Exploring the Screening Power of the Digital Maze Completion Test

by

Dana Mukusheva

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

©Massachusetts Institute of Technology 2017. All rights reserved.

Signature redacted

Department of Electrical Engineering and Computer Science May 26, 2017

Signature redacted

Author

Accepted by

AUG 142017

Certified by.....

Randall Davis Professor of Electrical Engineering and Computer Science Signature redacted

Certified by..... Dana Pennev

Director Neuropsychology, Lahey Hospital and Medical Center Thesis Reader

Signature redacted

Christopher J. Terman MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chairman, Masters of Engineering Thesis Committee

77 Massachusetts Avenue Cambridge, MA 02139 http://libraries.mit.edu/ask

DISCLAIMER NOTICE

Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort possible to provide you with the best copy available.

Thank you.

The images contained in this document are of the best quality available.

,

Exploring the Screening Power of

the Digital Maze Completion Test

by

Dana Mukusheva

Submitted to the Department of Electrical Engineering and Computer Science on May 26, 2017, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Digital Maze Completion Test is a novel and unique screening tool for dementia and related cognitive diseases. The test incorporates a combination of a digitizing pen, carefully designed mazes, and sophisticated software. The subject's behavior while solving the maze has potential to reveal the nuances in their cognitive state, which can be used for early diagnosis of impairments such as Alzheimer's disease. In this thesis, we explored the subject's decision making process and planning ability by interpreting and analyzing the relevant data collected by the digitizing pen. We came up with definitions of the associated features that we implemented in the software and extracted from the real-world clinical data. We have evaluated the predictive power of some of the features by applying machine learning classifiers to distinguish the individuals from the various clinical subgroups, such as healthy controls, subjects with Mild Cognitive Impairment, etc. Our key observation is that even a simple subset of the features is quite powerful to perform on par with the traditional screening tools, such as Mini-Mental State Examination. Therefore, we confirmed that the Digital Maze Completion Test is a promising screening tool, the further development and research of which will help to reveal more information about the patients' cognitive conditions.

Thesis Supervisor: Randall Davis Title: Professor of Electrical Engineering and Computer Science

Thesis Reader: Dana Penney Title: Director Neuropsychology, Lahey Hospital and Medical Center

Acknowledgments

Foremost, I would like to thank my advisor Professor Randall Davis for his tremendous support, gentle guidance and great patience throughout my work on this thesis. It was an incredible experience learning from him about the concepts of computer science, machine learning, medical applications and life in general. I am genuinely grateful for his motivation and his trust in my abilities to carry out this project.

I would also like to express my gratitude towards my co-supervisor Doctor Dana Penney, from whom I learned immensely about the neuropsychology. Doctor Penney's insightful comments helped me to improve my work and achieve better results.

I would like to thank William Souillard-Mandar for his helpful advice and feedback, as well as his constant willingness to help with my research. I am very grateful to my friends Saadiyah Husnoo and Przemyslaw Pasich for their help with proofreading and editing. Their impeccable writing skills helped me to finish this thesis.

I want to thank my parents and my family for their unconditional love and support. Especially, I want to thank my big brother Daniyar for constantly challenging me and pushing me outside of my comfort zone. I would never be where I am now without his encouragement and faith in me. Last but not the least I would like to thank my beloved fiancé Arman, who was there for me 24/7 during both my high and low moments with his care, love and support.

This work was supported in part by National Science Foundation Award IIS-1404494 and by the Robert E. Wise Research and Education Institution.

Contents

1	Inti	roduction	13
	1.1	THink project	13
	1.2	Digital Maze Completion Test	15
	1.3	Motivation for Digital Maze Completion Test	15
	1.4	Contributions	16
2	Rel	ated Work	19
	2.1	Other maze drawing tests	19
	2.2	MMSE and MOCA	20
3	Ove	erview of the Digital Maze Completion Test	23
	3.1	Digital Maze Completion Test structure	24
	3.2	Software	25
	3.3	Data	25
4	Fea	ture Construction	29
	4.1	Feature groups	29
	4.2	Behavioral features	31
	4.3	Additions to software functionality	33
5	Fea	ture Analysis	35
	5.1	Machine learning algorithms	35
		5.1.1 Experiment setup	35
		5.1.2 Baselines	36

		5.1.3 Results \ldots	38
	5.2	Feature importance	40
	5.3	Future work	42
6	Con	clusion	45
Α	Feat	ture Names	47
В	RO	C curves	51
С	Test	t IDs of maze tests used	61

List of Figures

2-1	Example of the Perceptual Maze Test and its solution.	20
3-1	Distribution of the test instances over the primary diagnosis	28
4-1	Examples of behavioral features: backtracking and hitting the walls	32
4-2	Examples of behavioral features: corner cutting and steering towards	
	an alternative choice.	32
4-3	Examples of behavioral features: corridor and deviation from straight	
	path	33
4-4	Addition to the software interface: speed coloring	34
4-5	Addition to the software interface: speed graph	34
5-1	ROC curves for the screening task.	44
B-1	Healthy controls vs. all others	51
B-2	Healthy controls vs. subjects with AD, PD or MCI	52
B-3	Healthy controls vs. subjects with MCI	52
B-4	Healthy controls vs. subjects with amnestic MCI	53
B-5	Healthy controls vs. subjects with AD	53
B-6	Healthy controls vs. subjects with MMSE score ≥ 26	54
B-7	Subjects with MCI vs all others	54
B-8	Subjects with MCI vs. subjects with AD or PD or healthy controls .	55
B-9	Subjects with MCI vs subjects with MMSE score ≥ 26	55
B-10	Subjects with MCI vs. subjects with AD	56
B-11	Subjects with amnestic MCI vs. all others	56

. .

B-12 Subjects with amnestic MCI vs. subjects with AD or PD or healthy	
controls	57
B-13 Subjects with amnestic MCI vs subjects with MMSE score ≥ 26	57
B-14 Subjects with amnestic MCI vs. subjects with AD	58
B-15 Subjects with AD vs. all others	58
B-16 Subjects with AD vs. subjects with MCI or PD or healthy controls $\ .$	59
B-17 Subjects with AD vs subjects with MMSE score ≥ 26	59

List of Tables

3.1	Distribution of test instances across sites and difficulty levels	26
5.1	Sample set sizes and classes for each classification experiment. \ldots	37
5.2	Results for machine learning classifiers: distinguishing healthy individ-	
	uals from various subgroups	39
5.3	Results for machine learning classifiers: distinguishing subjects with	
	MCI from various subgroups.	41
5.4	Results for machine learning classifiers: distinguishing subjects with	
	Alzheimer's disease from various subgroups.	42

Chapter 1

Introduction

Every 66 seconds, someone in the United States develops Alzheimer's disease. This number will drop to 33 seconds by 2050, as estimated by Alzheimer's Association in the report from 2017 [1]. Unfortunately, the disease does not yet have any effective treatment that would reverse its symptoms. Nevertheless, an early diagnosis of dementia is critical, as it could give affected people a chance to slow down the progress of the disease, prepare for its outcomes and come up with the caregiving-related plans. Having the early detection of dementia in mind, in this thesis project, we have explored the screening power of a novel and unique tool, the Digital Maze Completion Test. This simple pen and paper drawing test is able to pick up the subtle details of subjects' behavior and infer their cognitive status. Our work is a beginning of the exploration of the Digital Maze Completion Test, which shows enormous potential to effectively measure functioning of various cognitive domains, such as memory, learning and planning. Nonetheless, even with a simple set of extracted measurements, the test is powerful enough to successfully screen the patients and differentiate between certain types of diagnoses, as we present in this thesis.

1.1 THink project

The Digital Maze Completion Test is part of the THink project [7], a collection of neuropsychological tests that currently includes the Digital Clock Drawing Test [18],

which is a digitized and operationalized form of the conventional pen and paper Clock Drawing Test $[2, 10]^1$. In the conventional Clock Drawing Test, a subject is first asked to draw a clock that shows the specified time (command clock) and then to copy another pre-drawn clock (copy clock). The results are then interpreted and manually evaluated by the medical staff based on one of the existing scoring systems (a summary of scoring systems is given in [8]). While the traditional Clock Drawing Test is cost- and time-efficient, as well as relatively accurate in detecting dementia [4], its utility is diminished by the need for subjective judgement as well as ambiguous scoring criteria and mistakes [18].

