
Explaining Machine Learning Predictions:

Rationales and Effective Modifications

by

Sudhanshu Nath Mishra

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

Signature redactedAuthor

Department of Electrical Engineering and Computer Science

Signature redacted August 8, 2018
C ertified by

Randall Davis
Professor, Department of Electrical Engineering & Computer Science

Thesis Supervisor

Certified by.......Signature
Andrew W. Lo

Charles E. and Susan T. Harris Professor, Sloan School of Management
Thesis Supervisor

Accepted by Signature redacted..................
MASSACHUSES INSITUTE Katrina LaCurtsOF -TECHNOLOGY

F 12Chair, Master of Engineering Thesis Committee
FEB 27 2019

LIBRARIES
ARCHIVES

2

Explaining Machine Learning Predictions: Rationales and

Effective Modifications

by

Sudhanshu Nath Mishra

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2018, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Deep learning models have demonstrated unprecedented accuracy in wide-ranging
tasks such as object and speech recognition. These models can outperform tech-
niques traditionally used in credit risk modeling like logistic regression. However,
deep learning models operate as black-boxes, which can limit their use and impact.
Regulation mandates that a lender must be able to disclose up to four factors that
adversely affected a rejected credit applicant. But we argue that knowing why an
applicant is turned down is not enough. An applicant would also want actionable
advice that can enable them to reach a favorable classification. Our research thus
focuses on both the desire to explain why a machine learning model predicted the
classification it did and to find small changes to an input point that can reverse
its classification. In this thesis, we evaluate two variants of LIME, a local model-
approximation technique and use them in a generate and test algorithm to produce
mathematically-effective modifications. We demonstrate that such modifications may
not be pragmatically-useful and show how numerical analyses can be supplemented
with domain knowledge to generate explanations that are of pragmatic utility. Our
work can help accelerate the adoption of deep learning in domains that would benefit
from interpreting machine learning predictions.

Thesis Supervisor: Randall Davis
Title: Professor, Department of Electrical Engineering & Computer Science

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor, Sloan School of Management

3

Acknowledgments

My journey to MIT feels nothing short of a dream come true. Growing up in Banga-

lore, India, I always aspired for excellence. I believed that one day, I would graduate

from one of the finest academic institutions in the world and would then go on to

become a professional basketball player in the NBA. As you can imagine, only one

part of that dream has and ever will come true. What I could have never foreseen,

however, is the unlikely series of steps that have led me to my milestone.

I took an unexpected gap year after high school and was accepted to MIT on my

second attempt. I happened to complete my undergraduate requirements in the first

three years at MIT and thus had the opportunity to pursue my Masters in the fourth.

Each unlikely event led me to my next. Today, I am convinced that my journey has

been steered by forces far greater than my own; in particular, by the support of some

remarkable people.

First of all, I would like to thank my thesis supervisors, Professor Randall Davis

and Professor Andrew W. Lo. I am incredibly fortunate to have had the privilege

of working under both of your esteemed guidance. You taught me what it means to

pursue excellence in research and were a constant source of clarity for me. It was a

real treat to work with you on the explainability of artificial intelligence, a pressing

need for a pivotal field of our time. Most importantly, thank you for your precious

time.

I am extremely grateful to the Laboratory for Financial Engineering (LFE) for

funding my thesis and supporting me with a research assistantship. This thesis would

not have been possible without it. I am also thankful to FICO for providing me the

data that served as the foundational bedrock for my work. Arash Nourian and Sue

Hubbard at FICO were both invaluable resources who introduced me to the world of

credit risk modeling and clarified my every question along the way.

I would also like to thank fate for the relentless twists and turns in the past

4

year. It was my current college-roommate Sam Huang who first introduced me to

Professor Lo and the LFE. A few months in, our team encountered a major hurdle

when we realized that the data for our research would not arrive on time. It was.

during this period of extreme uncertainty that Shreyash Agarwal, my freshman-year

roommate stumbled across a news article about the Explainable Machine Learning

Challenge, a partnership between MIT and FICO. A chain of emails led me to a

meeting with Professor Davis, the MIT sponsor for the competition. To my amazing

fortune, Professor Davis and Professor Lo found a strong alignment in their research

goals and both graciously agreed to supervise my thesis. I received a data set from

FICO within a matter of days.

Over the years, I have found the greatest sources of joy and laughter in my parents

Rajesh Ram Mishra and Sujata Mishra, my sister Prapti Mishra, my dog Frodo, and

my childhood friends Arjun Gandhi and Manu Hegdekatte. In closing, I would like to

thank each of them for always making me feel like I'm never too far away from home.

5

6

Contents

1 Introduction

1.1 Black-Box Nature Of Deep Learning

1.2 Research Objectives

1.3 Structure of Thesis and Summary of Key Results

2 Overview of Consumer Credit Risk Modeling

2.1 Introduction .

2.2 Traditional Credit Scoring

2.3 Deep Learning In Credit Scoring

3 Literature Review

3.1 Motivations for Interpretability

3.2 Notions of Interpretability

3.2.1 Local Interpretability . . .

4 Data

7

21

21

22

24

35

36

36

. 37

39

. 39

40

40

49

4.1 Description of HELOC Dataset

4.1.1 Summary and Construction of the Dataset

4.1.2 Glossary of Relevant Credit Modeling Terms

4.1.3 Explanation of Predictor Features

4.1.4 Permissible Values of Categorical Features

4.2 Special Values .

4.2.1 Dropping Special Values

4.2.2 Replacing Special Values with Feature Means

4.2.3 Binning Features .

4.3 Exploratory Analysis .

4.3.1 Correlation of Features

4.3.2 Principal Component Analysis

5 Machine Learning Algorithms

5.1 Performance Summary .

5.2 M odel .

5.2.1 Logistic Regression .

5.2.2 Random Forest .

5.2.3 Multi-Layer Perceptron

6 Evaluating LIME, a Local Model-Approximation Technique

8

49

49

51

51

53

54

54

56

56

60

60

61

65

66

. . . . 67

67

69

73

79

6.1 Motivation for Approximating a Model Using Piece-Wise Linear Local

A pproxim ations .

6.2 Local Interpretable Model-Agnostic Explanations (LIME)

6.2.1 Original Implementation of LIME

79

81

83

6.2.2 Shortcomings of LIME . 85

6.2.3 Modified Implementation of LIME 86

6.2.4 Evaluating the Original and Modified Implementation of LIME 87

7 Generating Explanations: Rationales and Effective Modifications 97

7.1 M ethodology . 97

7.2 Exam ples . 98

7.2.1 Example 1: Actionable Steps For A Non-Creditworthy Applicant 98

7.2.2 Example 2: Cautionary Advice For A Creditworthy Applicant 103

7.2.3 Example 3: Actionable Steps For A Non-Creditworthy Appli-

cant, A Problematic Case . 106

7.3 Explanatory Utility . 112

8 Conclusion and Next Steps 117

8.1 K ey R esults . 117

8.2 Further W ork . 120

9 Appendix 123

9

9.1 Calculations for Example 2

9.1.1 Average Age of All Lines Of Credit

9.2 Calculations for Example 3

9.2.1 Average Age of All Lines Of Credit

9.2.2 Percentage Of Lines Of Credit Never Delinquent .

9.2.3 Percentage Of Installment Lines Of Credit

9.2.4 Percentage Of Lines Of Credit With Balance . . .

10

. . . 123

. . . 123

. . . 124

. . . 124

. . . 125

. . . 126

. . . 127

List of Figures

1-1 A LIME Linear Approximation of an MLP at a WoE-Encoded Sample

Credit Applicant. Each bar is a coefficient in the linear regression. A

unit change in the value of a feature with a bar in red and slanted lines

will increase the probability of default. A similar change in the value

of a feature with a bar in dotted green will decrease that probability. 27

1-2 Rationales for the Prediction of Pr(Y = 11X) = 0.805 Produced by

the LIME Linear Approximation. The features with bars in purple

and slanted lines increased the probability of default and those with

bars in dotted yellow decreased that probability. 30

1-3 Flow Chart for Generating Domain-Informed Modifications. Once it

is determined that a domain-agnostic modification is effective, the

explanatory utility of features are considered to produce a domain-

informed modification. If found effective as well, the modification is

evaluated by human judgment for its pragmatic utility. 33

3-1 Illustration of a LIME Local Approximation [9]. The dashed line is an

approximation of the decision surface at the highlighted red point. . . 42

3-2 The Explanation Vector 1121 for a Model at a Point. The explanation

vector is a gradient that identifies the direction that will produce the

greatest change in the label of that point 44

11

3-3 Integrated Gradients vs Regular Gradients of Image Labels With Re-

spect To Input Pixels. The Integrated Gradients are able to delineate

the pixels that best characterize the camera and the mosque with bet-

ter sharpness than the traditional gradients. 45

3-4 Example Correction Generated by Zhang et al. f141. The red plus

denotes an adversely classified point. The blue triangular region rep-

resents a minimal, stable, and symbolic correction for that data point.

The region inside this triangle is classified favorably. 46

3-5 Illustration of Results Produced by Influence Functions [171. The pic-

tures in the 4x4 grid represent training examples that contributed most

to the classification of the gold fish in the test example. 47

3-6 Illustration of Enforcing a Monotonic Constraint Between User Happi-

ness and Distance to Cafe [191. The purple line represents the decision

boundary learned from this data. The green line represents the decision

boundary learned with the monotonic constraint that User happiness

must non-increasing with increasing Distance To Cafe. 48

4-1 Sampling Window of the HELOC Dataset. Applicants were able to use

their HELOC for anywhere between one and three years before their

performance was evaluated. 50

4-2 Distribution of Risk Classification. The number of Creditworthy and

Non-Creditworthy applicants is roughly evenly-split by construction in

this dataset. 50

4-3 Venn Diagram of Records containing at least one special value. 7, 957

applicants contain at least one special value. Hence, it is infeasible to

drop them all. 55

12

4-4 Illustration Of One Hot Encoding [20]. A feature with four possible

values is mapped into a four dimensional space where exactly one di-

mension per vector is "hot" i.e., has a unit value. 58

4-5 Histogram of Feature - Months since the very first line of credit was

established (MSinceFirstLOC). The feature is approximately normally

distributed and we see a large concentration of values at 0. 59

4-6 Countplot of WoE Encoded Feature - Months since the very first line

of credit was established (MSinceFirstLOC). The continuous values of

the feature in Figure 4-5 are discretized into WoE values. 60

4-7 23 x 23 Correlation Matrix. The lighter shades represents highly cor-

related feature pairs. As expected, the diagonal has the lightest shade

because it represents the correlation of a feature with itself. 61

4-8 3D Principal Components Analysis (1 of 3). The green and red dots

are not readily separable. 62

4-9 3D Principal Components Analysis (2 of 3). The green and red dots

are not easily separable. 63

4-10 3D Principal Components Analysis (3 of 3). The green and red dots

are not easily separable. 63

4-11 Explained Variance vs Number of Principal Components. We see that

15 principal components are sufficient to represent 95% of the variance

of the 23-dimensional dataset. 64

5-1 Comparison of Decision Boundary Between Logistic Regression and

Linear Regression. Unlike linear regression, the output of logistic re-

gression is constrained to be between 0 and 1. 68

13

5-2 Relative Feature Importance Computed from Logistic Regression. The

regression is trained on scaled Truncated Data so that coefficient values

can be directly compared. We see that the number of requests for new

lines of credit in the past 6 months is identified as the most significant

feature. 70

5-3 Illustration of Random Forest. To classify a new data point, the Ran-

dom Forest aggregates the predictions from each of its constituent de-

cision trees and outputs the majority vote as its classification. In this

example, the point receives a majority classification of Class C. 72

5-4 Accuracy of Random Forest vs Number of Estimators on WoE Data.

