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Abstract— We present a unified framework for body and
hand tracking, the output of which can be used for under-
standing simultaneously performed body-and-hand gestures.
The framework uses a stereo camera to collect 3D images,
and tracks body and hand together, combining various existing
techniques to make tracking tasks efficient. In addition, we
introduce a multi-signal gesture database: the NATOPS aircraft
handling signals. Unlike previous gesture databases, this data
requires knowledge about both body and hand in order to
distinguish gestures. It is also focused on a clearly defined
gesture vocabulary from a real-world scenario that has been
refined over many years. The database includes 24 body-and-
hand gestures, and provides both gesture video clips and the
body and hand features we extracted.

I. INTRODUCTION

Human gesture is most naturally expressed with body

and hands, ranging from the simple gestures we use in

normal conversations to the more elaborate gestures used by

baseball coaches giving signals to players; soldiers gesturing

for tactical tasks; and police giving body and hand signals

to drivers. Current technology for gesture understanding is,

however, still sharply limited, with body and hand signals

typically considered separately, restricting the expressiveness

of the gesture vocabulary and making interaction less natural.

We have developed a multi-signal gesture recognition

system that attends to both bodies and hands, allowing a

richer gesture vocabulary and more natural human-computer

interaction. In this paper, we present the signal processing
part of the system, a unified framework for tracking bodies

and hands to obtain signals. The signal understanding part

(i.e., learning to recognize patterns of multi-signal gestures)

is described in a companion paper [16].

There has been extensive work in human pose tracking,

including upper or full body, hand, head, and eye gaze. In

[3], for example, Buehler et al. presented an arm-and-hand

tracking system that enabled the extracted signals to be used

in sign language recognition. Hand poses were estimated us-

ing histograms of oriented gradients (HOG) [5] features, but

not classified explicitly. Also, body poses were reconstructed

in 2D space, losing some of the important features in gesture

recognition (e.g., pointing direction). In [15], Nickel et al.
developed a head-and-hand tracking system for recognizing

pointing gestures. The system tracked 3D positions of head

and hands based on skin-color distribution. The extracted

signals were used for recognizing pointing gestures using an

HMM. However, their application scenario included static

pointing gestures only, a task too simple to explore the

complex nature of multi-signal gestures.

Our system performs 3D upper body pose estimation and

hand pose classification together. Upper body poses are es-

timated in a multi-hypothesis Bayesian inference framework

[10] following a generative model-based approach. Similar

to [3], the estimated body poses are used to guide the search

for hands and left/right hand assignment. Hand poses are

classified into one of a set of predefined poses using a multi-

class Support Vector Machine (SVM) [18] that has been

trained offline using HOG features.

Ideally, depth maps will have highly accurate 3D informa-

tion, in which case examining static poses would suffice to

track body pose successfully. However, current depth sensor

technology is limited in resolution (i.e., depth accuracy

decreases exponentially as the distance gets further). In our

scenario, the subject is assumed to stand 50 feet away from

the camera1, so relying solely on the static 3D point cloud

returned from the sensor will lead to an unsatisfactory result.

Instead we also want to exploit dynamic features of body

motion, and we do this by introducing an error function

based on motion history images (MHIs), in which each pixel

value is a function of the recency of motion in that location

in the image. This often gives us useful information about

dynamics of motion, indicating where and how the motion

has occurred.

Publicly available gesture databases allow researchers to

build and evaluate their ideas quickly and conveniently.

Currently, there are many such gesture databases (e.g., [9],

[13]), but most current gesture vocabularies are characterized

by a single signal only, e.g., body pose alone. In current

databases this is sufficient to distinguish gestures, and this

in turn limits an opportunity to test and evaluate multi-signal

gesture recognition.

In [9], for example, Hwang et al. presented a full-body

gesture database, containing 2D video clips and 3D motion

data of gestures recorded and extracted from 20 subjects.

