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Abstract

We propose a new sketch recognition framework that combines a rich represen-
tation of low level visual appearance with a graphical model for capturing high
level relationships between symbols. This joint model of appearance and context
allows our framework to be less sensitive to noise and drawing variations, improv-
ing accuracy and robustness. The result is a recognizer that is better able to handle
the wide range of drawing styles found in messy freehand sketches. We evaluate
our work on two real-world domains, molecular diagrams and electrical circuit di-
agrams, and show that our combined approach significantly improves recognition
performance.

1 Introduction

Sketches are everywhere. From flow charts to chemical structures to electrical circuits, people use
them every day to communicate information across many different domains. They are also be an
important part of the early design process, helping us explore rough ideas and solutions in an in-
formal environment. However, despite their ubiquity, there is still a large gap between how people
naturally interact with sketches and how computers can interpret them today. Current authoring
programs like ChemDraw (for chemical structures) and Visio (for general diagrams) still rely on the
traditional point-click-drag style of interaction. While popular, they simply do not provide the ease
of use, naturalness, or speed of drawing on paper.

We propose a new framework for sketch recognition that combines a rich representation of low level
visual appearance with a probabilistic model for capturing higher level relationships. By “visual ap-
pearance” we mean an image-based representation that preserves the pictoral nature of the ink. By
“higher level relationships” we mean the spatial relationships between different symbols. Our com-
bined approach uses a graphical model that classifies each symbol jointly with its context, allowing
neighboring interpretations to influence each other. This makes our method less sensitive to noise
and drawing variations, significantly improving robustness and accuracy. The result is a recognizer
that is better able to handle the range of drawing styles found in messy freehand sketches.

Current work in sketch recognition can, very broadly speaking, be separated into two groups. The
first group focuses on the relationships between geometric primitives like lines, arcs, and curves,
specifying them either manually [1, 4, 5] or learning them from labeled data [16, 20]. Recognition
is then posed as a constraint satisfaction problem, as in [4, 5], or as an inference problem on a
graphical model, as in [1, 16, 17, 20]. However, in many real-world sketches, it is difficult to extract
these primitives reliably. Circles may not always be round, line segments may not be straight, and
stroke artifacts like pen-drag (not lifting the pen between strokes), over-tracing (drawing over a
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previously drawn stroke), and stray ink may introduce false primitives that lead to poor recognition.
In addition, recognizers that rely on extracted primitives often discard potentially useful information
contained in the appearance of the original strokes.

The second group of related work focuses on the visual appearance of shapes and symbols. These
include parts-based methods [9, 18], which learn a set of discriminative parts or patches for each
symbol class, and template-based methods [7, 11], which compare the input symbol to a library of
learned prototypes. The main advantage of vision-based approaches is their robustness to many of
the drawing variations commonly found in real-world sketches, including artifacts like over-tracing
and pen drag. However, these methods do not model the spatial relationships between neighboring
shapes, relying solely on local appearance to classify a symbol.

In the following sections we describe our approach, which combines both appearance and context.
It is divided into three main stages: (1) stroke preprocessing: we decompose strokes (each stroke is
defined as the set of points collected from pen-down to pen-up) into smaller segments, (2) symbol
detection: we search for potential symbols (candidates) among groups of segments, and (3) candi-
date selection: we select a final set of detections from these candidates, taking into account their
spatial relationships.

2 Preprocessing

The first step in our recognition framework is to preprocess the sketch into a set of simple segments,
as shown in Figure 1(b). The purpose for this step is twofold. First, like superpixels in computer
vision [14], segments are much easier to work with than individual points or pixels; the number
of points can be large even in moderate-sized sketches, making optimization intractable. Second,
in the domains we evaluated, the boundaries between segments effectively preserve the boundaries
between symbols. This is not the case when working with the strokes directly, so preprocessing
allows us to handle strokes that contain more than one symbol (e.g., when a wire and resistor are
drawn together without lifting the pen).