The Digital Clock Drawing Test solves these problems through the use of a digitizing pen and novel software [7], allowing it to interpret the details of the drawing. In the Digital Clock Drawing Test, the subject completes the drawing tasks with a digitizing pen that records geometrical and temporal data. The software analyzes the pen data and is able to recognize and classify the clock elements, such as individual digits, clock hands, etc. [17]. The software displays the results of the classification in a user-friendly way. Thus, the clinicians avoid the laborious and error-prone sketch interpretation process.

Researchers have also explored the potential of applying machine learning algorithms to the data from the Digital Clock Drawing Test [18]. They developed a large set of features and applied various algorithms to perform a screening task (determining if the subject is healthy or not) and a diagnosing task (determining which one of the specified impairments a person might have). The authors evaluated the predictive power of the new automated Clock Drawing Test and came to the conclusion that it produces relatively accurate, reliable and robust results. For the purposes of our research, we have extended the software from the Digital Clock Drawing Test to work in a new context. Moreover, we explored what useful data can be extracted from the maze drawings and which behavioral phenomena our test is able to detect. Finally, we evaluated the screening power of the test by applying machine learning classifiers to the extracted data.

¹The THink project is covered in part by the US Patent 8740819.

1.2 Digital Maze Completion Test

The Digital Maze Completion Test is a system that first requires a subject to find their way in a series of mazes by tracing the line from the start to the end locations. Each maze is carefully designed with a special structure that challenges various cognitive domains such as memory, locomotor skills, planning abilities and foresight. The test is conducted as follows: a subject takes the test on paper with a digitizing pen, which looks and feels like a regular ball-point pen, but also records timestamped spatial data. In each test instance, there are three mazes that the subject has to complete: a calibration maze, a choice maze and a no-choice maze. The calibration maze is a simple "corridor" that requires a subject to draw a straight line. The choice and no-choice mazes are more convoluted and have identical solutions, but the choice maze has decision points at which the subject can deviate from the correct path. The data from the pen is then transferred to special software that matches the drawings with the corresponding maze layout. Mazes differ in difficulty level, from easy through intermediate to advanced. The software analyzes and displays various aspects of the drawing process, such as changes in speed, deviating from the correct path (henceforth, solution path), or hitting the walls of the maze. We describe our system in detail in Chapter 3.

1.3 Motivation for Digital Maze Completion Test

While there exists a variety of cognitive screening tools for dementia that are commonly accepted in the clinical use, our system provides a few advantages over them. First, the data interpreting software makes the Digital Maze Completion Test free from subjective judgement and human errors, as well as from the laborious scoring process, all of which are inevitable in the manual evaluation process. Moreover, the software component at its current state is able to detect a certain set of behaviors and has a potential to expand this set even further, which opens up more research opportunities. Given that our test is sensitive to very subtle details of the subject's behavior while solving the maze, such as slight deviations from the norm (or from what healthy individuals do), we believe our test may enable detecting dementia in its early stages. Particularly, it can recognize the subjects with Mild Cognitive Impairment, a precursor to dementia [11]. We have studied and reported the diagnostic power of the Digital Maze Completion Test in Chapter 5.

1.4 Contributions

The Digital Maze Completion Test is a new and unique tool that does not have any similar reported counterparts. The focus of this thesis project is to explore the screening power of the test and evaluate its ability to predict the subject's cognitive status. We did this by exploring the features that could be extracted from the maze drawings, using them in state-of-the-art machine learning classifiers, and by improving the software by adding new functionality relevant to the feature analysis.

The main contributions of this thesis project are:

- Feature construction. We have defined several features that capture the subject's behavior while drawing. We defined what is considered to be a mistake, such as making or nearly making a wrong turn at the decision point, touching or going through the walls of the maze, clipping the corners while in a rush or not being able to draw a straight line. We came up with precise definitions for such mistakes and implemented them in code.
- Diagnosis prediction. We chose a simple subset of features that we used in state-of-the-art machine learning classifiers. We experimented with the tasks for the classifiers, such as separating healthy individuals from the impaired people, separating individuals with amnestic MCI or Alzheimer's disease from each other, from healthy individuals and from the rest of the people in our dataset. We compared our results (precision, recall and f-scores) with predictions of the MMSE scores and found out that a classifier that uses even a small number of features (listed in Appendix A) is able to outperform the MMSE scores.

We also looked at the feature rankings obtained from the trained classifier and noticed that all three parts of the test played a role in the classification process. Particularly, we saw that even the calibration maze, despite its considerable straight-forwardness, does have some screening power.

• Improvement of the software interface. We have improved the software component of the Digital Maze Completion Test. It is able to compute and display the behavioral features, as well as show pen speed analysis as a colored drawn path or as a line graph with adjustable sliding window size. Pen speed analysis plays an important role in understanding the subject's behavior while solving the maze because correlating the instances of slowing down and speeding up with the particular locations in the maze can signify one or more behavioral phenomena.

Chapter 2

Related Work

There is a variety of screening methods for dementia and related cognitive diseases, which come in different forms, such as questionnaires or sequences of drawing, spelling or counting tasks. Each of them focuses on different cognitive domains [5]. In this section, we discuss the studies and the research related to our project. We describe other maze drawing tests as well as the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA).

2.1 Other maze drawing tests

To our knowledge, our test is unique in the sense that we use the digitizing pen and the software to interpret and analyze the maze drawing. However, the concept of using mazes as a cognitive screening tool is not new. One such test, the Porteus Maze Test [16], measures the subject's intelligence level, planning capacity and foresight. The subject is asked to complete a series of mazes, which takes from 15 min to 60 min. The test is scored based on the number and character of the errors the subject has made. However, there are no reported studies or experiments where the Porteus Maze Test was specifically used to detect dementia and its early signs.

A second maze-based cognitive screening test is called the Perceptual Maze Test [6]. The structure of this test is different from a conventional maze: the subject is asked to connect the dots sitting on the intersections of a lattice given the certain

Figure 2-1: Example of the Perceptual Maze Test and its solution.

constraints. The subject moves from top of the maze to bottom, from left to right. He or she cannot move upwards or to the left. The subject cannot cross his or her own path. The goal is to connect as many dots as possible while moving in the allowed directions. Figure 2-1 shows an example of the Perceptual Maze Test. The difficulty of the test is a function of its structure and the pattern of the dot locations. Psychologists use the Perceptual Maze Test to measure the level of intelligence, as for example, in [3], where the test was used to identify subjects with brain damage. However, we are not aware of any recent studies using the Perceptual Maze Test to identify subjects with dementia.

2.2 MMSE and MOCA

Other cognitive screening tests come in the form of a questionnaire. Like the Digital Maze Completion Test, they are time-efficient and simple to administer and score. For such tests, a subject is asked to answer a series of questions or perform certain tasks,

such as to name objects, count from one number to another, and so on. Two such tests, the Mini-Mental State Examination (MMSE) [9] and the Montreal Cognitive Assessment (MoCA) [12], are used at the sites where the Digital Maze Completion Test was piloted; therefore, we use the results of these tests as a baseline with which we compare the predictions of our machine learning classifiers.

The MMSE consists of 30 questions, the first 21 assess aspects of cognitive health, such as orientation, registration, attention and calculation, and then 9 questions asses recall and language. The test successfully detects the presence of cognitive difficulties using the thresholds that have been established over years of experience with the test. In our work, we used a score of 28 and higher to identify a test taker as a healthy nondemented subjects and a score between 26 (inclusive) and 28 (exclusive) to identify a subject with Mild Cognitive Impairment (MCI). Our threshold for classifying a subject with dementia is higher than the commonly used score of 24 because the threshold should be adjusted roughly by 2 points for highly educated individuals [13]. In our population, the average number of years of education is 16 (± 2.5), hence the use of a cutoff that is higher than the traditional cutoff.

MoCA is a similar screening tool with varying tasks that tests the subject's memory, language, orientation, attention, concentration and visuospatial abilities. The main difference between MMSE and MoCA is that the MoCA was designed to pick up subjects with MCI, who tend to score the same as cognitively normal individuals on the MMSE. Subjects with MCI are at higher risk because it is considered a transitional state to Alzheimer's disease, hence the importance of identifying it early. We used a score of 26 and higher to mark a subject as a healthy control.

In our data set, not all subjects have both MoCA and MMSE scores. We used these scores as a baseline to evaluate the relative performance of our classifiers; therefore, in order to have a reliable baseline, we used MMSE scores for those subjects who did have them and converted MoCA scores to MMSE scores for those subjects lacking an MMSE score. We used a conversion table from [19], where the authors developed a conversion from MoCA to a relatively accurate MMSE score.