Although the database contained 54 distinct gestures, it

contained a single signal only, body pose. In [13], Martinez

et al. presented a database of American Sign Language

(ASL) that included body motions, hand shapes, words, and

sentences. A comprehensive set of gestures were provided:

1In general, carrier deck personnel must keep at least 50 feet from the
aircrafts to ensure their safety [17].
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39 body motions and 62 hand shapes. However, the gestures

were performed with either body or hands but not both

simultaneously.

We have created a multi-signal gesture database: the

Naval Air Training and Operating Procedures Standardiza-

tion (NATOPS) aircraft handling signals database. It uses the

official gesture vocabulary for the U.S. Navy aircraft carrier

environment [17], which defines a variety of body-and-hand

signals that carrier flight deck personnel use to communicate

with the U.S. Navy pilots. The database consists of two parts:

gesture video clips and extracted features of body and hand

poses. To our knowledge, our database is the first to contain

simultaneous body-and-hand gestures.

Several things make the database interesting for gesture

recognition. First, it contains a multi-signal gesture vocabu-

lary of body-and-hand gestures; thus, various issues in multi-

signal pattern recognition (e.g., modeling information fusion,

capturing dependencies within data, etc.) can be explored.

Second, there are many similar gesture pairs with subtle

differences in either body or hand pose; the gestures thus

pose a challenging recognition task. Third, the gesture vo-

cabulary is designed to handle a wide range of complex deck

situations, so the gestures have been extensively refined and

optimized over the years, suggesting it is a clearly defined

vocabulary from a real-world scenario. Finally, successful

gesture recognition on this database can help solve a real

world problem: DARPA (the Defense Advanced Research

Projects Agency) and the U.S. Navy are investigating the

feasibility of deploying unmanned combat aerial vehicles

(UCAVs) onto the aircraft carriers [6]. It would clearly be

beneficial to allow deck personnel to communicate with

UCAVs with the same gestures they use with a human pilot.

Section II describes the unified framework for body and

hand tracking, Section III describes the NATOPS aircraft

handling signals database, and Section IV shows evaluation

results and discusses the accuracy of the extracted body and

hand features. Section V concludes with listing contributions

and suggesting directions for future work.

II. BODY AND HAND TRACKING FRAMEWORK

A. Input Data

Input to our system is video recorded using a Bumblebee

2 stereo camera2, producing 320 x 240 pixel resolution

images at 20 FPS. While recording videos, we produce depth

maps and mask images in real-time as the video is being

recorded. Depth maps are calculated using the manufacturer-

provided SDK. Mask images are obtained by performing

background subtraction with a combination of a codebook

approach [11] and a “depth-cut” method: after performing

background subtraction using the codebook approach, we

filter out pixels where the distance is further from camera

than a foreground object. This helped to remove shadows

created by a foreground object. Sample images from the

videos are shown in Fig 1.

2http://www.ptgrey.com/

Fig. 1. Example images of (a) input image, (b) depth map, and (c)
mask image. The “T-pose” shown in the figures is used for body tracking
initialization

Fig. 2. Generative model of the human upper body.

B. 3D Upper Body Pose Estimation

The goal here is to reconstruct upper body pose in

3D space given the input images. We formulate this as

a Bayesian inference problem, i.e., we make an inference

about a posterior state density p(x | z) having observed an

input image z and knowing the prior density p(x), where

x = (x1 · · ·xk)
T is a vector of random variables representing

a body pose that we are estimating.

1) Generative Model: A generative model of the human

upper body is constructed in 3D space, representing a skeletal

model as a kinematic chain and a volumetric model described

by superellipsoids [1] (Fig. 2). The basic model includes

6 body parts (trunk, head, upper/lower arms for left/right)

and 9 joints (chest, head, navel, left/right shoulder, elbow,

wrist); of the 9 joints, 4 are articulated (shoulder and elbow)

while others remain fixed once initialized. We prevent the

model from generating anatomically implausible body poses

by constraining joint angles to known physiological limits

[14].