Our preprocessing algorithm divides strokes into segments by splitting them at their corner points.
Previous approaches to corner detection focused primarily on local pen speed and curvature [15], but
these measures are not always reliable in messy real-world sketches. Our corner detection algorithm,
on the other hand, tries to find the set of vertices that best approximates the original stroke as a whole.
It repeatedly discards the vertex vi that contributes the least to the quality of fit measure q, which we
define as:

q(vi) = (MSE(v \ vi, s)−MSE(v, s)) ∗ curvature(vi) (1)

where s is the set of points in the original stroke, v is the current set of vertices remaining in the line
segment approximation, curvature(vi) is a measure of the local stroke curvature1, and (MSE(v \
vi, s) −MSE(v, s)) is the increase in mean squared error caused by removing vertex vi from the
approximation.

Thus, instead of immediately trying to decide which point is a corner, our detector starts by making
the simpler decision about which point is not a corner. The process ends when q(vi) is greater than
a predefined threshold2. At the end of the preprocessing stage, the system records the length of the
longest segment L (after excluding the top 5% as outliers). This value is used in subsequent stages
as a rough estimate for the overall scale of the sketch.

3 Symbol Detection

Our algorithm searches for symbols among groups of segments. Starting with each segment in
isolation, we generate successively larger groups by expanding the group to include the next closest
segment3. This process ends when either the size of the group exceeds 2L (a spatial constraint) or

1Defined as the distance between vi and the line segment formed by vi−1 and vi+1
2In our experiments, we set the threshold to 0.01 times the diagonal length of the stroke’s bounding box.
3Distance defined as mindist(s, g) + bbdist(s, g), where mindist(s, g) is the distance at the nearest point

between segment s and group g and bbdist(s, g) is the diagonal length of the bounding box containing s and g.
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(b) Segments after preprocessing (c) Candidate groups(a) Original Strokes

(d) G hi l d l ( ) Fi l d i(d) Graphical model (e) Final detections

Figure 1: Our recognition framework. (a) An example sketch of a circuit diagram and (b) the seg-
ments after preprocessing. (c) A subset of the candidate groups extracted from the sketch (only those
with an appearance potential > 0.25 are shown). (d) The resulting graphical model: nodes represent
segment labels, dark blue edges represent group overlap potentials, and light blue edges represent
context potentials. (e) The final set of symbol detections after running loopy belief propagation.

when the group spans more strokes than the temporal window specified for the domain4. Note that
we allow temporal gaps in the detection region, so symbols do not need to be drawn with consecutive
strokes. An illustration of this process is shown in Figure 1(c).

We classify each candidate group using the symbol recognizer we described in [11], which con-
verts the on-line stroke sequences into a set of low resolution feature images (see Figure 2(a)). This
emphasis on visual appearance makes our method less sensitive to stroke level differences like over-
tracing and pen drag, improving accuracy and robustness. Since [11] was designed for classifying
isolated shapes and not for detecting symbols in messy sketches, we augment its output with five
geometric features and a set of local context features:

stroke count: The number of strokes in the group.
segment count: The number of segments in the group.
diagonal length: The diagonal length of the group’s bounding box, normalized by L.
group ink density: The total length of the strokes in the group divided by the diagonal length.

This feature is a measure of the group’s ink density.
stroke separation: Maximum distance between any stroke and its nearest neighbor in the group.
local context: A set of four feature images that captures the local context around the group. Each

image filters the local appearance at a specific orientation: 0, 45, 90, and 135 degrees. The
images are centered at the middle of the group’s bounding box and scaled so that each
dimension is equal to the group’s diagonal length, as shown in Figure 2(b). The initial
12x12 images are smoothed using a Gaussian filter, down-sampled by a factor of 4.

The symbol detector uses a linear SVM [13] to classify each candidate group, labeling it as one of the
symbols in the domain or as mis-grouped “clutter”. The training data includes both valid symbols
and clutter regions. Because the classifier needs to distinguish between more than two classes, we

4The temporal window is 8 strokes for chemistry diagrams and 20 strokes for the circuit diagrams. These
parameters were selected empirically, and can be customized by the system designer for each new domain.