Chapter 3

Overview of the Digital Maze Completion Test

The Digital Maze Completion Test is a cognitive screening system that includes multiple components. It is targeted to detect cognitive impairments among adults of age 55 and older. In the test a subject is asked to complete a series of mazes on a paper with a digitizing pen. The instructions specify that the subject should not lift the pen while attempting to solve the test. We use an Anoto Inc. DP-201 pen that records and stores timestamped coordinates indicating the position of the pen point every 12 ms. The data collected by the pen is downloaded to a computer and analyzed by the software component. The software enables users, or more precisely, clinicians, to play back the drawing process, identify and display various features (e.g., hitting the maze walls while drawing), and extract a variety of numerical measures that are useful in assessing the subject's cognitive status. We used state-of-the-art machine learning classifiers to predict whether the subject is likely to have a cognitive impairment, for example, Alzheimer's disease. In this section, we describe the drawing component of the test, present the most important software functionality, and give an overview of the data we have worked with.

3.1 Digital Maze Completion Test structure

Each test has three parts: a calibration maze, a choice maze and a no-choice maze. There are also versions of the test at three levels of difficulty.

The building blocks of each maze are square tiles with a side length of 0.8cm. Each tile can be surrounded by up to three walls. Each maze has a start tile and a goal tile, and there is only one correct solution path that leads from the start tile to the goal tile.

- the calibration maze is a simple straight lane. The calibration maze requires the lowest cognitive load among the three mazes and is used both to let the subject get accustomed to the test and to measure the subject's basic locomotor skills. We suspect that this maze does not have any diagnostic power since it is used for a simple and straightforward task.
- the choice maze contains multiple decision points (or decision tiles) where the subject must choose which way to continue. The decision points vary in difficulty: some of them lead to dead-ends in fewer steps than others, some require choosing between two alternative paths, while others require choosing among three alternative paths. Some decision points have an embedded choice, in the sense that on the incorrect path there are additional decision points before hitting a dead end. The difficulty of the decision points in the choicemaze distinguishes the three difficulty levels of the Test. The "easy" Test has the fewest decision points with no embedded choices, the "intermediate" Test has more decision points with some embedded choices and the "advanced" Test has the most decision points with even more embedded choices. The varying difficulty of the decision points places a different cognitive load on a test-taker; thus, the behavior around and at such points can potentially help us to evaluate the subject's planning abilities and foresight. We believe that this maze will be the important one in identifying subjects with cognitive impairments.
- the no-choice maze is very similar to the choice maze and has exactly the

same solution path. However, all of its decision points have only one (correct) choice. Both choice and no-choice mazes make equal demands on the drawing side and motor skills. Comparing various metrics from both mazes can give us insight about memory and planning processes at the decision points.

3.2 Software

The software component of the Digital Maze Drawing Test is an extension of the existing software written to interpret the clock sketch data, presented in [7]. The timestamped data in the pen is grouped in strokes, each stroke belongs to one of the three mazes in a single test instance. The original software allowed users to play back the drawing process at varying speeds, get the geometric coordinates of each point and identify different phenomena in the drawing. Users can also see when and where the subjects touched the maze walls, went across them, made an incorrect decision and backtracked, lifted the pen, etc. However, the software did not have all the functionality necessary to study the behavior around decision points and gain insight to the intention behind one or more phenomena. Therefore, the software was modified and improved to facilitate more thorough analysis, as described in Section 4.3.

3.3 Data

The Digital Maze Drawing Test data has been collected under the THink project, which has several participating sites, including Lahey Hospital & Medical Center and Massachusetts General Hospital (MGH). There are 353 test instances collected from Lahey since 2014 that belong to 108 subjects. There are 206 test instances from 69 subjects from tests at MGH during 2016 and 2017. Among the 559 available tests, 236 belong to subjects that are considered to be "cognitively normal", which were collected either from people who were not subjects or who were not diagnosed with any disorders that have cognitive impact.

Site	Easy	Intermediate	Advanced	Total
Lahey	120	115	118	353
MGH	68	69	69	206
Combined	188	184	187	559

Table 3.1: Distribution of test instances across sites and difficulty levels

The subjects that completed our Maze Test had been diagnosed with 30 different impairments. All subjects have a primary diagnosis, and possibly a secondary and tertiary diagnoses, each labeled with a level of confidence from low to moderate to high. The distribution of the test instances over the primary diagnoses is shown in Figure 3-1. We have used the consensus diagnoses supplied by the clinicians as ground truth in our classification task.

In one set of the experiments, we used our entire sample set. For another set, we only kept four major groups of subjects who had been diagnosed with Alzheimer's disease, Mild Cognitive Impairment (MCI), Parkinson's disease, or healthy controls, for a total of 504 test instances. The subjects with these diagnoses are a part of the study and form a majority of the samples in our data set. Moreover, all of them have clear and well-defined diagnosis. For instance, the subjects with Alzheimer's disease do not have a vascular component to it, which rules out other possible explanations for their memory related problems. Some of the subjects with Parkinson's disease have their diagnosis confirmed through DaT scans. The subjects from the aforementioned group can be clearly separated as they exhibit different symptoms.

In order to increase the set size after filtering out the rest of the samples, we have used other test instances whose secondary diagnosis was one of those mentioned above with at least a moderate level of confidence, which gave us 12 more test instances. These additional samples have Alzheimer's disease (5 tests), unspecified MCI (3 tests) and Parkinson's disease (4 tests) as their secondary diagnoses.

We are particularly interested in detecting the signs of the memory impairment disorders, which includes amnestic MCI and Alzheimer's disease. Diagnosing amnestic MCI, an intermediate stage between healthy aging and dementia [15], is not an easy task due to the subtlety of its symptoms. Subjects with amnestic MCI experience memory problems, but still preserve general cognitive health and are able to carry on with daily life activities. This makes them hard to distinguish from elderly healthy controls. The commonly used screening tests, such as MMSE, do not clearly distinguish early demented individuals from cognitively normal individuals, as shown in [20]. We use the performance of the MMSE as baselines and aim to achieve better results than it does. The results of our experiments are presented in Section 5.1.

Figure 3-1: The majority of the test instances are from subjects diagnosed with MCI (86 samples), dementia (80 instances) or Parkinson's disease (98 instances). The MCI group includes its various forms, such as amnestic MCI (56 samples), executive MCI (3 samples), mixed MCI (3 samples) and unspecified (24 samples).

Chapter 4

Feature Construction

This chapter gives a general overview of the features that can be extracted from the Digital Maze Completion Test and the changes to the software that we made in order to better understand the subject's behavior during the drawing. Understanding behavior and being able to see the subtle changes in the drawing process is crucial for analyzing a subject's decision making process and can be used to develop new features in the future.

4.1 Feature groups

Currently our software extracts 455 features from each of the mazes (choice maze, no-choice maze and calibration maze), although some features are not defined for the calibration maze (e.g., time in decision tiles). Some of the measures are defined with respect to geometrical location in the maze. For example, we divide the maze into various subsegments and compute the feature values for these subparts of the maze.

We grouped the features into six major categories:

• Maze completion and number of strokes. We checked whether the subject has completed the drawing. To get the value for this feature, we checked whether the solution path and the one drawn by the subject path overlap almost entirely. For the calibration maze, we wanted each tile to be visited/marked. For the choice and no-choice mazes, the drawn path might be shorter than the solution path if the subject cut the corners or went through the walls, which results in their skipping some of the tiles from the solution path. In the choice maze, the drawn path might also be longer than the solution path if the subject made the wrong choice at the decision tile and had to backtrack. The maze is considered complete if the subject's path included the goal tile and all but up to n (in our case, n = 5) tiles from the solution path. This way we take into account the skipped tiles. The longer paths with extra tiles do not influence this metric.

We also recorded the number of strokes (i.e. pen down to pen up) the subject made. Ideally, the entire path should be one stroke, as the instructions specify that the pen should not be lifted from the paper. However, subjects at times lift the pen, especially when they make a wrong choice at the decision tile.