We improve on this basic model by building a more

precise model of the shoulder, but do so in a way that does

not add additional DOFs. To capture arm movement more

accurately, the shoulder model is approximated analytically

by examining relative positions of shoulder and elbow: we

compute the angle ϕ between the line from the mid-chest to

the shoulder and the line from mid-chest to the elbow. The

chest-to-shoulder joint angle θCS is then updated as

θCS′
=

{
θCS + ϕ

θCS
max

if elbow is higher than shoulder

θCS − ϕ
θCS
min

otherwise
(1)

where θCS
min and θCS

max are minimum and maximum joint

angle limits for chest-to-shoulder joints [14]. This simplified

model only mimics shoulder movement in one-dimension, up

and down, but works quite well in practice, as most variation

in arm position comes from up and down motion.
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With this model, an upper body pose is parameterized as

x = (GR)T (2)

where G is a 4 DOF global translation and rotation vector

(rotation around the vertical axis only), and R is an 8 DOF

joint angle vector (3 for shoulder and 1 for elbow, for each

arm). Since the positions of the camera and subject are

assumed to be fixed, we estimate only the R vector during

inference; the others are set during model initialization.

2) Particle Filter: Human body movements can be highly

unpredictable, so an inference framework that assumes its

random variables form a single Gaussian distribution can fall

into a local minima or completely loose track. A particle

filter [10] is particularly well suited to this type of inference

problem, for its ability to keep multiple hypotheses during

inference while discarding less likely hypotheses only slowly.

A particle filter assumes the posterior state density

p(x | z) to be a multimodal non-Gaussian distribution,

approximating it by a set of N weighted samples:{(
s
(1)
t , π

(1)
t

)
, · · · ,

(
s
(N)
t , π

(N)
t

)}
, where each sample st

represents a pose configuration, and the weights π
(n)
t =

p(zt | xt = s
(n)
t ) are normalized so that

∑
N π

(n)
t = 1.

The initial body pose configurations (i.e., joint angles and

limb lengths) are obtained by having the subject assume a

static “T-pose” (shown in Fig. 1), and fitting the model to the

image with exhaustive search. The dynamic model of joint

angles is constructed as a Gaussian process:

xt = xt−1 + e, e ∼ N (0, σ2). (3)

We calculate an estimation result as the weighted mean of

all samples:

E [f(xt)] =
N∑

n=1

π
(n)
t f(s

(n)
t ). (4)

3) Likelihood Function: The likelihood function

p(zt |xt = s
(n)
t ) is defined as an inverse of an exponentiated

fitting error ε(zt, zt−1, s
(n)
t ,E [f(xt−1)]):

p(zt | xt = s
(n)
t ) =

1

exp {ε(·)} (5)

where the fitting error ε(·) is computed by comparing three

features extracted from the generative model to the corre-

sponding ones extracted from input images: a 3D visible-

surface point cloud, a 3D contour point cloud, and a motion

history image (MHI) [2]. The first two features capture

discrepancies in static poses; the third captures discrepancies

in the dynamics of motion. We set the weight of each error

term empirically.

The first two error terms, computed from 3D visible-

surface and contour point clouds, are used frequently in body

motion tracking (e.g., [7]), for their ability to evaluate how

well the generated body pose fits the actual pose observed in

the image. We measure the fitting errors by computing the

sum-of-squared Euclidean distance errors between the point

cloud of the model and the point cloud of the input image.

Fig. 3. MHIs of the input image (top) and the model (bottom).

The third error term, an MHI error, measures discrepancies

in the dynamics of motion by comparing an MHI of the

model and an MHI of the input image. We compute an

MHI using It−1 and It, two time-consecutive 8-bit unsigned

integer images. For the generative model, It is obtained by

rendering an image of the model generated by a particle s
(n)
t ,

and It−1 is obtained by rendering the model generated by

E [f(xt−1)] (Eq. 4). For the input images, It is obtained by

converting an RGB input image to YCrCb color space and

extracting the brightness channel (Y); this is stored to be used

as It−1 for the next time step. Then an MHI is computed as

IMHI = λ(It−1 − It, 0, 127) + λ(It − It−1, 0, 255) (6)

where λ(I, α, β) is a binary threshold operator that sets each

pixel value to β if I(x, y) > α, and to zero otherwise. The

values 127 and 255 are chosen to indicate the time informa-

tion of those pixels. This allows us to construct an image that

concentrates on only the moved regions (e.g., arms), while

ignoring the unmoved parts (e.g., trunk, background). The

computed MHI images are visualized in Fig. 3.