3



(a) Isolated recognizer features

(b) Local context features
0 45 90 135 end

(c) Local context features

0 45 90 135

0 45 90 135

Figure 2: Symbol Detection Features. (a) The set of five 12x12 feature images used by the isolated
appearance-based classifier. The first four images encode stroke orientation at 0, 45, 90, and 135
degrees; the fifth captures the locations of stroke endpoints. (b) The set of four local context images
for multi-segment symbol. (c) The set of four local context images for single-segment symbols.

use the one-vs-one strategy for combining binary classifiers. Also, to generate probability estimates,
we fit a logistic regression model to the outputs of the SVM [12].

Many of the features above are not very useful for groups that contain only one segment. For
example, an isolated segment always looks like a straight line, so its visual appearance is not very
informative. Thus, we use a different set of features to classify candidates that contain only a single
segment: (e.g., wires in circuits and straight bonds in chemistry):

orientation: The orientation of the segment, discretized into evenly space bins of size π/4.
segment length: The length of the segment, normalized by L.
segment count: The total number of segments extracted from the parent stroke.
segment ink density: The length of the substroke matching the start and end points of the segment

divided by the length of the segment. This is a measure of the segment’s curvature and is
higher for more curved segments.

stroke ink density: The length of the parent stroke divided by the diagonal length of the parent
stroke’s bounding box.

local context: Same as the local context for multi-segment symbols, except these images are cen-
tered at the midpoint of the segment, oriented in the same direction as the segment, and
scaled so that each dimension is equal to two times the length of the segment. An example
is shown in 2(c).

4 Improving Recognition using Context

The final task is to select a set of symbol detections from the competing candidate groups. Our
candidate selection algorithm has two main objectives. First, it must avoid selecting candidates
that conflict with each other because they share one or more segments. Second, it should select
candidates that are consistent with each other based on what the system knows about the likely
spatial relationships between symbols.

We use an undirected graphical model to encode the relationships between competing candidates.
Under our formulation, each segment (node) in the sketch needs to be assigned to one of the candi-
date groups (labels). Thus, our candidate selection problem becomes a segment labeling problem,
where the set of possible labels for a given segment is the set of candidate groups that contain that
segment. This allows us to incorporate local appearance, group overlap consistency, and spatial
context into a single unified model.
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Figure 3: Spatial relationships: The three measurements used to calculate the context potential
ψc(ci, cj , xi, xj), where vi and vj are vector representing segment xi and xj and vij is a vector
from the center of vi to the center of vj .

The joint probability function over the entire graph is given by:

logP (c|x) =
∑
i

appearance︷ ︸︸ ︷
ψa(ci,x)+

∑
ij

overlap︷ ︸︸ ︷
ψo(ci, cj)+

context︷ ︸︸ ︷
ψc(ci, cj , xi, xj)− log(Z) (2)

where x is the set of segments in the sketch, c is the set of segment labels, and Z is a normalizing
constant.

Appearance potential. The appearance potential ψa measures how well the candidate group’s
appearance matches that of its predicted class. It uses the output of the isolated symbol classifier in
section 4 and is defined as:

ψa(ci,x) = logPa(ci|x) (3)

where Pa(ci|x) is the likelihood score for candidate ci returned by the isolated symbol classifier.

Group overlap potential. The overlap potential ψo(ci, cj) is a pairwise compatibility that ensures
the segment assignments do not conflict with each other. For example, if segments xi and xj are
both members of candidate c and xi is assigned to c, then xj must also be assigned to c.

ψo(ci, cj) =

{
−100, if ((xi ∈ cj) or (xj ∈ ci)) and (ci 6= cj)
0, otherwise (4)

To improve efficiency, instead of connecting every pair of segments that are jointly considered in
c, we connect the segments into a loop based on temporal ordering. This accomplishes the same
constraint with fewer edges. An example is shown in Figure 1(d).

Joint Context Potential. The context potential ψc(ci, cj , xi, xj) represents the spatial compatibil-
ity between segments xi and xj , conditioned on their predicted class labels (e.g., resistor-resistor,
resistor-wire, etc). It is encoded as a conditional probability table that counts the number of times
each spatial relationship (θ1, θ2, θ3) occurred for a given class pair (see Figure 3).