The maximum accuracy is achieved once there are at least 30 decision

trees. 73

5-5 Relative Global Feature Importance for Random Forest. This order-

ing is determined by measuring the average decrease in Gini impurity

produced by each feature across all decision trees. 74

5-6 A Multi-Layer Perceptron [22]. It has an input layer with three neu-

rons, one hidden layer with four neurons, and an output layer with one

neuron .. 75

5-7 ReLU(z) = max(0,z) [231. The function maps any positive integer to

itself and any negative integer to zero. 76

6-1 A LIME Linear Approximation of an MLP at a WoE-encoded Sample

Credit Applicant. Each bar is a coefficient in the linear regression. A

unit change in the value of a feature with a bar in red and slanted lines

will increase the probability of default. A similar change in the value

of a feature with a bar in dotted green will decrease that probability. 82

6-2 Illustration of LIME Algorithm In 2 Dimensions For Simplicity. . . . 84

14

6-3 Flow Chart for Generating Effective Modifications. Once a modifica-

tion is generated, we check if it is effective. If yes, we terminate with a

solution. Otherwise, we either increase or decrease the value of ptarget

based on the desired label. If ptaruct reaches its limits of 0 or 1 and no

effective modification has been found, we terminate with no solution. 91

7-1 Rationales for the Prediction of Pr(Y = 1JX)) = 0.805 Produced by

the LIME Linear Approximation. The features with bars in purple and

slanted lines increased the probability of default and those with bars

in dotted yellow decreased that probability. 100

7-2 Rationales for the Prediction of Pr(Y = 1X(2)) = 0.17 Produced by

the LIME Linear Approximation. The features with bars in purple and

slanted lines increased the probability of default and those with bars

in dotted yellow decreased that probability. 105

7-3 Rationales for the Prediction of Pr(Y = 1X(3)) = 0.695 Produced by

the LIME Linear Approximation. The features with bars in purple and

slanted lines increased the probability of default and those with bars

in dotted yellow decreased that probability. 108

7-4 Flow Chart for Generating Domain-Informed Modifications. Once it

is determined that a domain-agnostic modification is effective, the

explanatory utility of features are considered to produce a domain-

informed modification. If found effective as well, the modification is

evaluated by human judgment for its pragmatic utility. 115

15

16

List of Tables

1.1 5-Fold Cross-Validation Performance of Machine Learning Models Trained

On Truncated and WoE Data. The MLP trained on WoE data has the

best mean test accuracy of 74.7%. 26

1.2 Comparison of Modification Power Between Original and Modified

LIME. The modified implementation does significantly better when

p is close to the decision boundary. As ptarget decreases, the differ-

ence between the Modification Power of both implementations is not

statistically significant. 29

4.1 Explanation of Categorical Features Values for MaxDelqLast12M and

MaxDelqEver. Subsets of these values have particular orderings (e.g.

C-F) but there is no strict ordering over the entire set. 53

4.2 Distribution of Special Values Across Columns. These special values

are concentrated among 9 of our 23 input features. 56

4.3 Illustration of Binning a Sample Feature. Each feature value maps

uniquely to a single bin. 57

4.4 Weight of Evidence Encoding For A Sample Feature. WoE values are

discrete and no two bins share the same WoE value. 59

17

5.1 5-Fold Cross-Validation Performance of Machine Learning Models Trained

On Truncated and WoE Data. The MLP trained on WoE data had

the best mean test accuracy of 74.7%. 67

5.2 5-Fold Cross-Validation Performance of MLP Architectures on WoE

Data. The architecture with the best mean test performance was

(3,2,2). We see that the performance of MLP does not improve with

deeper architectures beyond a threshold, suggesting that the HELOC

dataset may not be suitable for training a large number of parameters. 77

6.1 Comparison of Constraint Violations Among 5,000 Perturbed Points

Sampled from the Original and Modified Implementations of LIME.

The points sampled from the modified implementation of LIME have

fewer violations in 7 out of the 12 constraints. 89

6.2 Count of Constraint Violations by Perturbed Data Generated from

Original and Modified Implementations of LIME. The average viola-

tions per perturbed point is lower for the modified implementation

than that of the original implementation. 90

6.3 Comparison of Modification Power Between Original and Modified

LIME. The modified implementation does significantly better when

Ptarget is close to the decision boundary. As ptarget decreases, the differ-

ence between the Modification Power of both implementations is not

statistically significant. 94

7.1 Original and WoE Feature Values of The Non-creditworthy Applicant

X(. MaxDelqEver = E means the credit applicant has been 60+

days delinquent ever. MaxDelqLast12M = G means their maximum

delinquency in the last 12 months is is unknown. 99

18

7.2 Original and WoE Feature Values of The Creditworthy Applicant X(2).

The values of MaxDelqEver and MaxDelqLast12M mean that the ap-

plicant has never had a delinquency 103

7.3 Original and WoE Value Of The Non-Creditworthy Applicant. MaxDelqEver

G and MaxDelqLast12M = G both means it is not known if the ap-

plicant has ever had a delinquency in the respective time lines. 106

19

20

Chapter 1

Introduction

This chapter serves to introduce the research objectives of this thesis and to summa-

rize its key findings. We begin by describing the black-box nature of deep learning.

Then, we explore the need for interpreting the prediction of deep learning models in

a specific domain, namely credit risk modeling. To do this, we formalize the expla-

nations that would be most useful for a credit applicant.

Every applicant could usefully understand why they were classified the way they

were. An adversely classified applicant would also be interested in actionable advice

to reach a favorable classification and a favorably classified applicant in guidance on

how not to be turned down the next time. This context provides a useful grounding

for generating such explanations using model-approximation techniques. Through our

results, we show how numerical techniques can be combined with domain-knowledge

to generate effective and pragmatically-useful modifications.

1.1 Black-Box Nature Of Deep Learning

Recent advances in computing, algorithmic innovations, and an explosion of data have

contributed to the growing success of deep learning. This sub-field of machine learning

21

is concerned with training large neural networks with many hidden layers. Unlike

traditional machine learning techniques like logistic regression and support vector

machines, deep learning models can automatically learn non-linear representations

and interactions of input features from large datasets.

In 2012, Krizhevsky et al. 11] demonstrated state-of-the-art performance in scene

recognition (15.4% top-5 error rate) by using a deep neural network that consisted

of 60 million parameters and was trained on 1.2 million images. This breakthrough

inspired researchers to experiment even further with deeper architectures. In 2015,

Simonyan [21 achieved a new state-of-the-art (6.8% top-5 error rate) by training an

ensemble of two deep neural networks with 144 million parameters each. Although

the large number of parameters of such deep neural networks allow them to learn

complex relationships and achieve superior performance, they are also responsible for

their black-box decision-making. A human simply cannot comprehend the meaning

of 60 million parameters without any intuitive interpretations, let alone an ensemble

of 144 million parameters.

1.2 Research Objectives

Before attempting to explain the prediction of a machine learning model, it is im-

portant to answer who the explanation is for and what purpose it aims to serve. In

this thesis, we focus on the credit risk modeling domain, a real-world example of

an important classification task. Specifically, we generate explanations most useful

for a credit applicant. Therefore, of the many possible goals for an explanation, we

choose two. These goals are pertinent to understanding the prediction of any machine

learning model.

1. Justifications for the classification chosen.

2. Advice of two sorts:

22

(a) How to change the classification (e.g. if denied, how a credit applicant can

become Creditworthy).

(b) How to maintain the classification (e.g. if deemed Creditworthy, what

precautions should a credit applicant take to not be turned down in the

future).

Let us denote our task more formally. Assume we have a machine learning model

f that takes as input an n dimensional vector X and predicts a binary label Y.

f(X) 1, if Pr(Y = 1|X) > 0.5

0, otherwise

To generate our explanations, we are interested in two tasks.

1. Rationales - We want to identify the top k features that contributed most to

a classification, where k is a parameter selectable by a user.

We can compute this ordering by using a contribution attribution function A

that takes as input a model f and a particular input vector X and outputs an

n dimensional vector C, where Ci represents the relative contribution of feature

i for the classification of X.

Cl

A(f, X) =

cn

We can use this contribution vector C to identify the k features with the largest

contributions by face value or absolute value.

2. Effective Modifications - We want to specify a set of minimal changes to the

feature values of a sample point such that its classification reverses.

23

Given f and X, we must solve for Xmodified in the optimization in Equation

1.1.

minimize |Xmodified - X

subject to f(X) : f(Xmodified)
(1.1)

Then,

6 - Xm"dified- X

gives us the set of minimal changes that would reverse the classification of X.

While we illustrate these objectives with respect to credit risk modeling, they gen-

eralize more broadly. Regardless of the domain, one might be interested in attributing

the prediction of a machine learning model among its input features and generating

actionable steps to reverse the classification of a sample point.

1.3 Structure of Thesis and Summary of Key Results

In this section, we provide the chapter-wise structure of the thesis and summarize its

key results.

Chapter 2: Overview of Consumer Credit Risk Modeling

We begin with an overview of credit risk modeling. We explain why logistic regres-

sion is commonly used for the binary classification task and detail the potential for

deep learning. We also outline the explainability regulations for algorithmic decision-

makers and the resulting compliance challenges.

24

Chapter 3: Literature Review

We survey the existing literature to evaluate previous attempts to interpret the pre-

dictions of machine learning models. We also discuss our choice of using LIME, a

model-approximation technique to generate explanations.

Chapter 4: Data

In this thesis, we argue that domain-knowledge is necessary to generate pragmatically-

useful explanations. This chapter thus provides an important context for evaluating

the pragmatic utility of explanations generated subsequently. We introduce the Home

Equity Line Of Credit (HELOC) dataset used in our analyses and describe its 23

features in detail. We also describe how we handle the special values in the dataset

using two approaches. One, we drop all features containing at least one special value.

We refer to this version of the dataset as Truncated data. Two, we re-code all features

using a technique called Weight Of Evidence (WoE) encoding. We refer to this version

as WoE data.

Chapter 5: Machine Learning Algorithms

This chapter benchmarks the performance of three machine learning algorithms trained

on the Truncated and WoE versions of the HELOC dataset: Logistic Regression (LR),

Random Forest (RF), and Multi-Layer Perceptron (MLP). Table 1.1 shows that the

MLP trained on WoE data is the best-performing model with 74.7% test accuracy.

We also see that all three models have a superior test performance on WoE data

versus Truncated data. We choose the MLP as the foundational test-bed for our in-

terpretability work because of its superior performance and our interest in explaining

the predictions of deep learning models.

25

Dataset Fold LR RF MLP

Mean Std. Mean Std. Mean Std.
Dev. Dev. Dev.

Truncated Train 0.724 0.002 0.99 0 0.666 0.004

Truncated Test 0.723 0.008 0.706 0.007 0.664 0.005

WoE Train 0.746 0.002 0.99 0 0.749 0.001

WoE Test 0.744 0.010 0.723 0.007 0.747 0.008

Table 1.1: 5-Fold Cross-Validation Performance of Machine Learning Models Trained
On Truncated and WoE Data. The MLP trained on WoE data has the best mean
test accuracy of 74.7%.

Chapter 6: Evaluating LIME, a Local Model-Approximation Technique

We consider simplicity to be a key element of interpretability. In this chapter, we

claim that linear regression models are simple because of their decomposability. To

interpret the predictions of a black-box MLP model, we choose to approximate it

with several piece-wise linear local approximations.

Local Interpretable Model-Agnostic Explanations (LIME) is a model-agnostic

technique that can approximate the decision boundary of a machine learning model

by constructing a locally-weighted linear regression in the neighborhood of a partic-

ular data point. Figure 1-1 visualizes the regression coefficients computed by LIME

to approximate the MLP at a sample point in the WoE space.

Each coefficient in Figure 1-1 represents the change in the probability of default

of the applicant i.e., Pr(Y = 11X) produced by a unit change in the WoE value

of the corresponding feature, holding other feature values constant. A unit change

in the WoE value of a feature with a coefficient in red and slanted lines increases

the probability of default of the applicant. A similar change for a feature with a

coefficient in dotted green decreases the probability of default of the applicant. It is

26

Coefficients of a LIME Regression That Predicts Pr(Y=1X)

MSinceNewLOCReqExPastWeek -
NumRevLOCWBalance -

NumLOCReqLast6M -
AvgAgeOfLOC -

MSinceMRecentDelq -
NumLoCNotDelq -

MaxDelqEver -
PercentinstLOC -

PercentLOCNeverDelq -
NumTotaILOC -

FracRevLOCLimitUse -
NumLOCReqLast6MExPastWeek -

NumLOCInLast12M -
NuminstLOCWBalance -

NumBankorNatLoansWHighUtil -
MaxDelqLast12M -

ExtemaiRiskEstimate -
MWinceNewestLOC -

NumLOC60PIusDaysDeIq -
FraclnstLOCUse -

PercentLOCWBalance -
NumLOC90PIusDaysDeIq -

MinceFirstLOC -

-0.10 -0.05 0.00 0.05 0.10 0.15

Figure 1-1: A LIME Linear Approximation of an MLP at a WoE-Encoded Sample Credit
Applicant. Each bar is a coefficient in the linear regression. A unit change in the value of a
feature with a bar in red and slanted lines will increase the probability of default. A similar
change in the value of a feature with a bar in dotted green will decrease that probability.

worth clarifying that these coefficients in WoE space should not be used directly to

infer the contribution of features in the original space for this particular prediction.

Section 6.2 describes the correct way to interpret the coefficients.

LIME generates a neighborhood of points by perturbing the data point of inter-

est. The original implementation of LIME assumes independence of features while

sampling these points. We implement an alternate version that relaxes this assump-

tion. Our hypothesis was that an implementation based on perturbed points with

greater validity will also produce a better approximation. We observe that the modi-

fied implementation outperforms the original implementation in certain scenarios, as

measured by two criteria - Fidelity and Modification Power. While this is not true

in all scenarios, we believe that accounting for the correlation of features in LIME's

27

algorithm, as we did, is the correct approach when dealing with datasets with highly

correlated features.

We refer to the Fidelity of an approximation as a measure of how often the ap-

proximation matches the prediction of the underlying model at the data point of

interest. The approximations generated by the modified implementation achieve a

slightly higher Fidelity i.e. 1937 = 0.981 vs the 1934 = 0.980 for those generated by

the original implementation. This small difference is not statistically significant.