Finally, an MHI error is computed using an MHI of the

model IMHI(s
(n)
t ,E[f(xt−1)]) and an MHI of the input

image IMHI(zt, zt−1) as

εMHI = Count [ λ(I ′, 127, 255) ] (7)

where

I ′ = abs
(
IMHI(zt, zt−1)− IMHI(s

(n)
t ,E [f(xt−1)])

)
.

(8)

The reason for setting the cutoff value to 127 in Eq. 7 is

to penalize the conditions in which two MHIs do not match

at the current time-step only, independent of the situation at
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Fig. 4. Four hand poses and a visualization of their HOG features. Bright
spots in the visualization indicate places in the image that have sharp
gradients at a particular orientation, e.g., the four vertical orientation in
the first visualization.

the previous time-step, where by “not match” we mean that

the pixel values of two MHIs do not agree.

4) Output Feature Types: We get four types of features

from body pose estimation: joint angles, joint angular ve-

locities, joint coordinates, and joint coordinate velocities.

Joint angles are 8 DOF vectors (3 for shoulder and 1 for

elbow, for each arm) obtained directly from the estimation.

To obtain joint coordinates, we first generate a model with

the estimated joint angles and uniform-length limbs, so that

all generated models have the same set of limb lengths across

subjects. This results in 12 DOF vectors (3D coordinates

of elbows and wrists for both arms) obtained by logging

global joint coordinates relative to the chest joint. The

uniform length model allows us to reduce cross-subject

variances. Joint angular velocities and coordinate velocities

are calculated by taking the first derivatives of joint angles

and coordinates.

C. Hand Pose Classification

Hand poses used in NATOPS gestures are relatively dis-

crete and few in number, likely because of the long distance

(50∼ft.) between deck personnel and pilots [17]. For our

experiments we selected four hand poses that are crucial to

distinguishing the NATOPS gestures (Fig. 4).

1) HOG Features: HOG features [5] are image descrip-

tors based on dense and overlapping encoding of image

regions. The central assumption of the method is that the

appearance of an object is well characterized by locally

collected distributions of intensity gradients or edge orienta-

tions, and does not require knowledge about the correspond-

ing gradient or edge positions that are globally collected over

the image.

HOG features are computed by dividing an image win-

dow into a grid of small regions (cells), then producing

a histogram of the gradients in each cell. To make the

features less sensitive to illumination and shadowing effects,

the same image window is also divided into a grid of larger

regions (blocks), and all the cell histograms within a block

are accumulated for normalization. The histograms over the

normalized blocks are referred to as HOG features. We used

a cell size of 4 x 4 pixels, block size of 8 x 8 pixels, window

size of 32 x 32 pixels, with 9 orientation bins. Fig. 4 shows

a visualization of the computed HOG features.

2) Multi-Class SVM Classifier: To classify the HOG

features, we trained a multi-class SVM classifier [18] using

LIBSVM [4]. Since HOG features are high dimensional, we

Fig. 5. Search regions around estimated wrist positions (black rectangles).
Colored rectangles are clustered results (blue/red: palm open/close), and
small circles are individual classification results.

used an RBF kernel to transform input data to the high-

dimensional feature space. We trained a multi-class SVM

following the one-against-one method [12] for fast train-

ing, while obtaining comparable accuracy to one-against-
all method [8]. We performed grid search and 10-fold cross

validation for parameter selection.

A training dataset was collected from the recorded video

clips. Due to the difficulty of manual labeling, we collected

samples from the first 10 subjects only (out of 20). Positive

samples were collected by manually cropping 32 x 32 pixel

images and labeling them; negative samples were collected

automatically at random location after collecting the positive

samples. We scaled and rotated the positive samples to make

the classifier more robust to scaling and rotational variations,

and to increase and balance the number of samples across

hand pose classes. After applying the transformations, the

size of each class was balanced at about 12,000 samples.