- Time measures: We measured the total time spent on solving each maze and the time spent drawing the path. These values might differ if the subject paused while drawing. We also recorded how much time the subject spent drawing outside of the solution path, at the decision tiles, at the turn tiles and outside of the maze. For the choice and no-choice mazes, we also record the duration of time at the start tiles. We believe that some people pause before attempting to solve the maze because they are planning their path.
- Path-length measures: We measured the total length of the drawn path, as well as the length of the path that is outside of solution path. We have also measured the distance of each point from the nearest wall. The idea behind this feature group is that the impaired people might have longer path-lengths due to making incorrect choices at the decision tiles or might not be able to maintain the constant distance from the walls. For example, for people with a tremor, it would be harder to keep the drawn line equidistant from the walls.
- Speed measures: For all three mazes and their segments, we extract pen speed as an array of values and compute statistics like mean, median, maximum,

minimum and standard deviation. In order to avoid noisy data, we smooth the speed values signal by using a sliding window of size 10 points.

4.2 Behavioral features

Behavioral features attempt to capture different phenomena in subjects' behavior and their mistakes and errors. These features do not have a fixed number of occurrences, as each individual makes a different number of mistakes of various types. Therefore, in the software, we set a cap of how many instances of each behavioral feature we extract. Currently, we set the cap to be 15, as we observed from our sample set that the number of mistakes tends to be less than 10.

One of the most obvious mistakes occurs when a subject makes a wrong choice at a decision tile, which can be a sign of deteriorating planning abilities. The severity of the mistake can be quantified by several features, for example the time the subject took from making a wrong choice until getting back on the solution path. We believe that for healthy people, making a wrong choice is unlikely, but if they do make a wrong turn, they tend to correct themselves and turn to the solution path almost immediately. Figure 4-1a shows an example of backtracking from incorrect decisions.

Another set of behavioral features includes the cases when the subject touched the walls. We consider two scenarios: in the first one (wall collision), the subject went tangential to the wall but did not cross it and in the second one (wall penetration), the subject crossed through the wall and reached the tile beyond it. We suspect that such behavior is a strong sign of poor locomotor skills, and hence will be useful for the diagnosis. In Figure 4-1c, we can see that the subject touched the wall but remained on the tile, which is an example of the wall collision. In Figures 4-1b the subject crossed through the wall, which is an example of the wall penetration.

Sometimes a wall penetration case is not necessarily a cause for concern, but simply a sign that the subject was in a rush. Some people tend to cut corners during the turn in order to get to the goal faster. We categorized such phenomena into a separate feature and called them "corner clips." In Figure 4-2a we give an example

(a) In this maze snippet, the subject deviated from the solution path (colored in light blue) and made an incorrect choice at the decision tile (CIN0639236855).

(b) In this example, the subject went through the wall (CIN0639236855).

(c) The subject only touched the wall but remained on the solution path (CIN0639236855).

,

Figure 4-1: In this figure we demonstrate the cases of backtracking after deviating from the solution path and the cases of hitting the walls.

Figure 4-2: In (a), the person hit the walls while cutting the corner and staying on the solution path. In (b), the person was drawn towards an incorrect decision but did not deviate from a solution path and made a correct decision.

of a corner being clipped.

While backtracking is an obvious case of making an incorrect decision, it is possible to capture an intent to make an incorrect choice followed by self-correction and resuming on the solution path. We call such a feature "steering", as the subject "steers" towards an incorrect direction when encountering a decision tile, as seen in Figure 4-2b.

Another behavioral feature is related to the structure of the maze: we identify the chunks of the solution path that form a straight path, which we call "corridors". We want to measure the subject's ability to draw a straight line through the corridor. Failing to do so might be a sign of a tremor or other problems with locomotor abilities. We check how much a subject deviates from the line drawn from the first point to

Figure 4-3: In this maze snippet, the subject is on the straight path, which we call a "corridor". The red line shows the optimal path given the start point and the final point of this chunk of the path. However, the subject significantly deviates from the straight line (CIN1476368667).

the last point of the "corridor" (Figure 4-3).

4.3 Additions to software functionality

The existing software inherits its basic stroke rendering functionality from the Digital Clock Drawing Test. It was also adapted to work with mazes and show basic analysis, such as the cases when the subject went tangent to or penetrated the wall, turned away from the correct path, or lifted the pen from the paper. However, it did not capture some other phenomena that we believe are important while analyzing the drawings. For this project, we added new display options such as detection and display of corner clips, steering towards incorrect analysis, and straight chunks of the path. We improved the interface to display a more thorough speed analysis. For instance, we added speed coloring (Figure 4-4), which allows us to immediately see where and by how much the subject's pen speed has changed.

We also added a function that plots a line graph of the speed with varying sliding window size. Looking at the speed values can be crucial for understanding when and where the person slowed down or sped up, which might be related to their decisionmaking process. In order to smooth the signal, we added an option of choosing the sliding window size, which helps deal with noise. In Figure 4-5, we show an example of the speed graph for a choice maze with decision points highlighted in orange.

Figure 4-4: We added an option of coloring the drawn path with colors that depend on the speed values. As speed values increase, the color gradually changes from red to green to blue.

(a) An example of the speed graph with a pink square corresponding to one point on the maze.

(b) An example of cross referencing for the point on the speed graph and maze.

Figure 4-5: The new functionality allows cross-referencing points on the speed graph with points on the maze, as well as looking at the extrema and points that belong to the decision tiles. The straight red line shows an average speed in the entire maze. The sliding window can be adjusted with the slider, which helps control the smoothness of the graph.

Chapter 5

Feature Analysis

In this section we present the results we obtained by applying two machine learning classifiers to our sample set. Our experiments focused on two tasks: screening, which involves distinguishing healthy subjects from the subjects with various cognitive impairments, and identifying subjects with a specific class of memory impairment disorder, such as Alzheimer's disease (AD) and the Mild Cognitive Impairment (MCI). We treated each instance of the Digital Maze Completion Test as a single sample point. We evaluated the accuracy of the predictions made by the classifiers and compared it with the traditional screeners, such as the MMSE and the MoCA. Finally, we looked into which features played the most important role in the classification process.

5.1 Machine learning algorithms

Our choice of machine learning algorithms included two classifiers: regularized logistic regression and support vector machines (SVM). We used the implementation from the python machine learning library scikit-learn [14].

5.1.1 Experiment setup

Our experiments used stratified cross-validation with 3 folds. We standardized our feature values and applied the grid-search technique to our training and validation

sets to select the best model. We used precision, recall, f-score (the harmonic mean of the precision and recall) and area under the receiver operating characteristic curve (AUC) to compare the predictive power of our classifiers in each task.

For logistic regression, we used l_1 regularization and chose the regularization strength parameter C from the range $\{2^{-10}, 2^{-8}, ..., 2^4\}$.

For SVM, we used the values for C (penalty of the error term) from the range $\{2^{-4}, 2^{-2}, ..., 2^{10}\}$, values for γ (kernel coefficient) from the range $\{2^{-6}, 2^{-2}, ..., 2^{10}\}$, and two kernels, linear and radial basis function.

We have conducted 17 experiments with each of these two classifiers, in which we varied which diagnoses were labeled as 1 (we call them *positive samples*). In Figure 5.1, we listed the details of the sample set for each experiment, such as which diagnoses were chosen to be positive samples, how many of such tests there were and how many of the tests we used in total. Out of 559 tests, we excluded 8 due to errors while parsing the pen data or missing MMSE or MoCA scores.

We selected 55 simple features (listed in Appendix A) that represent various metrics of each part of the test. Even though our system is capable of computing many more features, a lot of which are behavioral, we decided to limit our feature space in order to avoid missing values. Missing values occur because some of the behavioral features, such as backtracking details, do not have a fixed number of values, as people make different mistakes. There are two ways to solve this: either remove the samples with missing values or impute missing values. The first option would reduce our already small data set. The second one would distort our sample set, as it would "assign" mistakes to the subjects who did not make any. Therefore, we aggregated behavioral features (e.g. number of corner clipping cases), which are defined for all tests..

5.1.2 Baselines

We used the MMSE scores as the baseline, with cutoffs of 28 and higher for healthy subjects, 26 to 28 for subjects with the MCI and lower than 26 for subjects with dementia. We computed precision, recall and f-score on the same test set.