We use the term Modification Power to mean the rate with which we are able

to reverse the classifications of a set of points by changing their feature values using

modifications derived from linear approximations. We implement a generate and test

algorithm to suggest effective modifications intended to reverse the classification of a

given input point.

The classification of a credit applicant depends on their computed probability of

default with a threshold of 0.5. If the computed probability is greater than 0.5, the

applicant is deemed Non-creditworthy and turned down. With each iteration of our

modification algorithm, we decrease (increase) the target probability of default for

that applicant. A smaller value is chosen for ptaret if the desired label is favorable

and a larger value if the desired label is adverse. The algorithm then identifies a set of

changes that are likely to alter the probability of default of the modified data point to

Ptarget. Then, the algorithm determines whether this goal was indeed accomplished.

If so, the algorithm terminates. Otherwise, it chooses a more extreme value for ptarget

and repeats. It fails when no effective modifications are found once ptarget has reached

its limit of 0 or 1.

Table 1.2 shows the effect of varying ptarget on the rate of successfully changing

the classification of data points from adverse to favorable. Choosing a smaller Ptarget

means we are looking to push a data point further into the favorable region, farther

from the decision boundary. As expected, the success of reversing the classification of

a set of adversely classified points increases as we decrease ptarget. Another interesting

28

result is that the modified implementation of LIME has a significantly better Mod-

ification Power than that of the original implementation when ptarget is close to the

edge of the decision boundary at 0.5. The significance of this difference decreases as

we decrease ptaget. This makes sense intuitively because coarse approximations may

be sufficient to guide a data point deep across the other side of the decision boundary.

ptarget Original LIME Modified LIME Difference
Modification Modification (2) - (1)
Power (1) Power (2)

0.5 9 = 0.753 636 = 0.813 4 = 0.060

0.49 682 = 0.872 710 = 0.908 = 0.036

0.48 27 = 0.9 5 5 7 = 0.965 = 0.010782 782 782

0.47 6 = 0.980 76 = 0.982 2 = 0.002

0.46 = = 0.993 7 = 0.989 - = -0.003

0.45 780 = 0.997 7 = 0.993 - -0.003

0.44 2 = 1.000 7 = 0.998 = - -0.002

Table 1.2: Comparison of Modification Power Between Original and Modified LIME.
The modified implementation does significantly better when ptarget is close to the
decision boundary. As ptarget decreases, the difference between the Modification Power
of both implementations is not statistically significant.

Chapter 7: Generating Explanations: Rationales and Effective Modifications

We generate the two desired explanations, namely rationales and effective modifica-

tions, for three sample credit applicants. Using our algorithm, we show that domain-

knowledge must be used to produce modifications of pragmatic utility.

Figure 7-1 visualizes the rationales for a credit applicant who was deemed Non-

creditworthy with Pr(Y = 1 X) = 0.805. The features with bars in purple and slanted

lines increase the probability of the applicant being classified as Non-creditworthy

29

while the features with bars in(dotted yellow decrease that probability.

LIME Feature Contribution For Pr(Y=1IX) = 0.805

PercentLOCNeverDelq -
NumRevLOCWBalance -

MSinceNewLOCReqExPastWeek -
MaxDelqEver -

ExternalRiskEstimate -
MSinceMRecentDelq -
NumLOCReqLast6M -

NumTotaILOC -
FracRevLOCLimitUse -

PercentinstLOC -
NumLOCReqLast6MExPastWeek -

NumLOC60PIusDaysDeIq -
NumLOCNotDelq -

NumBankOrNatLoansWHighUtil -
AvgAgeOfLOC -

FracinstLOCUse -
MaxDelqLastl2M -

NuminstLOCWBalance -
MSinceNewestLOC -

NumLOC90PIusDaysDeIq -
PercentLOCWBalance -

NumLOCInLast12M -
MSinceFirstLOC -

I I I I

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

Figure 1-2: Rationales for the Prediction of Pr(Y = 11X) = 0.805 Produced by the LIME

Linear Approximation. The features with bars in purple and slanted lines increased the

probability of default and those with bars in dotted yellow decreased that probability.

As per the requirements of The Fair Credit Reporting Act, we can generate the

four key factors that adversely affected the rejected credit applicant. The rationales

are:

1. Too many of their lines of credit have been delinquent at least once (Percent-

LOCNeverDelq).

2. They have too many revolving lines of credit with outstanding balances (Num-

RevLOCWBalance).

3. They have a poor global credit score (ExternalRiskEstimate).

30

4. They requested for a new line of credit too recently (MSinceNewLOCReqEx-

PastWeek) .

We show that the modifications suggested by our algorithm, though effective,

are not necessarily of pragmatic utility. They could have three possible types of

shortcomings.

1. They suggest changes to the value of a feature that is in fact not controllable

by a credit applicant.

2. They suggest practically infeasible changes to the value of a feature, even if it

is controllable.

3. They do not account for the second-order effects of changing feature values,

resulting from interdependencies among features.

These shortcomings cannot be dealt with by solely relying on numerical tech-

niques agnostic to the domain of the data. Instead, we must use domain-knowledge

and consider the explanatory utility of each feature in an explanation. To gen-

erate pragmatically-useful modifications, we augment our algorithm with domain-

knowledge in three ways:

1. Account for the Controllability of Features - We explicitly categorize each

predictor feature as controllable (e.g. the number of total lines of credit) or non-

controllable (e.g. the external risk estimate). We constrain our algorithm to

suggest changes only to the values of features that are controllable.

2. Account for Second-Order Effects - We consider the interdependencies be-

tween features and account for them programmatically. For instance, if a new

line of credit is opened, the average age of all lines of credit will change in a

computationally predictable manner, among other effects.

31

3. Evaluate the Feasibility of Changing Feature Values - We use human

judgment to determine if an effective and domain-informed modification is also

pragmatically-useful.

These changes are reflected in the flowchart presented in Figure 1-3. Once a

domain-agnostic modification is generated, we determine whether it is effective. If

yes, we use domain-knowledge to constrain the modification to changes in controllable

features only and account for second-order effects due to interdependencies among fea-

tures. We then produce a domain-informed modification. We test for its effectiveness

programmatically and finally, use human judgment to evaluate its pragmatic utility.

Chapter 8: Conclusion and Next Steps

We conclude with a summary of the key findings of the thesis and suggest areas

for further research. These include evaluating other model-approximation techniques

such as SHAP, furthering our modified implementation of LIME, and extending the

capabilities of our modification algorithm.

32

p 1rqA Dat ML A
YPON

k~crement
by.0 Un.01oc

yess

DeEcrement

No

yes

Figure 1-: Flow Chrt for Gnerating omain-Inomd MoIfticain.Ocdi sdtr
mined that adomain-agnosic modificaton is effeciveteexnatr tlt ffaue

are cnsdered toproduce domain-nformed oiiain ffudefciea el h
modiicaton i evauate byhuma judmentfor ts pagmtc tiity

33

34

Chapter 2

Overview of Consumer Credit Risk

Modeling

The consumer credit risk modeling industry has historically relied on logistic regres-

sion to predict the probability of default of a credit applicant. The technique remains

popular because it delivers strong accuracy through a simple and transparent ap-

proach. However, recent advances in deep learning present an opportunity to achieve

unprecedented accuracy in credit risk modeling at the cost of interpretability. While

there is a strong case for prioritizing performance, this chapter serves to highlight

that the trade-off between performance and interpretability cannot be made freely.

Industry regulations impose strict guidelines on algorithmic decision-makers, espe-

cially when they classify credit applicants adversely. This challenge motivates the

need for interpreting the decision-making of black-box machine learning models in

this particular domain.

35

2.1 Introduction

Consumer credit ratings play an outsized role in the world today. Lenders use them

to decide whether to grant credit, to structure the terms of credit, and to offer further

financial products. This applies across a wide spectrum of credit offerings such as

mortgages, car loans, credit cards, and home equity lines of credit. Lenders use

credit ratings extensively because they are accurate, cheap, and quick proxies for the

creditworthiness of individuals, thereby enabling them to manage their risk efficiently.

As of March 31, 2018, the total household indebtedness in U.S.A was at a peak

of $13.21 trillion [3]. If credit rating models misclassify defaulters as non-defaulters

(Type I error), lenders could be exposed to enormous losses. On the other hand, if the

models misclassify non-defaulters as defaulters (Type II error), lenders lose business.

Given the massive amount of outstanding household debt in America, even a small

percentage improvement in the accuracy of credit ratings can have a sizeable financial

impact.

2.2 Traditional Credit Scoring

The fundamental goal of credit scoring is to determine whether a credit applicant will

default on their loans. Simply put, it is a binary classification task that labels credit

applicants as Creditworthy or Non-creditworthy. A Creditworthy applicant is likely

to repay their financial obligation while a Non-creditworthy applicant is not.

Historically, credit ratings have been computed using logistic regression. At-

tributes of a credit applicant are first carefully chosen as features using domain knowl-

edge and feature selection techniques. The goal is to identify the ones that are most

predictive of future default. The feature values of each applicant are then transformed

to the same scale using techniques like Weight Of Evidence (WoE) encoding. This

standardization allows for easy comparison of the importance of features using the

36

regression coefficients. Finally, the transformed features are fed into a logistic regres-

sion model that outputs the applicant's probability of default. If this probability falls

below a threshold specified by the lender, the applicant is classified as Creditworthy

and otherwise as Non-creditworthy.

Using logistic regression to solve the binary classification task offers several ben-

efits: results backed by a well-understood theory, simplicity, and powerful modeling

capabilities. As described in Section 5.2.1, logistic regression is computed using Max-

imum Likelihood Estimation, a technique with a well-founded mathematical under-

pinning. Logistic regression model is simple because of its decomposability into a set

of regression coefficients. A linear combination of these regression coefficients sum to

the log odds of Pr(Y = 11X), where Y is the binary outcome variable and X is the

input variable. The equation below be used to determine the contribution of each

feature for a particular prediction:

Pr (Y = 1|X)log[] =lX 0+B -X1 +02 -X 2 + ... + #-kXk
I - Pr(Y = 1|X)

Lastly, logistic regression can be used with feature engineering to model the re-

lationship between non-linear transformations of inputs and the output probability.

However, it takes expert knowledge to select relevant features and to identify appro-

priate non-linear transformations. This process can be tedious, time-intensive, and

prone to errors in human judgment.

2.3 Deep Learning In Credit Scoring

Machine learning is the science of getting computers to act without being explicitly

programmed [4]. In recent years, the sub-field of deep learning has garnered signifi-

cant attention for achieving unprecedented performance in classification tasks such as

object and speech recognition. An appealing aspect of deep learning is that it requires

37

little manual feature engineering. In fact, the very reason these models perform so

well is that they learn feature representations and non-linear interactions from large

datasets instead of relying on expert human judgment. By learning directly from

large amounts of data, these models can classify data points using complex decision

boundaries and achieve superior accuracy.

A function is a relation from a set of inputs to a set of possible outputs where

each input is related to exactly one output [5]. We can view a credit risk model as

a function that uniquely determines the relation between the attributes of a credit

applicant and the probability that they are Non-creditworthy. A variety of machine

learning techniques can be used for credit risk prediction because they are all different

approaches to the same goal of determining an accurate mapping from a set of input

variables to a set of target outputs.

While researchers have demonstrated the promising potential of deep learning to

predict consumer credit risk [61, the credit risk modeling industry has been slow to

adopt the technique due to its black-box nature. The primary obstacle is regulatory

compliance. The Fair Credit Reporting Act (1970) mandates that lenders must be

able to disclose up to four key factors that adversely affected the credit score of

a rejected consumer. More recently, the European Union's General Data Protect

Regulation (2018) created a right to explanation, whereby a user can ask for an

explanation of an algorithmic decision that was made about them 17].

To comply with these regulations, a credit risk model should be able to attribute

its decision among contributing factors. As outlined above, logistic regression has this

property because of its decomposability. Each regression coefficient corresponds to a

feature and can be used to determine that feature's contribution towards a prediction.

However, the potentially vast parameters of deep learning models do not have intuitive

interpretations and cannot be used directly to compute feature contributions. This

creates an opacity in the decision-making of deep learning models that is in conflict

with the transparency required by regulations in the credit risk modeling industry.

38

Chapter 3

Literature Review

This chapter explores the various motivations and notions of interpretability. We

describe previous attempts to make machine learning models more understandable

and provide a point of contrast for our research.

3.1 Motivations for Interpretability

The call for interpretability in machine learning (ML) is clear. Doctors who diagnose

patients using ML would want to verify that spurious correlations are not being used

to make causal inferences. Regulators would want to ensure that ML used to grant

credit does not discriminate by race or gender. Engineers building a self-driving car

would want to understand the vulnerabilities of its perception ML to adversarial at-

tacks. Evidently, a black-box ML model that simply generates predictions cannot

directly satisfy these needs. We require insights into its decision-making. Although

these scenarios make a seemingly united argument for the need for explainable ML sys-

tems, they are motivated by the need to confirm distinct properties, namely causality,

fairness, and robustness [8]. These distinct needs entail distinct notions of explain-

ability and thus potentially require different interpretability techniques.