3) Tracking: We use estimated wrist positions to constrain

the search for hands in the image as well as to decide

left/right hand assignment. We create a 56 x 56 pixel search

region around each of the estimated wrist positions (see

Fig. 5). Estimated wrist positions are of course not always

accurate, while current hand classification often provides a

useful prediction of subsequent hand location. Therefore,

when a hand is found at the previous time step, we center the

search region at the geometric mean of the estimated wrist

position at time t and the found hand position at time t− 1.

Within the 56 x 56 pixel search region, we use a 32 x 32

pixel sliding window to examine the region, moving with 8

pixel steps (i.e., examining 16 times for each search region).

Each time a sliding window moves to a new position, the

HOG features are computed, and the SVM classifier exam-

ines them, returning a vector of k + 1 probability estimates

(k hand classes plus one negative class). To get a single

classification result per search region, we cluster all positive

classification results within the region, averaging positions

and probability estimates of all positive classification results

(i.e., classified into one of the k positive classes). Fig. 5

illustrates this clustering process.

4) Output Feature Type: We get two types of features

from hand pose classification: a soft decision and a hard

decision. The soft decision is an 8 DOF vector of probability

estimates obtained from the SVM classifier (4 classes for

each hand); the hard decision is a 2 DOF vector of hand

labels.
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III. NATOPS BODY-AND-HAND GESTURE DATABASE

We selected 24 NATOPS aircraft handling signals, the

gestures most often used in routine practice on the deck

environment.3 The gestures have many similar looking pairs

with subtle differences in either body or hand pose (Fig.

9). For example, gestures #4 and #5, gestures #10 and #11,

and gestures #18 and #19 have the same hand poses but

similar body gestures (e.g., one performed in forward and

the other one in backward, etc.). In contrast, gestures #2 and

#3, gestures #7 and #8, and gestures #20 and #21 have the

same body gesture with different hand poses (e.g., thumb

up/down or palm opened/closed).

Twenty subjects repeated each of 24 gestures 20 times,

resulting in 400 samples for each gesture class. Each sample

had a unique duration; the average length of all samples

was 2.34 sec (σ2=0.62). Videos were recorded in a closed

room environment with a constant illuminating condition,

and with positions of cameras and subjects fixed throughout

the recording. We use this controlled circumstance as our

first step towards developing a proof-of-concept for NATOPS

gesture recognition, and discovered that even this somewhat

artificial environment still posed substantial challenges for

our vocabulary.

The NATOPS database consists of two parts: gesture video

clips and extracted features of body and hand poses. The first

part includes stereo camera-recorded images, depth maps,

and mask images. The second part includes the four types

of body features and the two types of hand features we

estimated. The database can be used for two purposes: pose

estimation and gesture recognition. The gesture video clips

can be used as a database for body-and-hand tracking, while

the feature data can be used as a database for multi-signal

gesture recognition. Fig. 6 illustrates example sequences of

features for gesture #20 (“brakes on”), where we averaged

all individual trials over 20 subjects (400 samples).

To collect ground-truth data for pose estimation, we se-

lected one subject and recorded gestures using both a stereo

camera and a Vicon system4 simultaneously, producing body

pose labels for that subject. Hand pose labels were created by

selecting the same subject and visually checking each image

frame, manually labeling hand poses. Lastly, the ground-

truth data for gesture recognition was produced by manually

segmenting and labeling sequences of the estimated features

into individual trials.

IV. EVALUATION

To evaluate the accuracy of body pose estimation and

hand pose classification, we selected 10 gestures that we

believe well represent the intricacy of the entire set, with

each gesture paired with a corresponding similar gesture: #2

and #3; #4 and #5; #10 and #11; #18 and #19; #20 and #21.

3These gestures are being taught to all Aviation Boatswain’s mate
Handlers (ABHs) during their first week of classes at the technical training
school in Naval Air Station Pensacola.

4The Vicon motion capture system included 16 cameras at 120 Hz
frequency, 1 mm precision.