Fyn	Which complex included	Num. of	Positivo labol	Num. of
Exp.	which samples included	samples		positive samples
1	All subjects	551	HC	236
2	Subjects with AD, PD, MCI or HCs	504	НС	236
3	Subjects with MCI or HCs	318	нс	236
4	Subjects with amnestic MCI or HCs	291	нс	236
5	Subjects with AD or HCs	321	HC	236
6	HCs and subjects with MMSE score from 26 and higher	474	HC	236
7	All subjects	551	MCI	79
8	Subjects with AD, PD, MCI or HCs	504	MCI	82
9	Subjects with MCI or MMSE score from 26 and higher	482	MCI	82
10	Subjects with MCI or AD	167	MCI	82
11	All subjects	551	amnestic MCI	55
12	Subjects with AD, PD, MCI or HCs	504	amnestic MCI	55
13	Subjects with amnestic MCI or MMSE score from 26 and higher	479	amnestic MCI	55
14	Subjects with amnestic MCI or AD	140	amnestic MCI	55
15	All subjects	551	AD	80
16	Subjects with AD, PD, MCI or HCs	504	AD	85
17	Subjects with AD or MMSE score from 26 and higher	531	AD	85

Table 5.1: For each classification experiment, the first column describes which samples were included in the experiment, the second column contains the sample set sizes, the third column states which diagnoses served as positive samples, and the last is for the number of the positive samples. AD - Alzheimer's disease, PD - Parkinson's disease, MCI - Mild Cognitive Impairment, HC - health control. In experiments 1, 7, 11, and 15 we used only primary diagnoses, while in others we also added the tests that have at least moderate confidence secondary diagnoses, if their primary diagnoses were not originally included in the sample set.

5.1.3 Results

We observed from our experiments that both logistic regression and SVM agree with one another and have similar results in terms of precision and recall. We also learned that in the screening task, our classifiers performed particularly well in distinguishing healthy controls from every other subject in our sample set. Logistic regression had f-score of 0.77 and SVM had f-score of 0.76, both of which are higher than that of the MMSE, which was 0.60, as seen in the first and the second rows of Table 5.2. The success of the screening task confirms that even a small number of features extracted from the Digital Maze Completion Tests is already useful for screening purposes as they provide relatively accurate predictions in comparison with the traditional MMSE. Figures 5-1a and 5-1b show the associated receiver operating characteristic (ROC) curves, in which each curve is a mean over 3 folds.

Our classifiers also perform well in distinguishing the subjects with MCI from various subgroups, such as healthy controls only (Table 5.2, row 3), all other samples (Table 5.3, row 1) and the subgroup of the subjects who are either healthy controls or individuals with Alzheimer's disease or Parkinson's disease (Table 5.3, row 3).

In the task of separating healthy controls from the subjects with the MCI, our classifiers had f-scores of 0.86 (logistic regression) and of 0.82 (SVM), while the MMSE had much lower f-score of 0.72, as seen in the third row of Table 5.2. This task is particularly important, as the MCI is considered to be a transitional stage for dementia, and its amnestic form might later develop into Alzheimer's disease. While the subjects with the amnestic MCI are able to carry on with their daily life activities, they start experiencing memory problems. However, they tend to get high scores on the MMSE, which classifies them as healthy. Particularly, in our sample set, the subjects with MCI have an average MMSE score of 27.7 (\pm 1.6) out of 30 and the subjects with amnestic MCI have an average MMSE score of 28.2 (\pm 1.7) out of 30. Therefore, identifying the early signs of dementia in seemingly healthy individuals is a difficult task. Our results in Table 5.3 show that our classifiers are able to detect MCI subjects relatively well, which is a promising result that can be further

Classes	Exp. num	Classifier	F-score	ROC AUC
HC vs all	1	Logistic Regression	0.77(0.03)	0.85(0.05)
		SVM	0.76(0.05)	0.84(0.06)
		MMSE scores	0.60(0.02)	0.68(0.06)
HC vs AD, PD, MCI	2	Logistic Regression	0.79(0.03)	0.85(0.04)
		SVM	0.78(0.05)	0.84~(0.05)
		MMSE scores	0.64(0.04)	0.72(0.06)
HC vs MCI	3	Logistic Regression	0.86(0.07)	0.90(0.09)
		SVM	0.82(0.04)	0.85(0.06)
		MMSE scores	0.71(0.06)	0.67(0.10)
HC vs amnestic MCI	4	Logistic Regression	0.89(0.05)	0.94(0.04)
		SVM	0.89(0.05)	$0.91 \ (0.00)$
		MMSE scores	0.75 (0.07)	0.64(0.06)
HC vs AD	5	Logistic Regression	0.83(0.03)	0.90(0.03)
		SVM	0.85(0.00)	0.91 (0.02)
		MMSE scores	0.84 (0.08)	0.92(0.05)
HC vs high MMSE scorers	6	Logistic Regression	0.77(0.04)	0.84(0.04)
		SVM	0.76(0.05)	0.83(0.03)
		MMSE scores	0.53(0.04)	0.58(0.09)

Table 5.2: Results for the classification task for machine learning algorithms: separating healthy controls from various sample subgroups: the rest of the sample set, the subgroup with only the subjects with Alzheimer's disease (AD), Parkinson's disease (PD) or Mild Cognitive Impairment (MCI), the subgroup with only the subjects with MCI (amnestic or any type), the subgroup with only the subjects with AD, as well as the subgroup including all the subjects with MMSE score higher than 26. The first column is for the classes, the second refers to the experiment number in Table 5.1, the third is for the classifier names, the fourth is for the mean and standard deviation f-score across 3 folds, and the last is for the mean and standard deviation AUC value. improved by using more sophisticated features. For a complete set of ROC curves for these experiments, see Appendix B.

Our classifiers have not separated the subjects with Alzheimer's disease from all other subjects as well as the MMSE has, as seen in Table 5.4. While they achieved quite high and reliable f-scores (both logistic regression and SVM had a score of 0.86), the MMSE outperformed them with f-score of 0.92. We suspect that our classifiers did not separate the subjects with Alzheimer's disease from the subjects with other cognitive impairments well enough due to our limited feature space. Some features, while being able to detect the presence of an impairment, do not give precise information about what kind of impairment it could be. For example, both a subject with Alzheimer's disease and a subject with Parkinson's disease will solve the maze more slowly than a healthy control. However, the underlying reasons for slow speed are different: subjects with Alzheimer's disease tend to make more errors that they have to correct, while for the subjects with Parkinson's disease, slow speed is a result of motor skills problems. We believe that expanding the feature set to include more behavioral features will help to overcome this problem, as discussed in Section 5.3.

5.2 Feature importance

In our experiments with the regularized logistic regression and with linear kernel SVM, we extracted the coefficients that were assigned to each feature. Given that we had standardized the feature values, we were able to rank the features according to their coefficient values, and used this to evaluate the relative contribution of each feature to the diagnosis prediction.

Studying the coefficients leads to two observations. First, there does not exist a single subset of features that solely influences the prediction. Each experiment has different features that seem to contribute the most to the prediction. We believe that this finding is consistent with our understanding of the complexity of the problem. There are numerous behaviors in the maze that characterize one or another diagnosis, which does not allow to reduce our feature space. Our second observation is that each

Classes	Exp. num	Classifier	F-score	ROC AUC
MCI vs all	7	Logistic Regression	0.85(0.00)	0.79(0.02)
		SVM	0.85(0.00)	0.68(0.03)
		MMSE scores	0.76(0.03)	0.57(0.10)
amnestic MCI vs all	11	Logistic Regression	0.89(0.01)	0.80(0.07)
		SVM	0.90(0.00)	0.68 (0.08)
		MMSE scores	0.78(0.01)	0.53(0.08)
MCI vs AD, PD and HC	8	Logistic Regression	0.85 (0.01)	0.81 (0.03)
		SVM	0.84(0.01)	0.72(0.00)
		MMSE scores	0.74(0.02)	0.54(0.12)
amnestic MCI vs AD, PD and HC	12	Logistic Regression	0.89 (0.01)	0.82 (0.07)
		SVM	0.89 (0.00)	0.72(0.03)
		MMSE scores	0.77(0.02)	0.51(0.10)
MCI vs AD	10	Logistic Regression	0.77(0.05)	0.80(0.02)
		SVM	0.69(0.05)	0.74(0.03)
		MMSE scores	0.55(0.03)	0.87 (0.03)
amnestic MCI vs AD	14	Logistic Regression	0.69(0.02)	0.77(0.04)
		SVM	0.67(0.05)	0.78~(0.05)
		MMSE scores	0.62(0.04)	0.87(0.04)
MCI vs high MMSE scorers	9	Logistic Regression	0.83 (0.02)	0.81 (0.06)
		SVM	0.83 (0.01)	0.71(0.01)
		MMSE scores	0.72(0.02)	0.65(0.05)
amnestic MCI vs high MMSE scorers	13	Logistic Regression	0.88 (0.01)	0.79 (0.04)
		SVM	0.87(0.01)	0.67 (0.07)
		MMSE scores	0.75(0.03)	0.61 (0.04)

Table 5.3: Results for the classification task for machine learning algorithms: separating the subjects with Mild Cognitive Impairment (MCI, amnestic or any type) from various sample subgroups: the rest of the sample set, the subgroup only with the subjects with Alzheimer's disease (AD), Parkinson's disease (PD) or MCI, the subgroup only with the subjects with AD, as well as the subgroup including all the subjects with MMSE score higher than 26. The first column is for the classes, the second refers to the experiment number in Table 5.1, the third is for the classifier names, the fourth is for the mean and standard deviation f-score across 3 folds, and the last is for the mean and standard deviation AUC value.