39

As introduced in Chapter 1, we motivate our objectives of producing feature attri-

bution and modifications through the domain of credit risk modeling. In particular,

we are concerned with generating explanations most useful for a credit applicant.

We refer to feature attribution as the task of determining the contribution of input

features towards a prediction by an ML model. We define modifications as a set of

minimal changes to feature values of a sample point to change its classification to

the desired label. We explore previous work on interpretability that either directly

accomplished these objectives or could be adapted to do so.

3.2 Notions of Interpretability

There are two broad notions of interpretability - Global and Local. Global inter-

pretability means understanding how a model works. For instance, monotonicity

provides global interpretability because it is an invariant on the relationship between

input features and the target predicted value over the entire observation set. In

contrast, local interpretability is a set of rationales for a specific decision. Our ob-

jectives of producing feature attributions and modifications for particular predictions

are primarily concerned with local interpretability.

3.2.1 Local Interpretability

Linear approximations of models can be used to produce feature attributions. In a

linear regression, feature attribution can be computed by examining its coefficients,

weighted by the values of features in a given input. The regression coefficients can be

also used to help suggest modifications. Each regression coefficient can be interpreted

as the change in the output prediction caused by a unit change in the corresponding

feature value, holding other feature values constant. Hence, these coefficients can be

used to inform changes to feature values to appropriately alter the output prediction.

40

LIME and gradients are two approaches to generating linear approximations to

an underlying model. One of LIME's limitations is that the regression coefficients

of its linear approximation cannot be interpreted reliably in the presence of highly

correlated features, as is the case for any linear regression. SHAP is an alternate

local interpretability technique that addresses this shortcoming. It can attribute the

contribution of features for a particular prediction, robust to the presence of highly

correlated features. Alternatively, influence functions, a technique from robust statis-

tics provides a different approach to explaining predictions: by attributing importance

among examples in the training set.

In this section, we outline the theory of these local interpretability techniques,

illustrate their outputs with examples, and suggest how they could be applied to the

research objectives of this thesis. The common thread among these techniques is that

they attempt to explain a model's predictions insights using the vocabulary of the

features that have been chosen to represent the data point. While it is not necessary

that input features always have intuitive meanings, the model creator usually has

significant control over their selection.

Linear Approximation of A Model Using LIME

Local Interpretable Model-Agnostic Explanations (LIME) [9] is a local interpretability

technique that can approximate a machine learning model at a data point of interest.

Its key intuition is that it is much easier to approximate a black-box model using

several piece-wise linear local approximations as opposed to a single linear global

approximation.

Figure 3-1 illustrates how a LIME approximation is constructed. The lighter and

darker regions of the figure correspond to different sides of a decision surface. In this

figure, the LIME algorithm constructs a linear approximation of the decision surface

in the neighborhood of the highlighted red point. The blue dots and red pluses around

that data point represent perturbed points in its vicinity. The points closer to that

41

point are up-weighted than ones further away. A linear regression, represented by

the dashed lines, is then trained to best classify these points, given their respective

weights. This local weighting ensures that the regression approximates the underlying

decision surface best at the input data point. LIME is appealing because it is model-

agnostic. It does not require the underlying model to be differentiable or belong to

a particular function class. However, it shares the same shortcoming of any linear

regression: the assumption that input features are independent. Due to this, the

presence of multicollinearity may affect the interpretation of the coefficients of the

LIME approximation.

+ +I
+1

+

Figure 3-1: Illustration of a LIME Local Approximation [9]. The dashed line is an approxi-
mation of the decision surface at the highlighted red point.

Feature Attributing of A Prediction Using SHAP

Unlike LIME, SHAP can compute feature attributions that are robust to highly cor-

related features. Its drawback, however, is that cannot be interpreted as a linear ap-

proximation, which limits its utility in informing modifications. SHAP was inspired

by the game theory concept of Shapley Values: If multiple players with differing skills

collaborate in a coalition to receive a collective payoff, what is the fairest way to di-

vide up that payoff among the players? The answer is finding each player's marginal

contribution, averaged over every possible sequence in which the players could have

42

been added to the group [10]. The same idea can be applied to compute feature

contributions for a local prediction. The payout is the prediction by the model and

the players are the different features that collaborate to receive that payout. Each

Shapley value is, therefore, the average contribution of a feature value towards the

prediction in different coalitions. Lundberg and Lee 111] claim that the coefficients of

the locally-weighted model generated by LIME are in fact approximations of Shapley

Values resulting from the choice of a specific weighting kernel.

Linear Approximation Of A Model Using Gradients

The gradients of a machine learning model can be used to approximate it linearly. A

gradient points in the direction of the greatest rate of increase of a function. Therefore,

the gradient of the target output label with respect to the input features can inform

the direction for greatest change towards that label for a data point. This could be

used to compute a modification. In a similar spirit, Baehrens et al. (2010) [121 coined

the Explanation Vector, a local gradient that characterizes how a data point has to

be moved to change its predicted label. In Figure 3-2, (a) visualizes binary-labeled

training data and (b) illustrates the decision surface of a model trained on this data.

The white arrows in (c) represent the gradients i.e. the Explanation Vector.

In 2017, Sundararajan et al. [13] developed Integrated Gradients as a superior

approach to computing gradients of deep neural networks. They showed that the

prediction function of a neural network may flatten in the vicinity of certain in-

puts, resulting in incorrectly small gradients. They show that gradients computed

by Integrated Gradients do a better job in identifying pixels most responsible for a

classification than do traditional gradients (See Figure 3-3).

Using gradients and linear programming, Zhang et al. (2018) [141 present an algo-

rithm to provide local explanations using minimal, stable, and symbolic corrections.

They sought to provide actionable insights on how to cause a prediction to move

from an undesirable class to a desirable class. Their approach showed promising

43

X x

1x x x

xx x~ x N

-0.5 xX X *o
X X X *0

X6 X

(a) Object (b) Model

10 10

0..

(c) Local explanation vectors (d) Direction of explanation vectors

Figure 3-2: The Explanation Vector [121 for a Model at a Point. The explanation vector is
a gradient that identifies the direction that will produce the greatest change in the label of
that point.

results with proven mathematical guarantees on small neural networks with ReLU

activation functions. The limitations of their approach were that they required the

underlying model to be differentiable and that they did not account for potential

inter-dependencies between input features. As a result, the modifications produced

may not be of pragmatic utility. These broader issues are discussed in detail in 7.2.3.

They defined a correction as minimal if it was as similar as possible to the original

input. It was symbolic and stable if it was a neighborhood of points for which the

outcome was also desirable rather than just a single point. Figure 3-4 illustrates one

example of the output of their algorithm. The red cross is an adversely classified point

and the blue triangular region represents the stable correction region computed.

44

- - - - - - - - ------ --------------.-- '~- I

Original image Label and score integrated gradients Gradients at image

Top label: reflex camera
Score: 0.993755

Top label: mosque
Score: 0.999127

Figure 3-3: Integrated Gradients vs Regular Gradients of Image Labels With Respect To
Input Pixels. The Integrated Gradients are able to delineate the pixels that best characterize
the camera and the mosque with better sharpness than the traditional gradients.

Explaining with Examples Using Influence Functions

Influence functions is a technique from robust statistics that tells us how a model's

parameters change as a training point is up-weighted infinitesimally [15]. Koh et al.

[16] applied this technique to trace a black-box model's prediction back to its training

data, thereby identifying training points most responsible for a given prediction. In

essence, this technique offers local interpretability into a prediction by using examples

as explanations. It identifies the training data that contributed the most to the

model's prediction. However, such an explanation does not explicitly identify the

features most influential to the classification of the sample point and the examples

in the training set. The burden instead shifts onto the recipient of the explanation.

While a human can visually inspect images produced as explanations, the approach is

infeasible with large numerical data. Moreover, the technique does not readily inform

potential modifications to the data point of interest.

45

0.32- X

E
o 0.30-

0.28 -

00.26 -

0.05 0.10
Interest Rate

Figure 3-4: Example Correction Generated by Zhang et al. [14]. The red plus denotes

an adversely classified point. The blue triangular region represents a minimal, stable, and

symbolic correction for that data point. The region inside this triangle is classified favorably.

Suggesting Changes to a Data Point Using Monotonic Guarantees

A function is said to be monotonic with respect to an input variable if it is strictly non-

increasing or non-decreasing in changes to that input variable. Although monotonic

constraints aid in the global interpretability of a model, their guarantees could be

useful for local modifications.

Linear regression models are inherently monotonic because changing the value of

a feature will always affect the output prediction in the same direction, depending

on the sign of its corresponding coefficient. However, deep learning models do not

have this property. Hence, one of the limitations of using linear approximations of

deep learning models to inform modifications is that changing feature values may not

always change the output variable in the desired direction. One approach to resolve

this drawback is to artificially enforce monotonic constraints on neural networks [18].

As an example, Figure 3-6 shows the relationship between the distance of a cus-

tomer to a cafe and their resulting happiness. Each purple dot represents a customer.

The purple line represents a decision boundary learned by a machine learning model

trained on this data. Say, we consider it undesirable for our model to predict that

beyond the first kilometer, increasing the Distance to Cafe increases User Happiness.

46

To classify this image: fl
10

Model found these images most helpful

SVM

Inception

Figure 3-5: Illustration of Results Produced by Influence Functions [17]. The pictures in
the 4x4 grid represent training examples that contributed most to the classification of the
gold fish in the test example.

For simplicity and ease of understanding, we might want to enforce a monotonic con-

straint that User Happiness should always be non-increasing with increasing Distance

to Cafe. A model that respects this constraint might learn the green decision bound-

ary instead. Hence, if a customer is unhappy, we can advise them with high certainty

that moving closer to a cafe will make them feel happier.

Although this approach sounds promising, enforcing such constraints artificially

may lead to biased estimators. This, in turn, hurts the performance of our machine

learning models.

47

Train examples from Tokyo

cc

1 km 10km
Distance to Cafe

Figure 3-6: Illustration of Enforcing a Monotonic Constraint Between User Happiness and

Distance to Cafe [19]. The purple line represents the decision boundary learned from this

data. The green line represents the decision boundary learned with the monotonic constraint

that User happiness must non-increasing with increasing Distance To Cafe.

48

Chapter 4

Data

In this chapter, we introduce the credit dataset used in our analyses and describe its

23 predictor features. We also explain our two approaches to dealing with special

values in the dataset, namely dropping them or encoding them appropriately. Lastly,

we visualize key characteristics of the dataset such as the correlations among features

and the results of principal components analysis.

4.1 Description of HELOC Dataset

We used a home equity line of credit (HELOC) dataset provided by FICO. HELOC is

a revolving loan where the collateral is the borrower's equity in their house. Similar

to a credit card, a HELOC is available for a set time-frame during which a borrower

can withdraw money as needed.

4.1.1 Summary and Construction of the Dataset

The dataset contains 10, 459 borrowers who were granted HELOCs during a two-year

application window from March 2000 to March 2002. In March 2003, a year after the

49

application window had closed, a performance snapshot was captured and the risks

of the borrowers were evaluated. In this dataset, an applicant might have used their

HELOC for a duration between one and three years, depending on the timing of their

approval. These timelines are illustrated in Figure 4-1.

Sampling
Window

03/2000 0312002
Application Sample Window

03/2003
Performance

Snapshot
(12-36 Months on Books)

Figure 4-1: Sampling Window of the HELOC Dataset. Applicants were able to use their

HELOC for anywhere between one and three years before their performance was evaluated.

Figure 4-2 shows the distribution of Creditworthy and Non-creditworthy clas-

sifications. Those with delinquent or charged-off HELOCs were classified as Non-

creditworthy (5,459 records) and the rest as Creditworthy (5, 000 records). These la-

bels provide the ground truth for the actual behavior of the applicants in the dataset.

500 -

4M0

2000-

1000-

0k
Non-credtworthy Credtworthy

Nisk~lassification

Figure 4-2: Distribution of Risk Classification. The number

Creditworthy applicants is roughly evenly-split by construction
of Creditworthy and Non-
in this dataset.

50

4.1.2 Glossary of Relevant Credit Modeling Terms

The following definitions provide helpful context for the description of the dataset's

features.

1. Line of Credit - An agreement to provide credit.

2. Revolving Line of Credit - A line of credit with a maximum amount that the

borrower can choose to use each month. The most common example is a credit

card.

3. Installment Line of Credit - A line of credit with a fixed loan amount and a

fixed monthly payment. A mortgage is a common example.

4. Delinquent - A line of credit is delinquent if its payments are not made in a

timely manner.

5. Utilization - The amount still owed divided by the total amount borrowed; The

fraction of available credit currently in use.