ψc(ci, cj , xi, xj) = logPc(θ(xi, xj) | class(ci), class(cj)) (5)

where class(ci) is the predicted class for candidate ci and θ(xi, xj) is the set of three spatial rela-
tionships (θ1, θ2, θ3) between segments xi and xj . This potential is active only for pairs of segments
whose distance at the closest point is less than L/2. To build the probability table we discretize θ1
and θ2 into bins of size π/8 and θ3 into bins of size L/4.

The entries in the conditional probability table are defined as:

Pc(θ | li, lj) =
Nθ,classi,classj + α∑
θ′ Nθ′,classi,classj + α

(6)
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where Nθ,classi,classj is the number of times we observed a pair of segments with spatial relationship
θ and class labels (classi, classj) and α is a weak prior (α = 10 in our experiments).

Inference. We apply the max-product belief propagation algorithm [22] to find the configuration
that maximizes Equation 2. Belief propagation works by iteratively passing messages around the
connected nodes in the graph; each message from node i to node j contains i’s belief for each
possible state of j. In our implementation we use an “accelerated” message passing schedule [21]
that propagates messages immediately without waiting for other nodes to finish. The procedure
alternates between forward and backward passes through the nodes based on the temporal ordering
of the segments, running for a total of 100 iterations.

5 Evaluation

One goal of our research is to build a system that can handle the range of drawings styles found in
natural, real world diagrams. As a result, our data collection program was designed to behave like
a piece of paper, i.e., capturing the sketch but providing no recognition or feedback. Using the data
we collected, we evaluated five versions of our system:

Appearance uses only the isolated appearance-based recognizer from [11].
Appearance+Geometry uses isolated appearance and geometric features.
Appearance+Geometry+Local uses isolated appearance, geometric features, and local context.
Complete is the complete framework described in this paper, using our corner detector.
Complete (corner detector from [15]) is the complete framework, using the corner detector in [15].
(We include this comparison to evaluate the effectiveness of our corner detection algorithm.)

Note that the first three versions still use the group overlap potential to select the best set of consistent
candidates.

Chemistry
For this evaluation we recruited 10 participants who were familiar with organic chemistry and asked
each of them to draw 12 real world organic compounds (e.g., Aspirin, Penicillin, Sildenafil, etc) on a
Tablet PC. We performed a set of user-independent performance evaluations, testing our system on
one user while using the examples from the other 9 users as training data. By leaving out sketches
from the same participant, this evaluation demonstrates how well our system would perform on a
new user.

For this domain we noticed that users almost never drew multiple symbols using a single stroke,
with the exception of multiple connected straight bonds (e.g., rings). Following this observation, we
optimized our candidate extractor to filter out multi-segment candidates that break stroke boundaries.

Method Accuracy
Complete (corner detector from [15]) 0.806
Appearance 0.889
Appearance+Geometry 0.947
Appearance+Geometry+Local 0.958
Complete 0.971

Table 1: Overall recognition accuracy for the chemistry dataset.

Note that for this dataset we report only accuracy (recall), because, unlike traditional object detec-
tion, there are no overlapping detections and every stroke is assigned to a symbol. Thus, a false
positive always causes a false negative, so recall and precision are redundant: e.g., misclassifying
one segment in a three-segment “H” makes it impossible to recognize the original “H” correctly.

The results in Table 1 show that our method was able to recognize 97% of the symbols correctly.
To be considered a correct recognition, a predicted symbol needs to match both the segmentation
and class of the ground truth label. By modeling joint context, the complete framework was able
to reduce the error rate by 31% compared to the next best method. Figure 4 (top) shows several
sketches interpreted by our system. We can see that the diagrams in this dataset can be very messy,
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and exhibit a wide range of drawing styles. Notice that in the center diagram, the system made two
errors because the author drew hash bonds differently from all the other users, enclosing them inside
a triangle.