Classes	Exp. num	Classifier	F-score	ROC AUC
AD vs all	15	Logistic Regression	0.86(0.01)	0.76(0.05)
		SVM	0.86(0.00)	$0.71 \ (0.05)$
		MMSE scores	0.92(0.02)	$0.90 \ (0.04)$
AD vs PD, MCI, HC	16	Logistic Regression	0.82(0.04)	0.74(0.03)
		SVM	0.82(0.03)	0.72(0.02)
		MMSE scores	0.90(0.03)	$0.90 \ (0.04)$
AD vs high MMSE scorers	17	Logistic Regression	0.84 (0.01)	0.80 (0.04)
		SVM	0.85 (0.01)	0.80 (0.03)
		MMSE scores	0.95 (0.01)	0.92(0.03)

Table 5.4: Results for the classification task for machine learning algorithms: separating the subjects with Alzheimer's disease (AD) from various sample subgroups: the rest of the sample set, the subgroup only with the subjects with AD, Parkinson's disease (PD) or MCI, and the subgroup including all the subjects with MMSE score higher than 26. The first column is for the classes, the second refers to the experiment number in Table 5.1, the third is for the classifier names, the fourth is for the mean and standard deviation f-score across 3 folds, and the last is for the mean and standard deviation AUC value.

of the three parts of the test and the features associated with them seem to have some diagnostic power. Especially, we noticed that even the calibration maze has diagnostic power, even though it requires the lowest cognitive load and was designed primarily to measure the basic locomotor skills. Given this finding, it is important to further explore the subject's behavior on the calibration maze, which is one of the possible directions for future research.

5.3 Future work

One of the main limitations of this project is a small data set. Given that we have data from fewer than 200 patients, we used each test instance as a single sample and did not take into consideration the fact that each subject completes three difficulty levels of the test. It is likely that combining the data from all three levels for a single individual will result in more accurate predictions. For example, we can measure the learning effect, e.g. the change in parameters such as the average speed or total inking time after the subject took their second and third tests. We expect that healthy individuals will get more accustomed to the test and its requirements, which will result in their speeding up in the later tests. In contrast, the subjects with memory impairments will not exhibit such behavior.

Another possible improvement for our work is expanding the feature set to include more behavioral features, such as the details of the backtracking. Currently, our classifiers use only counts of various mistakes. However, we did not include the features that would quantify and evaluate the severity of these mistakes. For instance, we could compute and record how far the person backtracked if they made a wrong turn on the decision tile. In order to decide which features would be the best candidates to include in our feature space, we could analyze the errors and mistakes that are characteristic for each of the clinical groups and choose the features that efficiently describe those mistakes.

The Digital Maze Completion Test is a new screening tool, which has a remarkable potential to catch subtle behavioral details. Therefore, it opens up plenty of research opportunities to further explore its powers and capabilities.

(a) ROC curve for classifying healthy controls from all other subjects in our sample set.

(b) ROC curve for classifying healthy controls from the subjects with Alzheimer's disease, Parkinson's disease and Mild Cognitive Impairment.

Figure 5-1: ROC curves for the screening task.

Chapter 6

Conclusion

The Digital Maze Completion Test is an innovative screening tool that has potential to screen for dementia on its early stages. The winning combination of the carefully designed mazes, the digitizing pen and the analytical software component allows it to detect the subtle details of the subject's behavior and to infer their cognitive status.

The goal of this research project was to explore the data and measurements that can be extracted from the maze drawings. We extracted some generic measurements, such as information about the subject's speed, time to complete the test, drawing path-length and error count. We have also defined how to identify and operationalize some behavioral phenomena, such as actual mistakes or near-mistakes at the decision points. We implemented these definitions in code, enabling us to analyze behaviors specific to the mazes. We carried out simple experiments with the measurements that we extracted from the real-world clinical data using well-known machine learning classifiers. The experiments demonstrated that our system is capable of performing the screening task (distinguishing healthy individuals from the subjects with cognitive impairments) on par with the traditional and widely accepted screening tools, such as the MMSE.

This thesis is the start of the journey of exploring the potential of the Digital Maze Completion Test and its screening power. We have touched on a small subset of the measurements that could be obtained from its data, while the greater number of them is yet to be discovered and analyzed. The Digital Maze Completion Test offers a rich variety of the research opportunities, each of which can have an impact on timely screening and accurate diagnosis of cognitive impairments.

Appendix A

Feature Names

Here we list all the features that we used in the experiments described in Section 5.1. We first include the glossary to explain the names of the features.

Glossary

Distance from wall	- an array consisting of distances from each point to the near-
	est wall. The values associated with the distances to the
	nearest walls, such as maximum, standard deviation, etc., are
	computed from this array.
Ink time	- time spent physically drawing the path.
Is completed	- a binary value that represents whether the person reached
-	the goal location from the start location, computed by check-
	ing whether all but up to $n \ (n = 5)$ tiles of the solution path
	were included in the tiles of the subject's drawn path.
Solution path	- a single correct path from the start location to the goal
-	location.
Speed	- an array of speed values for each point in the maze, com-
-	puted as the average speed in the window of points from x to
	x + n, where n is the size of the sliding window.
Stroke	- a continuous line drawn by the pen without lifting it.
Total-	- a prefix for features that was taken on the entire maze rather
	than on one of its segments.

Features for each maze Calibration maze

- IsCompleted
- TotalNumberOfStrokes
- TotalTimeDuration
- TotalInkTime
- TotalPathLength
- TotalMaxSpeed
- TotalMeanSpeed
- TotalMedianSpeed

No-choice maze

- IsCompleted
- TotalNumberOfStrokes
- TotalTimeDuration
- TotalInkTime
- TotalPathLength
- BacktrackingCount
- CornerClipCount
- WallCollisionCount
- WallPenetrationCount
- TotalMaxSpeed

- TotalMinSpeed
- TotalStddevSpeed
- TotalMaxDistFromWall
- TotalMeanDistFromWall
- $\bullet \ \, {\rm TotalMedianDistFromWall} \\$
- TotalMinDistFromWall
- $\bullet \ TotalStddevDistFromWall \\$
- TotalMeanSpeed
- TotalMedianSpeed
- TotalMinSpeed
- TotalStddevSpeed
- TotalMaxDistFromWall
- TotalMeanDistFromWall
- TotalMedianDistFromWall
- TotalMinDistFromWall
- TotalStddevDistFromWall

Choice maze

- IsCompleted
- TotalNumberOfStrokes
- TotalTimeDuration
- TotalInkTime
- TotalPathLength
- BacktrackingCount
- CornerClipCount
- WallCollisionCount
- WallPenetrationCount
- $\bullet \ Time Deviating From Solution Path$
- $\bullet \ {\it PathLengthDeviatingFromSolutionPath} \ \bullet \ {\it TotalStddevDistFromWall}$

- TotalMaxSpeed
- TotalMeanSpeed
- TotalMedianSpeed
- TotalMinSpeed
- TotalStddevSpeed
- TotalMaxDistFromWall
- TotalMeanDistFromWall
- TotalMedianDistFromWall
- TotalMinDistFromWall

50

.

Appendix B

ROC curves

Here we display ROC curves for the experiments described in Section 5.1. Each plot contains three ROC curves: one for logistic regression, one for SVM, and one for the MMSE. The legend of each plot shows AUC values for each curve. The plots appear in the same order as the experiments summarized in Table 5.1.

AD - Alzheimer's disease, PD - Parkinson's disease, MCI - Mild Cognitive Impairment.