4.1.3 Explanation of Predictor Features

In addition the binary target variable (Risk Classification), each credit applicant is

characterized by 23 predictor features (21 continuous and 2 categorical). These are:

1. A condensed version of the borrower's credit risk computed by FICO using all

credit bureau information (ExternalRiskEstimate)

2. Months since the very first line of credit was established (MSinceFirstLOC)

3. Months since the newest line of credit was established (MSinceNewestLOC)

4. Average age in months of all existing lines of credit (AvgAgeOfLOC)

51

5. Number of lines of credit not currently delinquent (NumLOCNotDelq)

6. Number of lines of credit ever been 60 or more days delinquent (NumLOC60PlusDaysDelq)

7. Number of lines of credit ever been 90 or more days delinquent (NumLOC90PlusDaysDelq)

8. Percentage of lines of credit never been delinquent (PercentLOCNeverDelq)

9. Number of months since the most recent delinquency (MSinceMRecentDelq)

10. Maximum delinquency in days in the past year (MaxDelqLast12M)

11. Maximum delinquency ever in days (MaxDelqEver)

12. Total number of lines of credit established (NumTotalLOC)

13. Number of lines of credit established in the past year (NumLOCInLastl2M)

14. Percentage of lines of credit that are installment lines of credit (Percentlnst-

LOC)

15. Months since the newest request for a new line of credit excluding those re-

quested in the past week (MSinceNewLOCReqExPastWeek)

16. Number of requests for new lines of credit in the last 6 months (NumLOCRe-

qLast6M)

17. Number of requests for new lines of credit in the last 6 months excluding those

requested in the past week (NumLOCReqLast6MExPastWeek)

18. Fraction of all revolving credit limits in use (FracRevLOCLimitUse)

19. Fraction of all installment lines of credit in use (FracInstLOCUse)

20. Number of revolving lines of credit with outstanding balances (NumRevLOCW-

Balance)

21. Number of installment lines of credit with outstanding balances (Numlnst-

LOCWBalance)

52

22. Number of bank loans and national loans (a subset of all revolving trades) with

an outstanding balance of at least 75% of the credit limit (NumBank/NatlLoansWHighUtil)

23. Percentage of lines of credit with outstanding balances (PercentLOCWBalance)

4.1.4 Permissible Values of Categorical Features

The two categorical features in our dataset are the maximum delinquency in days

in the past year (MaxDelqLast12M) and the maximum delinquency ever in days

(MaxDelqEver). Table 4.1 explains the* possible values they can take. Though one

might expect these features to be numerical, they are used to indicate the occurrence

of certain scenarios in this dataset for which a numerical value would not be meaning-

ful. Notice that subsets of the permissible values have a natural ordering (e.g. C-F)

but no ordering extends across the entire set.

Value I Explanation
A The value is missing
B There is a derogatory comment in the applicant's public records
C The applicant has been 120+ days delinquent
D The applicant has been 90+ days delinquent
E The applicant has been 60+ days delinquent
F The applicant has been 30+ days delinquent
G It is not known if the applicant has been delinquent
H The applicant has never been delinquent
I Other

Table 4.1: Explanation of Categorical Features Values for MaxDelqLast12M and
MaxDelqEver. Subsets of these values have particular orderings (e.g. C-F) but there
is no strict ordering over the entire set.

For instance, if an applicant has filed for bankruptcy in the past year, it will show

up as a derogatory comment in their public record and MaxDelqLast12M = B.

If the applicant has ever had a line of credit that was 120+ days delinquent, then

MaxDelqLast12M = C.

53

4.2 Special Values

The dataset contained three types of special values.

-7 : Condition not met. For example, if a credit applicant has never requested for

a line of credit or has never been delinquent.

-8: No usable trades.

-9: No bureau record or no investigation

Though these values are negative integers, they are interpreted symbolically and

do not hold any numeric significance. Therefore, we could not directly feed them

into our machine learning models. We either had to drop them or encode them

appropriately.

4.2.1 Dropping Special Values

Dropping Data Points That Contained Special Values

A large fraction of the data points in our HELOC dataset contained at least one

special value (7,957 of the 10, 459 data points). Hence, dropping all such data point

was infeasible.

However, the dataset contained 588 records that solely contained the special value -

9 as all feature values. Among these, 331 data points were labeled as non-creditworthy

and 266 as creditworthy. This was a problem because the same input vector had been

given opposite labels. This happens because a borrower receives a -9 special value if

they are either a VIP and do not need to be investigated or if they have no bureau

record at all i.e. they have no credit history. This confounding of no bureau report

54

-9 7 -8
598 4226

6

6 2547

-7
5W87

Figure 4-3: Venn Diagram of Records containing at least one special value. 7,957 applicants
contain at least one special value. Hence, it is infeasible to drop them all.

investigated (a positive trait for extending credit) and no bureau report found (a

negative trait for extending credit) produced the discrepancy in classification. Given

that these data points were not meaningful and represented a small fraction of the

entire dataset, they were all dropped.

Dropping Features That Contained Special Values

We tabulated the distribution of -7 and -8 special values and found that they are

concentrated among 9 of our 23 input features. One way of dealing with these special

values is simply dropping the 9 features entirely. Doing so would also not affect the

number of points in our dataset. Though this was a valid approach, we found sub-

sequently that dropping the 9 features deteriorated the performance of our machine

learning models. The features were likely useful predictors. Therefore, we had to

handle the special values in a different way.

55

Table 4.2: Distribution of Special Values Across Columns. These special values are
concentrated among 9 of our 23 input features.

4.2.2 Replacing Special Values with Feature Means

A standard technique for dealing with special values is to replace them with the mean

values of the respective features. A simple example illustrates that this would not be

a meaningful approach for our dataset.

If a borrower has never had a delinquency, they will have the -7 (Condition not

met) special value for the feature MSinceMRecentDelq. Clearly, replacing the feature

value with the mean would not be correct as they will be moved from a desirable

value of the feature to a less desirable one. An alternative would be to replace the

feature value with a very large number, implying it has been a long time since the

borrower has had a delinquency. Unfortunately, this comes at the cost of introducing

outliers in the dataset.

4.2.3 Binning Features

Another approach to dealing with special values is to discretize continuous features

into bins. Consider a sample feature that contains values in the range [0, oc) and also

a special value of -9. As per the binning schema in Table 4.3, every possible value of

the feature would map uniquely to a bin. For instance, a value of 3 would map to

56

Index Count -7 -8
1 MSinceFirstLOC 0 239
2 MSinceMRecentDelq 4664 176
3 MSinceNewLOCReqExPastWeek 1855 476
4 FracRevLOCLimitUse 0 186
5 FraclnstLOCUse 0 3419
6 NumRevLOCWBalance 0 156
7 NumInstLOCWBalance 0 861
8 NumBank/NatlLoansWHighUtil 0 583
9 PercentLOCWBalance 0 18

Bin 0, a value of 8 would map to Bin 2, and a special value of -9 would map to Bin

3. The advantage of binning is that special values can be treated as a separate bin

and any outliers can be consolidated.

Once a binning schema has been decided, a feature can be represented using one-

hot encoding and weight-of-evidence encoding (among other options).

Bin Index Start I End
0 0 4
1 4 8
2 8 oc
3 -9 -9

Table 4.3: Illustration of Binning a Sample Feature. Each feature value maps uniquely
to a single bin.

One-hot Encoding

A feature that contains n bins can be represented as an n dimensional vector f. If a

feature value belongs to bini then the value of its kth dimension fk 1 if k = i and 0

otherwise, for k c [0, n). The drawbacks of one-hot encoding are that bins are treated

as unordered categories and sparsity is introduced. As per the toy example, the feature

value of 8 (mapped to bin 2) would not necessarily be considered greater than the

feature value of 3 (mapped to bin 1) because the bins are unordered. Moreover, sparse

features could result in overfitting and biased parameters in a model if its training

dataset is small. Lastly, for continuous variables, there isn't a clear-cut formula to

define the binning schema and choosing it manually could be suboptimal.

Weight of Evidence Encoding

Weight of Evidence (WoE) encoding is a popular statistical technique used in the

credit rating industry. It is used to automatically recode the values of continuous and

categorical predictor variables into discrete bins and to assign each bin a WoE value.

57

0

2

3

Figure 4-4: Illustration Of One Hot Encoding [20].

mapped into a four dimensional space where exactly

has a unit value.

A feature with four possible values is

one dimension per vector is "hot" i.e.,

The bins are determined such that they will produce the largest differences with

respect to the WoE values. Additionally, monotonicity constraints can be specified

to ensure that WoE values are strictly increasing or decreasing in feature values.

The formula for WoE is derived from entropy theory and information value. For

bini, the WoE value can be computed as follows:

WoE, = [In (RelativeFrequencyof Goods 100
RelativeFrequencyof Bads

(4.1)

Intuitively, the WoE value of a bin provides a measure of its predictive ability

to separate creditworthy and non-creditworthy applicants. An important benefit of

WoE encoding is that it can be used to treat missing values and outliers without

introducing sparsity. As WoE values are on the same scale, we can use them to

compare the univariate effects of bins on the target variable within a feature or across

all features. Its drawback, like most binning techniques, is that it results in a loss of

information.

58

1 , 0, , 0

0, 1, , 0

0, 0, 1, 0

0,10, 0, 1

Table 4.4 shows dummy WoE values for the sample feature. These would be

computed from a training dataset using Equation 4.1. As an example, any feature

value in bino i.e. in the range [0, 4) is mapped to a WOE value of -0.12.

Bin Index Start [End I WoE Value

0 0 4 -0.12
1 4 8 0.1
2 8 00 0.4
3 -9 -9 -0.05

Table 4.4: Weight of Evidence Encoding For A Sample Feature. WoE values are
discrete and no two bins share the same WoE value.

Figure 4-5 shows the original distribution of the feature for the number of months

since the very first line of credit was established (MSinceFirstLOC) in our dataset.

Once the feature was re-coded using WoE, its values were discretized as per Figure

4-6.

800

700
600
500

~400-
300-

200-

100-

0 20 100 20 30 00 500 600 700 800

Number of Months

Figure 4-5: Histogram of Feature -
(MSinceFirstLOC). The feature is
concentration of values at 0.

Months since the very first line of credit was established
approximately normally distributed and we see a large

As described in Chapter 5, we found that models trained on WoE encoded data

had the best performance. Therefore, this technique was chosen to deal with the

special values.

59

I

3500-

3000-

2500-

2000-

1500-

1000-

500-

0
-0.68 -0.34 -0.05 0.0? 0.43 1.04

Number of Months

Figure 4-6: Countplot of WoE Encoded Feature - Months since the very first line of credit

was established (MSinceFirstLOC). The continuous values of the feature in Figure 4-5 are

discretized into WoE values.

4.3 Exploratory Analysis

Before we used the dataset to train machine learning models, we analyzed its prop-

erties using a few exploratory visualization techniques.

4.3.1 Correlation of Features

Figure 4-7 visualizes the 23x23 correlation matrix of our dataset and identifies higher

correlations with lighter shades. We found three pairs of features with correlations

greater than 0.8.

1. The total number of lines of credit (NumTotalLOC) and the number of lines of

credit that are not currently delinquent (NumLOCNotDelq)

2. The number of lines of credit that have been 60+ days delinquent (Num-

LOC60PlusDaysDelq) and the number of lines of credit that have been 90+

days delinquent (NumLOC90PlusDaysDelq)

3. The number of request for new lines of credit in the past 6 months (Num-

60

LOCReqLast6M) and the number of request for new lines of credit in the past

6 months excluding the past week (NuinLOCReqLast6MExPastWeek)

0
0

5 10 15 20

5

10

15

20

Figure 4-7: 23 x 23 Correlation Matrix. The lighter shades represents highly correlated
feature pairs. As expected, the diagonal has the lightest shade because it represents the
correlation of a feature with itself.

4.3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a commonly-used statistical procedure that

converts a set of possibly correlated variables into a new set of linearly uncorrelated

variables called principal components.

The top three principal components were visualized in Figures 4-8, 4-9, 4-10.

It can be seen that the Creditworthy (green dots) and the Non-creditworthy (red

dots) samples are not readily separable. The three dimensions represent the top

three directions of the maximal variance of the dataset but are a result of linear

61

combinations of the original features and thus do not have a human-interpretable

meaning.

PPrcoa AxA. 2

Figure 4-8: 3D Principal Components Analysis (1 of 3). The green and red dots are not
readily separable.

In Figure 4-11, we vary the number of principal components and plot the cu-

mulative explained variance. We see that 15 principal components are sufficient to

represent 95% of the variance of the 23-dimensional dataset.

62

I

PrIncp Axts 2 Pr,.po AXiS 1

Figure 4-9: 3D Principal Components
easily separable.

Analysis (2 of 3). The green and red dots are not

'S..

Figure 4-10: 3D Principal Components Analysis (3 of 3). The green and red dots are not
easily separable.

63

4

I

U
S0.8-

0 -

'U

0.2-

0 5 10 15 20

number of components

Figure 4-11: Explained Variance vs Number of Principal Components. We see that 15

principal components are sufficient to represent 95% of the variance of the 23-dimensional

dataset.

