantage of a

Gaussian temporal smoothing HCRF. Based on the previous

results, we selected dPS as a feature combination (joint

velocities for body and soft decision for hands). All tests

were performed with 10-CV analysis, fixing the number of

hidden states at 5, and varying the Gaussian window size

from 1 to 21 (using only odd numbers).

As can be seen in Fig. 4, Gaussian temporal-smoothing

significantly improved the performance: when compared

to non-smoothing (ω=1, 12.1% error), a half-second sized

Gaussian window (ω=11, 6.3% error) was able to reduce

48% of remaining errors. The performance dropped as the

window size increased beyond ω=11, indicating that it started

losing some important local/high-frequency gesture informa-

tion when the Gaussian window size was larger than half a

second. Fig. 6. shows confusion matrices comparing ω=1 and

ω=11 (best performing setting). We can see that both false

positives and false negatives were decreased for all individual

classes, with the highest gain achieved for gesture #10 (22%

improvement).

Fig. 5 shows distributions of hidden states for each gesture

class, when the dPS feature combination was used with

|H|=5 and ω=11. Here we can see that the hidden states

are roughly evenly distributed over the gesture classes,

suggesting that the number of hidden states was appropriate.

One important thing to notice is that temporal-smoothing

not only improves recognition accuracy significantly (by con-

sidering long-range input features and increasing SNR), but
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Fig. 5. Distributions of assigned hidden states (|H|=5, ω=11). The numbers
enclosed in each area indicates the hidden state assignments.

TABLE III

CONFUSION MATRICES COMPARING ω=1 AND ω=11.

#2 #3 #4 #5 #10 #11 #18 #19 #20 #21
#2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#3 0.00 0.98 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
#4 0.00 0.00 0.79 0.03 0.08 0.01 0.01 0.01 0.00 0.01
#5 0.00 0.00 0.06 0.92 0.01 0.01 0.01 0.01 0.00 0.00

#10 0.00 0.00 0.06 0.01 0.73 0.11 0.00 0.00 0.00 0.00
#11 0.00 0.01 0.03 0.02 0.14 0.86 0.01 0.00 0.00 0.01
#18 0.00 0.01 0.01 0.00 0.01 0.00 0.90 0.08 0.01 0.04
#19 0.00 0.00 0.02 0.01 0.00 0.01 0.07 0.88 0.03 0.03
#20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.87 0.06
#21 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.01 0.09 0.85

No Temporal-Smoothing (|H|=5, ω=1)

#2 #3 #4 #5 #10 #11 #18 #19 #20 #21
#2 1.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
#3 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
#4 0.00 0.00 0.87 0.01 0.01 0.00 0.02 0.00 0.00 0.01
#5 0.00 0.00 0.03 0.98 0.00 0.01 0.00 0.00 0.01 0.00

#10 0.00 0.00 0.03 0.00 0.95 0.09 0.00 0.00 0.00 0.00
#11 0.00 0.00 0.01 0.01 0.03 0.89 0.00 0.00 0.01 0.01
#18 0.00 0.00 0.02 0.00 0.01 0.01 0.95 0.07 0.00 0.02
#19 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.93 0.01 0.00
#20 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.92 0.07
#21 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.88

Gaussian Temporal-Smoothing (|H|=5, ω=11)

it does so without increasing the computational complexity

of inference. Previous work on HCRF for gesture recogni-

tion [18] defined a window to concatenate neighboring input

features, thus increasing the dimensionality. Our approach

computes a weighted mean of neighboring input features,

thus it does not increase the dimensionality, and there is no

added complexity to the original HCRF model (additions

and multiplications in the kernel operation can be negligible

compared to the complexity of the inference algorithm).

VI. CONCLUSION AND FUTURE WORK

We presented a Gaussian temporal-smoothing HCRF ca-

pable of capturing long-range dependencies, increasing SNR,

and improving performance, while at the same time keeping

the same computational complexity of the original HCRF

model [14]. Through an extensive set of experiments, we (1)

showed that combining body and hand signals significantly

improves the recognition accuracy; (2) reported on which

features of body and hands are most informative; and (3)

showed that using a Gaussian temporal-smoothing HCRF

significantly improves the performance.
Our current system can be improved in a number of

ways. Of the most interest is allowing non-segmented con-

tinuous time-series input. In [12], Morency et al. presented

an LDCRF that does not require its input sequence to be

segmented, and showed that it is suitable for a number of

gesture recognition tasks. However, the experiments were

conducted with binary classification tasks only (e.g., head

nod or eye gaze-aversion). Our gesture dataset includes 10

body-and-hand gesture classes, and exhibit many similar sub-

patterns during gesticulation; tasks that are not clear to work

well with non-segmented input stream. We plan to implement

this for our future work.
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