Fig. 6. Example sequences of features for the gesture #20 (“brakes on”)
averaged over all individual trials of 20 subjects. From the top: two joint
angle features, two joint coordinate features, and one hand feature. Body
labels are coded as: L/R-left/right; S/E/W-shoulder, elbow, wrist; X/Y/Z-
axis. Hand labels are coded as: L/R-left/right; PO/PC-palm opened/closed;
TU/TD-thumb up/down.

The estimation was performed with 500 particles, taking

about 0.4 seconds to estimate each frame on an Intel Xeon

Dual Core 2.66 GHz machine with 3.25GB of RAM.

A. Body Pose Estimation

The Vicon ground-truth body poses were superimposed

onto the input images, scaled and translated properly so that

they align with the coordinate system that the estimated body

pose is in (Fig. 7). We calculated pixel displacement errors

for each joint and accumulated, providing a total measure of

pixel error. As shown in Fig. 8, in a 320 x 240 pixel frame,

the average pixel error per frame was 29.27 pixels, with a

lower error for 2D gestures (mean = 24.32 pixels) and higher

for 3D gestures (mean = 34.20 pixels).

B. Hand Pose Classification

When tested with a 10-fold cross validation on pre-

segmented images of hands, the trained SVM hand pose

classifier gave near-perfect accuracy (99.94%). However,
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Fig. 7. Vicon ground-truth data (red lines) superimposed onto depth maps
with estimation results (white lines).

Fig. 8. Measures of total pixel errors for body pose estimation.

what matters more is how well the classifier performs on

the video images, rather than on segmented images. To

explore this, we randomly selected a subset of full image

frames from four gestures that contained the canonical hand

poses (i.e., #2 and #3; #20 and #21). After classification was

performed, the results were overlaid on the original images,

allowing us to visually compare the classification result to

the ground-truth labels (i.e., actual hand poses in the images).

For simplicity, we used hard decision values. The result is

shown in Table I. The slightly lower accuracy rates compared

to the test result on pre-segmented samples indicates that

using estimated wrist position can in some cases decrease

hand detection accuracy, although it can reduce hand search

time dramatically.

V. CONCLUSION AND FUTURE WORK

We presented a unified framework for body and hand

tracking, and described the NATOPS body-and-hand gesture

database. This work lays foundation for our multi-signal

gesture recognition, described in a companion paper [16].

The goal of this pose tracking work was to provide

high quality body and hand pose signals for reliable multi-

signal gesture recognition; hence real-time tracking ability

was not considered in this work. Faster processing could

TABLE I

HAND POSE CLASSIFICATION ACCURACY

Gesture Precision Recall F1 Score

#2 0.97 0.91 0.94
#3 0.99 1.00 0.99

#20 1.00 0.90 0.94
#21 1.00 0.80 0.89

be achieved in a number of ways, including optimizing the

number of particles in body pose estimation, tracking with

a variable frame rate (e.g., using an MHI to quantify the

extent of motion difference was made), or using GPUs for

fast computation.
We performed body pose estimation and hand pose clas-

sification serially, using estimated wrist position to search

for hands. However, once the hands are detected, they could

be used to refine the body pose estimation (e.g., by inverse

kinematics). Context-sensitive pose estimation may also im-

prove performance. There is a kind of grammar to gestures

in practice: for example, once the “brakes on” gesture is

performed, a number of other gestures are effectively ruled

out (e.g., “move ahead”). Incorporating this sort of context

information might significantly improve pose tracking per-

formance.
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#1 I Have Command #2 All Clear #3 Not Clear #4 Spread Wings

#5 Fold Wings #6 Lock Wings #7 Up Hook #8 Down Hook

#9 Remove Tiedowns #10 Remove Chocks #11 Insert Chocks #12 Move Ahead

#13 Turn Left #14 Turn Right #15 Next Marshaller #16 Slow Down

#17 Stop #18 Nosegear Steering #19 Hot Brakes #20 Brakes On

#21 Brakes Off #22 Install Tiedowns #23 Fire #24 Cut Engine

Fig. 9. Twenty-four NATOPS aircraft handling signals. Body movements are illustrated in yellow arrows, and hand poses are illustrated with synthesized
images of hands. Red rectangles indicate hand poses are important in distinguishing the gesture with its corresponding similar gesture pair.
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