Figure B-1: Healthy controls vs. all others

Figure B-2: Healthy controls vs. subjects with AD, PD or MCI

Figure B-3: Healthy controls vs. subjects with MCI

Figure B-4: Healthy controls vs. subjects with amnestic MCI

Figure B-5: Healthy controls vs. subjects with AD

Figure B-6: Healthy controls vs. subjects with MMSE score ≥ 26

Figure B-7: Subjects with MCI vs all others

Figure B-8: Subjects with MCI vs. subjects with AD or PD or healthy controls

Figure B-9: Subjects with MCI vs subjects with MMSE score ≥ 26

Figure B-10: Subjects with MCI vs. subjects with AD

Figure B-11: Subjects with amnestic MCI vs. all others

Figure B-12: Subjects with amnestic MCI vs. subjects with AD or PD or healthy controls

Figure B-13: Subjects with amnestic MCI vs subjects with MMSE score ≥ 26

Figure B-14: Subjects with amnestic MCI vs. subjects with AD

Figure B-15: Subjects with AD vs. all others

Figure B-16: Subjects with AD vs. subjects with MCI or PD or healthy controls

Figure B-17: Subjects with AD vs subjects with MMSE score ≥ 26

•

Appendix C

Test IDs of maze tests used

CIN0027453305	CIN0030511473	CIN0040753761	CIN0043525354	CIN0045340161
CIN0053804664	CIN0061282119	CIN0064072173	CIN0069468421	CIN0074002309
CIN0100247999	CIN0101456199	CIN0108651308	CIN0111220969	CIN0113871242
CIN0127650113	CIN0143430274	CIN0143830514	CIN0155010036	CIN0156301985
CIN0159327109	CIN0160655681	CIN0198350854	CIN0208838258	CIN0209735954
CIN0211478229	CIN0211896688	CIN0218939228	CIN0223638145	CIN0225620687
CIN0242361456	CIN0257667219	CIN0264441206	CIN0267797456	CIN0273480337
CIN0274243876	CIN0274694469	CIN0279725239	CIN0282356946	CIN0304325114
CIN0306543099	CIN0310484226	CIN0310592942	CIN0320015539	CIN0327719740
CIN0333856160	CIN0336911847	CIN0340986448	CIN0344201181	CIN0347011394
CIN0352763661	CIN0356013375	CIN0377640428	CIN0383782575	CIN0384152275
CIN0394832030	CIN0405482599	CIN0408459509	CIN0432378702	CIN0438669616
CIN0449843758	CIN0451106766	CIN0458921274	CIN0460005819	CIN0466708456
CIN0472650926	CIN0475877544	CIN0483937315	CIN0491514254	CIN0492044693
CIN0493812915	CIN0495490166	CIN0496799447	CIN0502899397	CIN0508284156
CIN0511717296	CIN0532488528	CIN0543293431	CIN0551714413	CIN0557762457
CIN0560415190	CIN0563371687	CIN0567341475	CIN0572899880	CIN0581739426
CIN0583093605	CIN0590235266	CIN0593828261	CIN0597689373	CIN0598585476
CIN0619785477	CIN0620960331	CIN0624948793	CIN0629022312	CIN0630910438
CIN0633284083	CIN0634081704	CIN0639073752	CIN0639236855	CIN0647193771
CIN0654970328	CIN0658997087	CIN0674313789	CIN0681418695	CIN0685186245
CIN0689407144	CIN0692590986	CIN0698877348	CIN0703152628	CIN0703696525
CIN0711343618	CIN0713584310	CIN0717774277	CIN0718397470	CIN0719910018
CIN0725325281	CIN0728657143	CIN0729711183	CIN0732032944	CIN0732479774
CIN0735967298	CIN0740726621	CIN0743714238	CIN0750922822	CIN0753787408
CIN0756114413	CIN0756418191	CIN0768092698	CIN0769209494	CIN0769750644

CIN0770214224	CIN0776088360	CIN0779283762	CIN0800850657	CIN0801997774
CIN0808768264	CIN0810067988	CIN0810078938	CIN0813509055	CIN0815429245
CIN0815784832	CIN0822515449	CIN0824490033	CIN0829752406	CIN084107550
CIN0842578190	CIN0845547847	CIN0855093915	CIN0859051595	CIN0860268641
CIN0876266569	CIN0878002120	CIN0890902759	CIN0892893069	CIN0897017229
CIN0901805831	CIN0903332373	CIN0905528891	CIN0907600305	CIN0909876381
CIN0915153471	CIN0924471590	CIN0943130217	CIN0953721871	CIN0958797916
CIN0961830974	CIN0977045040	CIN0980119626	CIN0983429128	CIN0993734790
CIN1000208092	CIN1005345982	CIN1014610104	CIN1023177495	CIN1024381233
CIN1026042441	CIN1027460162	CIN1030062482	CIN1034254508	CIN1037691433
CIN1041537837	CIN1055737667	CIN1059559453	CIN1063846209	CIN1070836247
CIN1074468994	CIN1074520967	CIN1076454635	CIN1080431405	CIN1086570666
CIN1093402195	CIN1107699723	CIN1109618635	CIN1116788918	CIN1119648474
CIN1125077770	CIN1127845420	CIN1129840295	CIN1136776227	CIN1142776141
CIN1166654052	CIN1166957313	CIN1173803003	CIN1187164912	CIN1188342743
CIN1195745844	CIN1213000923	CIN1216110938	CIN1225051966	CIN1238560499
CIN1252634630	CIN1253773233	CIN1256910021	CIN1268538620	CIN1272301144
CIN1277461397	CIN1279657786	CIN1282315770	CIN1289946017	CIN1291120692
CIN1295850471	CIN1303178866	CIN1304193191	CIN1305059089	CIN1314309706
CIN1314403367	CIN1317406453	CIN1318668363	CIN1323223013	CIN1324038119
CIN1345942278	CIN1364032307	CIN1382473025	CIN1392261787	CIN1398539458
CIN1401006339	CIN1410705315	CIN1413884540	CIN1414407455	CIN1415339366
CIN1423701118	CIN1434995191	CIN1460310555	CIN1464940042	CIN1472507064
CIN1476368667	CIN1484889161	CIN1486926238	CIN1495462411	CIN1502897238
CIN1525891173	CIN1529932164	CIN1548536212	CIN1548911711	CIN1552682580
CIN1552874965	CIN1555239756	CIN1559996627	CIN1577277266	CIN1589152239
CIN1591418879	CIN1592940863	CIN1593793108	CIN1615725566	CIN1616712994
CIN1624500856	CIN1631554297	CIN1645731164	CIN1646204130	CIN1652608832
CIN1655547005	CIN1666635125	CIN1675521659	CIN1676219714	CIN1677445125
CIN1696591134	CIN1698999645	CIN1700910824	CIN1714499402	CIN1718680818
CIN1721327800	CIN1721946539	CIN1726720592	CIN1732533319	CIN1741127383
CIN1741903755	CIN1744471031	CIN1747392422	CIN1751502373	CIN1756891960
CIN1764327790	CIN1767075964	CIN1773476751	CIN1775694095	CIN1783963686
CIN1786560725	CIN1790484151	CIN1798831596	CIN1806322835	CIN1817510006
CIN1825949313	CIN1835895341	CIN1835994286	CIN1836515137	CIN1857460339
CIN1869295836	CIN1871117726	CIN1876952008	CIN1878982131	CIN1880397856
CIN1896230977	CIN1899291958	CIN1904052610	CIN1911835397	CIN1919087753
CIN1922089350	CIN1924169676	CIN1924534824	CIN1927127749	CIN1929882096
CIN1930429340	CIN1935939796	CIN1936889654	CIN1948419166	CIN1950048131
CIN1952903396	CIN1955927816	CIN1959186393	CIN1970645589	CIN1979770752
CIN1982422508	CIN1987197662	CIN1988246011	CIN1995587367	CIN2000253265
CIN2015238121	CIN2019421473	CIN2032223277	CIN2033242976	CIN2040245237
CIN2076553335	CIN2081429799	CIN2083829193	CIN2088280458	CIN2089660071
CIN2094339005	CIN2094879527	CIN2097478402	CIN2115192095	CIN2126143601
CIN2131195185	CIN2136433268	CIN2139402053		