64

-9,

Chapter 5

Machine Learning Algorithms

In this chapter, we explain the theory behind three supervised machine learning mod-

els and benchmark their performance on the HELOC dataset. The models, Logistic

Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP), will serve

as the foundational test-bed on which the interpretability work will proceed.

LR is the most commonly used model in the credit rating industry and thus

serves as a useful benchmark. RF is a popular ensemble learning approach that has

demonstrated promising performance in credit scoring with highly correlated data

[21]. Unlike LR and MLP, RF is a non-differentiable model and thus cannot be

approached with gradient-based interpretability techniques. MLP is a class of feed-

forward deep neural networks that can learn non-linear relationships without manual

feature engineering.

It is possible to compute a global ordering of features for LR and RF with the

caveat that it is not always reliable. In contrast, it is not possible to directly compute

such an ordering for MLP. Thus, we instead turn to generate a local feature ordering

in the next chapter.

65

5.1 Performance Summary

We are interested in predicting the likely outcome for a HELOC applicant, namely

a timely pay-off or a delinquency. Formally, the model must predict Pr(Y = 11X)

where Y is the binary output variable and X is the input vector of features.

We train the three models on two versions of the HELOC dataset, termed Trun-

cated data and WoE data. The Truncated data contains 14 features and is constructed

by dropping all features that contain one or more special values for any of the points

in the dataset. WoE data contains 23 features and is constructed by re-coding all

features using Weight of Evidence (WoE) encoding.

We evaluate the models using K-fold cross-validation. We partition the input

dataset into a training set, which the model trains on, and a test set, which the

model is evaluated on. The performance of a model on a test set i.e., samples it

has never encountered before, provides a measure of its generalizability. In K-fold

cross-validation, the input dataset is randomly partitioned into k equal subsets and

in each run, one of the subsets is chosen as the test set and the remaining as the

training set. For this analysis, we choose k = 5 i.e., in each run of cross-validation,

the training set contains 80% of the dataset (7, 898 points) and the test set contains

the remaining 20% (1, 973 points).

As Table 5.1 illustrates, we find that all three models perform better on the WoE

data as compared to the Truncated data. This implies that the loss in information

resulting from re-coding the features using WoE encoding is smaller than that re-

sulting from dropping all features with special values. Among the models trained on

the WoE data, MLP has the highest mean test accuracy of 74.7%. Interestingly, the

same MLP architecture has the worst test accuracy on the Truncated data, possibly

because the Truncated data has too few features, given the depth of the MLP archi-

tecture. Although we benchmark the performance of RF, we focus our subsequent

interpretability work on the best-performing MLP due to its superior accuracy and

66

our interest in interpreting deep learning models.

Dataset Fold LR RF MLP

Mean Std. Mean Std. Mean Std.
Dev. Dev. Dev.

Truncated Train 0.724 0.002 0.99 0 0.666 0.004

Truncated Test 0.723 0.008 0.706 0.007 0.664 0.005

WoE Train 0.746 0.002 0.99 0 0.749 0.001

WoE Test 0.744 0.010 0.723 0.007 0.747 0.008

Table 5.1: 5-Fold Cross-Validation Performance of Machine Learning Models Trained
On Truncated and WoE Data. The MLP trained on WoE data had the best mean
test accuracy of 74.7%.

5.2 Model

5.2.1 Logistic Regression

Logistic Regression has historically been the industry standard for credit scoring.

It is commonly used for binary classification tasks and is therefore well-suited to

distinguishing between Creditworthy and Non-creditworthy applicants.

Theory

As seen in Figure 5-1, logistic regression differs from traditional linear regression in

that its output is constrained to be between 0 and 1. This property gives its output a

useful interpretation - the probability of a binary outcome event. A logistic regression

model is constructed by passing in a linear combination of input features through a

standard logistic function (sigmoid function), which takes any real input, and outputs

67

a value between zero and one. This can be represented mathematically as:

Pr(Y = 11X) =
1

+ e-(o+1-1++2-X2+...I+OkXk)

where X1 .. .Xk are the input features and /3o... A are the regression coefficients.

1
y

p

0

y=bo + bx 4 LinearModel

Logistic Model

1 -1

1 + e-o+bix)

Figure 5-1: Comparison of Decision Boundary Between Logistic Regression and Linear Re-

gression. Unlike linear regression, the output of logistic regression is constrained to be

between 0 and 1.

The O's i.e., the coefficients of logistic regression are computed using the Maximum

Likelihood Estimator, which is a method of estimating the parameters of a statistical

model, given observations.

Global Interpretation

The interpretation of the regression coefficients of logistic regression is not as straight-

forward as that of the regression coefficients of linear regression. By re-arranging the

equation of logistic regression, it can be seen that the log-odds of Pr(Y = 11X) is a

linear combination of the input features.

68

AI

'00 X

log[1 Pr(Y = 1|X)]1 =,30 + 01 - X1 -+ 2 - X2 + ... + -|-k - Xk1-Pr(Y = 1X)

fi can be interpreted as the change in log-odds resulting from a unit change in

X, given that the other features are held constant.

If we would like to determine the relative importance of features in a logistic

regression, we cannot directly rely on the coefficients of a model trained on raw data.

This is because the features may have different scales. To correct for this, we could

normalize the values of each feature across the dataset by giving it a zero mean and

a unit standard deviation. Once a logistic regression is trained on this standardized

data, the absolute values of its coefficients can be used as a measure of relative

feature importance. Figure 5-2 shows the relative feature importance computed from

a logistic regression trained on standardized Truncated data.

One of the shortcomings of this approach is that it is constrained by the assump-

tion in logistic regression that features are uncorrelated. If this assumption does not

hold, the approach may provide an imperfect measure of the relative feature impor-

tance.

5.2.2 Random Forest

Random Forest is an ensemble supervised learning technique i.e., it consists of an

aggregation of multiple outputs made by a diverse set of predictors, in this case,

multiple decision trees, in the belief that this will produce a more accurate result.

Theory

The key idea behind Random Forest is that a high-performance classifier can be

constructed from a set of poorly-performing classifiers. This is similar to the idea

69

NumLOCReqLast6M
NumLOCReqLast6MExPastWeek

ExtemalRiskEstimate
NumLOCNotDelq

FracRevLOCUmitUse
AgAgeOfLOC

NumRevLOCWBalance
PercentinstLOC

MIinceNewLOCReqExPastWeek
PercentLOCNeverDelq

NumBankOrNatLoansWHighUtil
NuminstLOCWBalance

MixDetqLast12M
NjmLOC60PlusDaysDelq

PercentLOCWBalance
MIinceNewestLOC

MinceFirstLOC
MxDelqEver

MIinceMRecentDelq
FracinstLOCUse

NjmLOCInLast12M

NumTotaILOC
PhjmLOC90PIusDaysDelq

0 20 40 60 80 100
Relative Feature Importance

Figure 5-2: Relative Feature Importance Computed from Logistic Regression. The regression
is trained on scaled Truncated Data so that coefficient values can be directly compared. We
see that the number of requests for new lines of credit in the past 6 months is identified as
the most significant feature.

that a team can reach a better decision than any member can individually. Random

Forest computes a prediction for the output variable by averaging the predictions of

numerous decision trees (weak classifiers).

A (single) decision tree is a supervised learning method that predicts the value of

a target variable by learning simple If-Then decision rules. It is constructed using the

Classification And Regression Tree (CART) algorithm. Each node in the decision tree

is a condition on the value of a single feature that splits the data into two subsequent

branches. CART recursively identifies the feature-value pair that best minimizes the

tree's Gini impurity.

Gini impurity is a metric of the disorderliness of the labels of a set of data points.

Given, a dataset X with binary labels, its Gini impurity is given by the formula:

G(X) = 1 - Pr(Y = 0)2 - Pr(Y = 1)2

70

where Pr(Y = 0) and Pr(Y = 1) are computed using the relative frequencies of

the two labels.

In the best case, if the points contain only one label, then either Pr(Y = 0) = 1

or Pr(Y = 1) = 1 and G(X) = 0. In the worst case, there is an even split between

the two labels and G(X) = 0.5. When the CART algorithm considers a new node in

a decision tree, it computes the Gini impurity for each of the two resulting groups of

the dataset and averages them, weighted by the number of points in each group. The

feature-value pair that best minimizes this weighted value is chosen.

The drawback of individual decision trees is that they are susceptible to overfitting

and do not generalize well i.e., they have high variance. In fact, drawing different

samples from the same population could produce decision trees with vastly different

nodes and performances. Random Forest overcomes this shortcoming by averaging

the outputs of a collection of trees.

As illustrated in Figure 5-3, Random Forests are trained via a method called boot-

strap aggregation or bagging. The training data points are first randomly assignment

into n groups with replacement, where n corresponds to the number of decision trees.

In this example, n = 4. Individual decision trees are fit on a randomly chosen set of

features in each group. To classify a new data point, the Random Forest aggregates

the predictions from each of its constituent decision trees and outputs the majority

vote as its classification. In this example, the point receives a majority classification of

Class C. The random sampling of data points and features ensures that the resulting

decision trees are uncorrelated. Thus, by aggregating their independent predictions,

Random Forest is able to reduce variance and improve generalizability.

Figure 5-4 shows that Random Forest models trained on WoE data achieve a

maximum test accuracy of 73.2% at n > 30 decision trees.

71

N1features

TREE #1

CLASS C
I

X dataset

N2 features N3 features

TREE #2 TREE #3

CLASS D CLASS B

N1 features

TREE #4

CLASS C

MAJORITY VOTING

FINAL CLASS

Figure 5-3: Illustration of Random Forest. To classify a new data point, the Random

Forest aggregates the predictions from each of its constituent decision trees and outputs the

majority vote as its classification. In this example, the point receives a majority classification

of Class C.

Global Interpretation

The CART algorithm computes how much each feature decreases the Gini impurity in

a tree. This number can be averaged for each feature across all trees of a Random For-

est to compute a global feature importance ranking. The more a feature decreases the

Gini impurity, the more important it is. Figure 5-5 illustrates the ranking generated

by Random Forest on the WoE encoded HELOC data.

As was the case for Logistic Regression, the feature importance ranking computed

by Random Forest is affected by the presence of correlated features. For instance,

let there be two heavily correlated features of similar predictive power. Using one

feature in a decision tree would dampen the ability of the other feature to decrease

the Gini impurity when it is considered as a potential node. This would lead to a

lower relative importance for the second feature and lead to incorrect conclusions

72

-4

II

1.00 -

0.95 -

0.90-

0.85 -

0.80 -

0.75 -

0.70 -

0.65 -

- Train
- Test

0 10 20 30 40 50 60
Number Of Estimators

Figure 5-4: Accuracy of Random Forest vs Number of Estimators on WoE Data. The
maximum accuracy is achieved once there are at least 30 decision trees.

about the predictive power of features.

5.2.3 Multi-Layer Perceptron

A multi-layer perceptron (MLP) is an artificial neural network with one or more

hidden layers. Neural networks are supervised learning models loosely inspired by

the biological networks of the human brain.

Theory

An MLP is composed of three types of layers - an input layer, hidden layers, and

an output layer. An input layer relays the input features into the model, the hidden

layers act as the computational engine, and the output layer generates the final model

prediction.

73

.

ExtemalRiskEstimate
FracReviOCimitUse

PercentLOCWBalance
MSinceNewLOCReqExPastWeek

AvgAgeOfLOC
PercentLOCNeverDelq

MNinceFirstLOC
NumRevLOCWBalance

NumLOCInLast2M I
NumTotalLOC

NumBankOrNatlLoansWHighUtil
NuminstLOCWBalance

FracinstLOCUse
NumLOCNotDelq

NumLOCReqLast6MExPastWeek
MsinceMRecentDelq
NumLOCReqLast6M

PercentinstiOC
M5inceNewestLOC

MaxDelqLast12M
MbxDelqEver

NjmLOC60PlusDaysDelq
NumLOC90PMusDaysDelq

0 20 40 60 80 100
Relative Feature Importance

Figure 5-5: Relative Global Feature Importance for Random Forest. This ordering is deter-

mined by measuring the average decrease in Gini impurity produced by each feature across

all decision trees.

Each layer of a neural network is made up of units called neurons. Figure 5-6

shows an example MLP architecture. It consists of an input layer with three neurons,

a hidden layer with three neurons, and an output layer with one neuron.

The input to each hidden unit is a linear combination of the units of the preceding

layer. The hidden unit then computes an output by mapping its input through an

activation function. A non-linear activation function such as a Rectified Linear Unit

(ReLU) is commonly used to create non-linear interactions between the units of the

neural network. It is worth noting that logistic regression is a special case of an MLP

with one hidden layer containing one hidden unit with a sigmoid activation function.

As illustrated in Figure 5-7, for an input value u,

ReLU(z) = max(O, z)

74

W hi

X1

h2

X2 h5$
h3

X3

h4

Figure 5-6: A Multi-Layer Perceptron [221. It has an input layer with three neurons, one
hidden layer with four neurons, and an output layer with one neuron.