Circuits
The second dataset is a collection of circuit diagrams collected by Oltmans and Davis [9]. The
examples were from 10 users who were experienced in basic circuit design. Each user drew ten or
eleven different circuits, and every circuit was required to include a pre-specified set of components.

We again performed a set of user-independent performance evaluations. Because the exact locations
of the ground truth labels are somewhat subjective (i.e., it is not obvious whether the resistor label
should include the short wire segments on either end), we adopt the same evaluation metric used in
the Pascal Challenge [2] and in [9]: a prediction is considered correct if the area of overlap between
its bounding box and the ground truth label’s bounding box is greater than 50% of the area of their
union. Also, since we do not count wire detections for this dataset (as in [9]), we report precision as
well as recall.

Method Precision Recall
Oltmans 2007 [9] 0.257 0.739
Complete (corner detector from [15]) 0.831 0.802
Appearance 0.710 0.824
Appearance+Geometry 0.774 0.832
Appearance+Geometry+Local 0.879 0.874
Complete 0.908 0.912

Table 2: Overall recognition accuracy for the circuit diagram dataset.

Table 2 shows that our method was able to recognize over 91% of the circuit symbols correctly.
Compared to the next best method, the complete framework was able to reduce the error rate by 30%.
On this dataset Oltmans and Davis [9] were able to achieve a best recall of 73.9% at a precision of
25.7%. Compared to their reported results, we reduced the error rate by 66% and more than triple the
precision. As Figure 4 (bottom) shows, this is a very complicated and messy corpus with significant
drawing variations like overtracing and pen drag.

Runtime
In the evaluations above, it took on average 0.1 seconds to process a new stroke in the circuits
dataset and 0.02 seconds for the chemistry dataset (running on a 3.6 GHz machine, single-thread).
With incremental interpretation, the system should be able to easily keep up in real time.

Related Work
Sketch recognition is a relatively new field, and we did not find any publicly available benchmarks
for the domains we evaluated. In this section, we summarize the performance of existing systems
that are similar to ours. Alvarado and Davis [1] proposed using dynamically constructed Bayesian
networks to represent the contextual relationships between geometric primitives. They achieved an
accuracy of 62% on a circuits dataset similar to ours, but needed to manually segment any strokes
that contained more than one symbol. Gennari et al [3] developed a system that searches for symbols
in high density regions of the sketch and uses domain knowledge to correct low level recognition
errors. They reported an accuracy of 77% on a dataset with 6 types of circuit components. Sezgin
and Davis [16] proposed using an HMM to model the temporal patterns of geometric primitives, and
reported an accuracy of 87% on a dataset containing 4 types of circuit components.

Shilman et. al. [17] proposed an approach that treats sketch recognition as a visual parsing problem.
Our work differs from theirs in that we use a rich model of low-level visual appearance and do
not require a pre-defined spatial grammar. Ouyang and Davis [10] developed a sketch recognition
system that uses domain knowledge to refine its interpretation. Their work focused on chemical
diagrams, and detection was limited to symbols drawn using consecutive strokes. Outside of the
sketch recognition community, there is also a great deal of interest in combining appearance and
context for problems in computer vision [6, 8, 19].
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Figure 4: Examples of chemical diagrams (top) and circuit diagrams (bottom) recognized by our
system (complete framework). Correct detections are highlighted in green (teal for hash and wedge
bonds), false detections in red, and missed symbols in orange.

6 Discussion

We have proposed a new framework that combines a rich representation of low level visual appear-
ance with a probabilistic model for capturing higher level relationships. To our knowledge this is
the first paper to combine these two approaches, and the result is a recognizer that is better able
to handle the range of drawing styles found in messy freehand sketches. To preserve the familiar
experience of using pen and paper, our system supports the same symbols, notations, and drawing
styles that people are already accustomed to.

In our initial evaluation we apply our method on two real-world domains, chemical diagrams and
electrical circuits (with 10 types of components), and achieve accuracy rates of 97% and 91% re-
spectively. Compared to existing benchmarks in literature, our method achieved higher accuracy
even though the other systems supported fewer symbols [3, 16], trained on data from the same user
[3, 16], or required manual pre-segmentation [1].
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