SNF0000170401	SNF0015963066	SNF0020119531	SNF0031841418	SNF0039327487
SNF0052547953	SNF0070730860	SNF0079886974	SNF0083589141	SNF0098236749
SNF0138045545	SNF0139363224	SNF0190539304	SNF0217557978	SNF0223639227
SNF0225506695	SNF0242179948	SNF0245696200	SNF0247730213	SNF0290892546
SNF0291390634	SNF0299479777	SNF0311087421	SNF0328080455	SNF0347352582
SNF0352244640	SNF0362485450	SNF0383383302	SNF0394927074	SNF0398101851
SNF0401080315	SNF0421088875	SNF0424328111	SNF0439338577	SNF0441764038
SNF0442847672	SNF0448669642	SNF0450113374	SNF0453185700	SNF0484585945
SNF0499154346	SNF0499808716	SNF0514524207	SNF0544818057	SNF0545810091
SNF0556041375	SNF0565015316	SNF0570598156	SNF0581176675	SNF0585710536
SNF0600831681	SNF0605114913	SNF0608722470	SNF0610903817	SNF0636736400
SNF0652679810	SNF0689950143	SNF0693689096	SNF0696472960	SNF0730955915
SNF0733927587	SNF0740053855	SNF0741426428	SNF0778282644	SNF0794044595
SNF0796259448	SNF0827313661	SNF0871160577	SNF0883560415	SNF0890211282
SNF0895996700	SNF0915769059	SNF0927326479	SNF0939506628	SNF0955418727
SNF0969423930	SNF0980683397	SNF0984719805	SNF1014782548	SNF1038986978
SNF1043621975	SNF1045498879	SNF1051507867	SNF1053642147	SNF1056789110
SNF1064165286	SNF1064464101	SNF1073086710	SNF1080664923	SNF1089408909
SNF1105320493	SNF1115119380	SNF1129011881	SNF1178284599	SNF1260768252
SNF1262140573	SNF1271154745	SNF1288875526	SNF1297130863	SNF1302769793
SNF1318582649	SNF1330362593	SNF1335801196	SNF1349435650	SNF1391527736
SNF1413338361	SNF1421441325	SNF1473809889	SNF1492125105	SNF1501232160
SNF1503506522	SNF1505901276	SNF1525669270	SNF1541069910	SNF1564387853
SNF1570578916	SNF1578891466	SNF1587498011	SNF1637688231	SNF1645473070
SNF1656062327	SNF1656110321	SNF1701307822	SNF1706927091	SNF1715478677
SNF1727730648	SNF1730296050	SNF1732232048	SNF1790382567	SNF1803546174
SNF1843099159	SNF1845413444	SNF1866741631	SNF1892049184	SNF1892274348
SNF1901871546	SNF1910553311	SNF1918771088	SNF1923889381	SNF1943740358
SNF1950239405	SNF1951980442	SNF1977747243	SNF2006581938	SNF2033725053
SNF2034679954	SNF2041272775	SNF2061676800	SNF2078676537	SNF2110510207
SNF2120448437	SNF2146191463	SNF0203694121	SNF0317740612	SNF0362409622
SNF0381228329	SNF0456720560	SNF0457276167	SNF0498995244	SNF0529196096
SNF0533016322	SNF0551919463	SNF0594322048	SNF0605437728	SNF0607508944
SNF0722262410	SNF0723387100	SNF0783636844	SNF0803455253	SNF0808858940
SNF0917493252	SNF0979864217	SNF0993367025	SNF0996240085	SNF1101355647
SNF1105414446	SNF1119320180	SNF1200411159	SNF1260775509	SNF1265109127
SNF1287744746	SNF1289685730	SNF1293264616	SNF1377645176	SNF1384113301
SNF1406624690	SNF1423063868	SNF1440107254	SNF1449430419	SNF1485167067
SNF1485566455	SNF1565435387	SNF1646533492	SNF1657627759	SNF1663478003
SNF1682873659	SNF1705087785	SNF1740992407	SNF1757622425	SNF1782496334
SNF1821483222	SNF1961951668	SNF1993786381	SNF2038529006	SNF2052413634
SNF2071010935				

Bibliography

- [1] 2017 alzheimer's disease facts and figures. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 13(4):325–373, April 2017.
- Berit Agrell and Ove Dehlin. The clock-drawing test. Age and ageing, 27(3):399–404, 1998.
- [3] A L Benton, A Elithorn, M L Fogel, and M Kerr. A perceptual maze test sensitive to brain damage. *Journal of Neurology, Neurosurgery, and Psychiatry*, 26(6):540-544, 12 1963.
- [4] Deborah A Cahn, David P Salmon, Andreas U Monsch, Nelson Butters, WC Wiederholt, Jody Corey-Bloom, and Elizabeth Barrett-Connor. Screening for dementia of the alzheimer type in the community: the utility of the clock drawing test. Archives of Clinical Neuropsychology, 11(6):529–539, 1996.
- [5] Breda Cullen, Brian O'Neill, Jonathan J Evans, Robert F Coen, and Brian A Lawlor. A review of screening tests for cognitive impairment. *Journal of Neu*rology, Neurosurgery, and Psychiatry, 78(8):790–799, 08 2007.
- [6] M.G. Davies and D.M. Davies. Some analytical properties of elithorn's perceptual maze. Journal of Mathematical Psychology, 2(2):371 – 380, 1965.
- [7] Randall Davis, David Libon, Rhoda Au, David Pitman, and Dana L. Penney. Think: Inferring cognitive status from subtle behaviors. In *Proceedings IAAI* 2014, pages 2898–2905, Québec City, Québec, Canada, July 2014.
- [8] Hayley E Richardson and John N Glass. A comparison of scoring protocols on the clock drawing test in relation to ease of use, diagnostic group, and correlations with mini-mental state examination. *Journal of the American Geriatrics Society*, 50(1):169–173, 2002.
- [9] Marshal F. Folstein, Susan E. Folstein, and Paul R. McHugh. "mini-mental state". a practical method for grading the cognitive state of patients for the clinician. *Journal of Psychiatric Research*, 12(3):189–198, 1975.
- [10] Morris Freedman. Clock drawing: A neuropsychological analysis. Oxford University Press, USA, 1994.

- [11] K Kantarci, S D Weigand, S A Przybelski, M M Shiung, J L Whitwell, S Negash, D S Knopman, B F Boeve, P C O'Brien, R C Petersen, and C R Jack. Risk of dementia in mci: Combined effect of cerebrovascular disease, volumetric mri, and (1)h mrs. *Neurology*, 72(17):1519–1525, 04 2009.
- [12] Ziad S. Nasreddine, Natalie A. Phillips, Valérie Bédirian, Simon Charbonneau, Victor Whitehead, Isabelle Collin, Jeffrey L. Cummings, and Howard Chertkow. The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4):695-699, 4 2005.
- [13] Sid E O'Bryant, Joy D Humphreys, Glenn E Smith, Robert J Ivnik, Neill R Graff-Radford, Ronald C Petersen, and John A Lucas. Detecting dementia with the mini-mental state examination (mmse) in highly educated individuals. Archives of neurology, 65(7):963–967, 07 2008.
- [14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830, 2011.
- [15] R. C. Petersen, B. Caracciolo, C. Brayne, S. Gauthier, V. Jelic, and L. Fratiglioni. Mild cognitive impairment: a concept in evolution. *Journal of Internal Medicine*, 275(3):214–228, 2014.
- [16] S.D. Porteus. The Maze Test and Clinical Psychology. Pacific Books, 1959.
- [17] Yale Song, Randall Davis, Kaichen Ma, and Dana L Penny. Balancing appearance and context in sketch interpretation. arXiv preprint arXiv:1604.07429, 2016.
- [18] William Souillard-Mandar, Randall Davis, Cynthia Rudin, Rhoda Au, David Libon, Rod Swenson, Catherine C. Price, Melissa Lamar, and Dana L. Penney. Learning classification models of cognitive conditions from subtle behaviors in the digital clock drawing test. *Machine Learning*, Special issue on Healthcare and Medicine, 2015.
- [19] Paula T Trzepacz, Helen Hochstetler, Shufang Wang, Brett Walker, Andrew J Saykin, and for the Alzheimer's Disease Neuroimaging Initiative. Relationship between the montreal cognitive assessment and mini-mental state examination for assessment of mild cognitive impairment in older adults. *BMC Geriatrics*, 15:107, 2015.
- [20] Annet W. Wind, François G. Schellevis, Gerrit Van Stavern, Rob J. P. M. Scholten, Cees Jonker, and Jacques Th. M. Van Eijk. Limitations of the minimental state examination in diagnosing dementia in general practice. *International Journal of Geriatric Psychiatry*, 12(1):101–108, 1997.