In Figure 5-6, the value of each hidden unit can be computed as:

n

h3 (x) = ReLU(wj + Zwi -xi)
i=O

Here, wij is the weight from input xi to hidden unit hj. These weights are the

parameters of the neural network and are trained by an optimization technique called

back-propagation. As with any machine learning model, training neural networks

entails minimizing misclassifications of training data with the goal of strong perfor-

mance in the test data. These errors are represented as a differentiable loss function

that takes in weights of the neural network as input. Optimizers like Stochastic Gra-

dient Descent (SGD) are used to climb down the loss function and update the weights

of the neural network to reduce their contribution to the loss. In theory, SGD only

guarantees to reach a local minima of loss, not a global minimum. Despite this, neural

networks have reached impressive accuracies with very low losses.

From a theoretical standpoint, there is still a lot to learn about what truly makes

neural networks work so well. In particular, choosing the number of layers, the number

of units, and the types of activation functions remains a delicate manual exercise.

75

R(z)=max(O, z)

-5

Figure 5-7: ReLU(z) = max(O,z) [23]. The function maps any positive

any negative integer to zero.

integer to itself and

In Table 5.2, we describe the mean train and test accuracies achieved by several

MLP architectures trained on WoE data and evaluated using 5-fold cross-validation.

An architecture (a,b,c) represents three hidden layers with a, b, and c hidden neurons

respectively. We see a general increase in the train accuracy as we increase the depth

of the architectures. On the other hand, test accuracy improves -up till (3,2,2) but

then decreases. This suggests that the training dataset from FICO may not be large

enough to train larger architectures. We chose the (3,2,2) architecture as the best-

performing architecture based on mean test accuracy.

Global Interpretation

The MLP that had the best mean test accuracy on the WoE dataset had a (3,2,2)

architecture i.e., an input layer with 23 units (for each of the features), one hidden

layer with 3 units, two hidden layers with 2 units each, and an output layer with

76

ReW

U' U

0 5 10

Hidden Lay- Mean Train Mean Train Mean Test Mean Test
ers Architec- Accuracy Std. Dev. Accuracy Std. Dev.
ture

(3,1) 0.748 0.002 0.742 0.008
(2,3) 0.748 0.002 0.744 0.009
(3,3) 0.748 0.002 0.744 0.012
(5,3) 0.750 0.002 0.743 0.006
(3,2,2) 0.748 0.002 0.747 0.009
(5,5,5) 0.750 0.003 0.743 0.009
(10,10,10,10) 0.757 0.003 0.744 0.008

Table 5.2: 5-Fold Cross-Validation Performance of MLP Architectures on WoE Data.
The architecture with the best mean test performance was (3,2,2). We see that the
performance of MLP does not improve with deeper architectures beyond a threshold,
suggesting that the HELOC dataset may not be suitable for training a large number
of parameters.

2 units (one for each of the binary outcomes). Therefore, in total, this model has

23 * 3 * 2 * 2 = 552 parameters. These are the weights of the network. In contrast, a

logistic regression model trained on WoE data only has 22 parameters.

The weights of the neural network create complex, non-linear interactions be-

tween input features and do not have human-interpretable meanings. Moreover, the

decision-boundaries learned by neural networks can be both high-dimensional and

extremely non-linear. Thus, features may have varying significance in different points

of the feature space. To our best knowledge, there are no established techniques to

generate global feature importance rankings for MLPs.

77

78

Chapter 6

Evaluating LIME, a Local

Model-Approximation Technique

We begin by motivating our choice of approximating a machine learning model us-

ing piece-wise linear local approximations. We explain how LIME, a local model-

approximation technique, can be used to generate such approximations. We intro-

duce the original algorithm of LIME and detail its shortcomings. Then, we describe

how we intend to address some of these using a modified version of the algorithm.

We evaluate both the original and modified implementations on two criteria - Fidelity

and Modification Power. We show that the modified implementation outperforms the

original one in certain scenarios.

6.1 Motivation for Approximating a Model Using

Piece-Wise Linear Local Approximations

Recall that we are interested in answering two questions about the prediction of a

machine learning model for a sample data point. Why did the data point receive the

classification that it did? What small changes can be made to the feature values of

79

the data point such that its classification reverses?

These tasks can be written more precisely as:

1. Rationales - We want to identify the top k features that contributed most to

a classification, where k is a parameter selectable by a user.

2. Effective Modifications - We want to specify a set of minimal changes to the

feature values of a sample point such that its classification reverses.

We view simplicity as a key element of interpretability, motivating one approach

to interpreting a black-box machine learning model: approximate it with a simpler

model. Though simplicity is, in turn, broad and subjective, we focus on one of its

aspects, namely decomposability. Each parameter of a decomposable model admits

a human-understandable meaning [24]. For instance, a linear regression is decompos-

able. Each of its coefficients can be understood as the change in the output prediction

caused by a unit change in the corresponding feature value, given that other feature

values are held constant. The sum of these coefficients weighted by the feature values

yields the linear regression's prediction. In contrast, if a neural network has a com-

plex and non-linear decision boundary, the contribution of its input features towards

a prediction will depend on their interactions with other feature values.

It may not be particularly useful to approximate a complex non-linear decision

boundary by a single simpler linear model as performance is likely to deteriorate.

Instead, we approximate a model piece-wise using several linear models: The key

idea is that every segment of the decision boundary starts to look linear the more one

zooms in.

LIME can be used to compute such piece-wise linear approximations of an under-

lying MLP. We evaluate the approximations on two criteria:

1. Fidelity - The ability to match the predictions of the model being approxi-

mated.

80

2. Modification Power - The ability to inform changes to a data point so that

it may cross over from one side of that model's decision boundary to the other.

6.2 Local Interpretable Model-Agnostic Explanations

(LIME)

LIME is a model-agnostic technique that can approximate the decision boundary of

a model at a particular data point. The approximation is constructed by training

a locally-weighted linear regression model in the neighborhood of the data point of

interest. The coefficients of the regression can be used to justify the data point's clas-

sification and advise how that data point can be modified to reverse its classification.

Figure 6-1 visualizes the coefficients of a sample linear regression generated by

LIME. This regression approximates an MLP in the neighborhood of a particular

credit applicant and can be used to predict the probability of default of that applicant.

In a linear regression, each coefficient can be interpreted as the change in the output

produced by a unit change in the corresponding feature value, given that other feature

values are held constant. In this figure, a unit change in the values of features with

coefficients in red and slanted lines will increase the probability of default. A similar

change for features with coefficients in dotted green will decrease the probability of

default.

It is worth clarifying three key points:

1. In our work, the LIME regressions are trained on WoE data because our best-

performing MLP is trained on WoE data.

2. In a linear regression, a feature value may contribute to the output prediction

in a different direction than the sign of its regression coefficient. For instance,

if the feature value for a sample point is negative and the regression coefficient

81

Coefficients of a UME Regression That Predicts Pr(Y=liX)

MsinceNewLOCReqExPastWeek -
NumRevLOCWBalance -

NumLOCReqLast6M -
AvgAgeOfLOC -

MSinceMRecentDelq -
NumLOCNotDelq -

MaxDelqEver -
PercentinstLOC -

PercentLOCNeverDelq -
NumTotaILOC -

FracRevLOCLimitUse -
NumLOCReqLast6MExPastWeek -

NumLOCInLastl2M -
NuminstLOCWBalance -

NumBankOrNatLoansWHighUtil -
MaxDelqLastl2M -

ExternaIRiskEstimate -
MSinceNewestLOC -

NumLOC60PlusDaysDelq -
FracinstLOCUse -

PercentLOCWBalance -
NumLOC90PlusDaysDelq -I

MSinceFirstLOC -

-0.10 -0.05 0.00 0.05 0.10 0.15

Figure 6-1: A LIME Linear Approximation of an MLP at a WoE-encoded Sample Credit

Applicant. Each bar is a coefficient in the linear regression. A unit change in the value of a

feature with a bar in red and slanted lines will increase the probability of default. A similar

change in the value of a feature with a bar in dotted green will decrease that probability.

for that feature is positive, then that feature will contribute negatively towards

the output prediction of that sample point. Similarly, this is true for the linear

regressions computed by LIME that are trained on WoE data.

3. WoE encoding discretizes the value of a continuous feature into distinct bins

that are each assigned unique WoE values. In this thesis, these WoE values are

chosen to be monotonic in the original feature values, either strictly increasing

or strictly decreasing. Thus, a unit increase in the WoE value might correspond

to either an increase or a decrease in the original feature value.

Through these observations, we can see that the coefficients of a LIME approxi-

mation alone are not sufficient to determine the contribution of features towards the

82

prediction of a sample data point. We also require the feature values of that data

point.

6.2.1 Original Implementation of LIME

Given a trained model and a data point, the original implementation of LIME gen-

erates a local approximation by perturbing the data point and finding the best-fit

locally-weighted linear regression. The algorithm is detailed below.

1. The mean and covariance of each feature in the training data are computed.

2. An input parameter specifies whether the normal distribution for each feature

is centered at that feature's mean or at the data point of interest. Centering at

the data point of interest may not be desirable if the data point is an outlier.

3. A new perturbed data point is sampled by sampling the values of each of its

feature independently from univariate normal distributions selected in Step 2.

4. Step 3 is repeated n times to generate n perturbed points. The original imple-

mentation chooses n = 5, 000 (an empirical choice) by default.

5. The trained model predicts the Pr(Y = I|X) for each of the perturbed points.

6. The Euclidean distance between each perturbed point and the input data point

is computed. These distances are passed into a kernel function that normalizes

them into the range [0, 1]. The normalized distances represent how to weight

each of the perturbed points. The ones closer to the input data point will have

higher weights than the ones further away.

7. A linear regression is trained on the weighted perturbed points to predict

Pr(Y = I X). The local weighting ensures that the regression is more accurate

for perturbed points closer to the input data point.

8. This regression is the linear approximation generated by LIME.

83

We adapt the original implementation of LIME for our use case. In particular,

once the perturbed points are generated in Step 4, we re-code them using Weight

of Evidence (WoE) encoding. This is necessary because the MLP chosen as the

underlying model for the approximations is trained on WoE data. This model is

used to classify the perturbed points (as described in Step 5) and hence, in our

particular case, the perturbed points need to be in the WoE space. We choose not

to sample perturbed points directly in the WoE space because WoE encoded features

are discrete and thus unsuitable for being sampled from normal distributions as per

the LIME algorithm. In contrast, we can sample original feature values from normal

distributions because they are continuous and approximately normally-distributed.

2-1 0
x1

B

1.1 e~g AL

1500.. .e;.%e *O 0,

*g. 0 .?%

0 e0 *0 goe
001 *. 0

oe0 0 *

2 1o0 4 0 1 2
0 0D0

off 01to 00
So

.11,00
0018

go 0
* 0 4

2-2 -1 0
x1

1 -

0.

IN

-1

-2 -1 0
x1

Figure 6-2: Illustration of LIME Algorithm In 2 Dimensions For Simplicity.

84

A

1 -

0-

-1"-

-2-

--- -- 4 ----------

- --- --- 4 -- -- - - -

- - - - +- - -- ++ -- - - -

. ..+4-- .++,.--.-

-~~~ + - + - .- + -

f-- - - - - -+++ -

- ++4-.-- -- - -++-

---- - - -- - _+ + +

-2

C

I- I- -t- I- I- -t- 11 Ir -t. I- _t --- - - - M - - -

. - - - - - - - M M

. - - - - - - - - -

. - - - - - - - - -

. - - - -
+ - M - - - - - -

. - - -- - - - - - -+ +
+ +

+ + + ++ + + + + + +
. I . .I
.
.
.
.
...............
...

. - - -
...
.L. A- I _L -L _L -I- _L _L _L _L _L _L _L _L -i- _L _L - - -

11

Figure 6-2 illustrates how LIME works, using a 2-dimensional space for simplicity.

6-2 (A) shows the decision boundary of a black-box model. The points inside the blue

inverted V space have a positive label and the ones outside have a negative label. In

6-2 (B), the yellow point is the data point at which the model must be approximated.

The black dots represent perturbed points sampled from normal distributions of the

two features. In 6-2 (C), the black dots near the yellow point are given higher weights.

The red line in 6-2 (D) describes the linear approximation computed by LIME. The

points to its left are classified as positive and those to its right as negative.

6.2.2 Shortcomings of LIME

Recall that LIME assumes features are independent. Violations of this assumption

can affect the approximations produced by LIME in two ways:

1. The values of the regression coefficients cannot be interpreted inde-

pendently.

Figure 6-1 illustrates this point. Notice that the feature for number of requests

for lines of credit in the last six months (NumLOCReqLast6M) has a coefficient

with a different direction (red and slanted lines vs dotted green) than that of its

closely related feature for number of requests for lines of credit in the last six

months excluding the past week (NumLOCReqLast6MExPastWeek). This is a

non-intuitive result because the features have very similar meanings and hence

should affect the probability of default in the same direction.

Such discrepancies are common in any linear regression trained on data with

multicollinearity. Although the predictive accuracy of the regression is not af-

fected by this condition, it may not be reliable to interpret the regression coeffi-

cients independently. In this thesis, we do not address this general shortcoming

of linear regression and its impact on LIME. We suggest alternate regression

techniques that are robust to highly correlated features in Section 8.2: Further

85

Work.

2. The perturbed data points sampled by LIME may be invalid.

This can be illustrated by a simple example. Imagine a dataset with two fea-

tures A and B, with a constraint that A < B. Sampling each feature's value

independently, as done in LIME's original algorithm, may produce perturbed

data points where this constraint is violated.

LIME may also produce invalid feature values due to its assumption that fea-

tures are normally-distributed without skews. For instance, let feature A only

take positive values with mean = 1 and standard deviation = 2 (suggesting

a right skew). Drawing from a normal distribution with the same mean and

standard deviation may result in sampling negative and hence invalid values for

A.

We address this second shortcoming of LIME by implementing a modified al-

gorithm. Specifically, we relax the assumption that features are independent

while sampling perturbed points.

6.2.3 Modified Implementation of LIME

LIME's assumption that input features are independent may break down in real-world

datasets. As described in Section 4.3.1, the HELOC dataset has 3 pairs of features

with correlations greater than 0.8 and thus violates this assumption. While it is

possible to remove correlated features with manual feature selection, this undermines

one of the strengths of deep learning i.e., the minimal need for feature engineering.

The second shortcoming of LIME described in Section 6.2.2 raises an important

question - How does training on perturbed points with possibly invalid values affect

the quality of a LIME approximation? The possibility that perturbed data points

with invalid values cause a reduction in the performance of the LIME approximations

motivates our modified implementation of LIME, in which we relax the assumption

86

of feature independence.

This modification changes the methodology of sampling a data point in Step 3)

of the LIME algorithm. In the original implementation, a data point that consists of

n features is sampled by sampling each of its n features independently from univari-

ate normal distributions. In our modified implementation, a data point is sampled

directly from a joint multivariate normal distribution across all features. This allows

the perturbations to be informed by the correlation of features. The multivariate

normal distribution is still centered on the mean of each feature value but its stan-

dard deviation along each feature is determined by the correlation matrix of the input

data.

6.2.4 Evaluating the Original and Modified Implementation

of LIME

We use the original and modified implementations of LIME to approximate the best-

performing MLP model. We evaluate these approximations on Fidelity and Modifi-

cation Power in the belief that the implementation whose sample of perturbed points

violates fewer constraints will produce a better approximation. As we explore be-

low, this hypothesis is confirmed in certain scenarios. The modified implementation,

whose sample of perturbed points contains fewer violations, outperforms the original

implementation on Fidelity and Modification Power in certain cases.

Validity of Perturbed Points

As noted, LIME samples perturbed points in the neighborhood of the input data

point. We generate a set of 5,000 perturbed data points from several univariate

normal distributions centered at the feature means and a single multivariate normal

distribution centered similarly. We measure the quality of the sampled points by two

metrics.

87

1. Correlation

The correlation between features of the perturbed data points ought to be simi-

lar to that of the features in the training dataset. We compute the mean squared

error (MSE) between the correlation matrix of the training data and that of the

perturbed points generated by both implementations of LIME. Let us call these

values MSE"rii"l and MSEmodified respectively. We find that MSEmodified is

much smaller than MSEoriginal (0.000 vs 0.053). This is expected because the

correlation matrix of the training data is an input to the multivariate normal

distribution that samples perturbed points in the modified implementation.

2. Constraint Violations

There are 12 constraints relevant to the HELOC dataset (6 relational constraints

and 6 value constraints). We derive these manually using domain knowledge

with assistance from FICO personnel. The 5,000 perturbed data points are

scanned for violations of these constraints.

One frequently violated constraint is the requirement that all feature values

that are interpreted literally and quantitatively (non-special values) must be

non-negative. It does not make sense for any of the features in the HELOC

dataset to have negative values. For instance, the feature for the number of

total lines of credit (NumTotalLOC) cannot be a negative number. We do not

consider special values to be negative because they are used symbolically and

not interpreted numerically.

The results for all constraints are shown in Table 6.1 and summarized in Table

6.2. We see that the modified implementation of LIME produces fewer violations

than the original implementation in 7 out of the 12 constraints. Moreover, a

perturbed point sampled by the modified implementation has on average 1.954

constraint violations vs 2.627 for the original implementation.

88

Index Constraint Original Modified
LIME LIME
Violations Violations

1 All feature values interpreted 4383 4024
quantitatively must be non-
negative

2 PercentLOCNeverDelq < 100 1198 1183
3 PercentInstLOC < 100 1 2
4 PercentLOCWBalance < 100 340 296
5 FracRevLOCLimitUse K 100 62 75
6 FracInstLOCUse < 100 509 506
7 NumLOC90PlusDaysDelq < 1656 655

NumLOC60PlusDaysDelq
8 NumLOCReqLast6MExPastWeek 2095 388

< NumLOCReqLast6M
9 NumLOC60PlusDaysDelq < 191 239

NumTotalLOC
10 NumLOC90PlusDaysDelq < 192 233

NumTotalLOC
11 NumLOCNotDelq < NumTotal- 2257 1915

LOC
12 NumLOCInLast12M K NumTo- 249 255

talLOC

Table 6.1: Comparison of Constraint Violations Among 5,000 Perturbed Points Sam-
pled from the Original and Modified Implementations of LIME. The points sampled
from the modified implementation of LIME have fewer violations in 7 out of the 12
constraints.

Fidelity

We evaluate the Fidelity of approximations produced by the original and modified

implementations of LIME with respect to the best-performing MLP. We construct an

approximation at each of the 1, 973 points in the test dataset. We compute the fraction

of times the MLP and the LIME approximations produce the same classification.

We find that the modified implementation achieves a slightly higher Fidelity i.e.

1937 = 0.981 vs the 1934 = 0.980 for those generated by the original implementation.
1973 1973

This small difference is not statistically significant.

89

Original Implementation Modified Implementation
Mean Std. Mean Std.

Dev. Dev.
2.627 1.323 1.954 1.273

Table 6.2: Count of Constraint Violations by Perturbed Data Generated from Original
and Modified Implementations of LIME. The average violations per perturbed point
is lower for the modified implementation than that of the original implementation.

Modification Power

We define a modification as a set of minimal changes to a data point intended to

reverse its classification. An effective modification is one that produces the desired

change in the classification of the data point.

We compute the Modification Power of both implementations of LIME. We use

the LIME implementations to generate linear approximations of our MLP at each

of the 732 adversely classified points in our test set. Then, we derive modifications

for each of these points using the linear approximations. Lastly, we measure the

effectiveness of the modifications i.e., the rate with which they are able to reverse the

classifications of the adversely classified points.

The coefficients of a traditional linear regression can be used to inform changes

to a data point such that it moves from one side of the decision boundary to the

other. Similarly, the coefficients of a LIME linear approximation of a black-box

machine learning model can be used as to help suggest possible modifications. The

key assumption is that the linear approximation will demonstrate high Fidelity to

the underlying model both in the neighborhood of the data point in question and

in the neighborhood of the modified point. If the modifications are small and the

linear approximation reverses its classification for the modified point, it is likely the

underlying model will also reverse its classification.

We design a generate and test algorithm to find effective modifications that can

reverse the classification of a sample data point. First, we generate a possible modifi-

90

cation. If the modification is effective, we terminate. Otherwise, we generate another

possible modification and repeat the cycle. Once we have exhausted the space of

potential solutions, we terminate with a result that no solution was found. We vi-

sualize these steps in the flowchart presented in Figure 6-3. We characterize the

modifications as domain-agnostic because our algorithm generates them using purely

numerical analysis. It does not consider the real-world meaning of the features. We

describe what the alternative might entail in Section 7.3.

by 0.01 Liner Local
eiteru o target Adon irdlaeof ML

Model
yes

Decremni
by 0.01

PO'W > .5No aalAilc
No Exoemdb Umf? N ooaio

No
Effleclive?

yes

SEnd

Figure 6-3: Flow Chart for Generating Effective Modifications. Once a modification is
generated, we check if it is effective. If yes, we terminate with a solution. Otherwise, we
either increase or decrease the value of p target based on the desired label. If p target reaches its
limits of 0 or I and no effective modification has been found, we terminate with no solution.

91

Let us now describe our algorithm in detail. Given a machine learning model and

a sample data point X whose classification we wish to reverse:

1. A LIME approximation is generated for a trained model at that data point.

2. If we wish to reverse the classification of the data point from adverse to fa-

vorable, the probability that it is classified adversely must be less than or

equal to 0.5. This can be written formally as Pr(Y = l|Xmodified) < 0.5.

Let us call pa'e the desired probability for adverse classification. Then, Ap =

ptarget - Pcurent is the change in the probability required to reach this tar-

get probability. We initialize ptarget to correspond to the edge of the decision

boundary on the side of our desired classification. If the desired classification

is favorable, Ptarget = 0.5. Otherwise, it is 0.51.

3. We sort the coefficients of the LIME regression, from largest to smallest absolute

values in order to produce modifications with the greatest effect per unit change

in xi.

4. In the simplest terms, the values of features are moved up or down to their

extreme values until the change that they collectively produce on Pr(Y = 11X)

is at least equal to the desired Ap.

Let Axmin denote the difference between a feature i's current value and its

minimum. Similarly, let AXzax denote the difference between the feature's

current value and its maximum. For a positive regression coefficient /3i, 0i-Ax'in

represents the greatest value by which feature i can decrease the output of the

regression. Similarly, for a negative Oi, 3 -AXax represents the greatest value

by which feature i can decrease the output of the regression.

Given the ordering of our features, we choose the smallest k such that:

k

Z - A zmax/min > Ap
i=1

92

By modifying features to their extreme values in the order of their corresponding

coefficients in the linear approximation, the total Euclidean distance between

the original and modified point is minimized. This can be demonstrated by a

simple example.

Consider a data point X with two features and assume a linear regression model

currently predicts an adverse classification, Pr(Y = 11X) = 0.60 with /1 = 1

and 02= 0.5. To correct this classification by decreasing Pr(Y lXmodif ied)

to 0.40, we need Ap = -0.20. Two possible modifications are:

(a) Set Ax1 -0.20, producing a change /h - Ax1 = -0.20, the desired

amount.

(b) Set Ax1 = -0.10 and Ax 2 = -0.20, which produces a change /3 1 - Ax +

/32 - Ax 2 -0.10 - 0.10 = -0.20, again the desired amount.

The first modification has a smaller Euclidean distance to the original data

point. This is because it only changes the value of x1 , the feature that cor-

responds to the largest coefficient /1. This property is desirable because it is

more likely that a LIME approximation has a high Fidelity to the underlying

model at points closer to the input data point than ones further away.

5. Validate that the LIME approximation predicts the desired classification for the

modified data point and determine whether the underlying model predicts the

same classification as well.

6. If yes, the algorithm terminates and returns the set of changes as an effective

modification. Otherwise, we return to Step 3, decrease or increase Ptarget by

0.01 in the desired direction, and repeat the same steps.

7. If ptarget has reached its extreme values of 0 or 1 and we have not found an ef-

fective modification, we terminate with the result that no effective modification

was found.

93

We run our modification algorithm for all points in the test set that are classified

adversely by the MLP i.e., as likely for default. In Table 6.3, we see the effect of

varying ptarset on the rate of successfully reversing the classification of data points

from adverse to favorable. By choosing a smaller ptre, we try to push a data point

further into the favorable region, farther from the decision boundary. As expected,

this results in a higher rate of reaching a favorable classification. Interestingly, we

see that the modified implementation of LIME has a significantly better Modification

Power than that of the original implementation when pt"rgct is close to the edge of the

decision boundary at 0.5. The significance of this difference decreases as we decrease

Ptarget. This makes sense intuitively because coarse approximations may be sufficient

to guide a data point deep across the other side of the decision boundary.

ptarget Original LIME Modified LIME Difference
Modification Modification (2) - (1)
Power (1) Power (2)

0.5 5 = 0.753 636 = 0.813 4 = 0.060

0.49 2 = 0.872 710 = 0.908 2 = 0.036

0.48 7 = 0.955 7 = 0.965 8= 0.010782 782 782

0.47 7 = 0.980 768 = 0.982 2 = 0.002782 782 782

0.46 7 = 0.993 7 = 0.989 = -0.003

0.45 7 = 0.997 77 -0.993 = -0.003
7.4 782 =782

0.44 78 1.000 781 =0.998 - -=-0.002

Table 6.3: Comparison of Modification Power Between Original and Modified LIME.
The modified implementation does significantly better when parget is close to the
decision boundary. As ptarget decreases, the difference between the Modification Power
of both implementations is not statistically significant.

Our modification algorithm leverages LIME to also be model-agnostic i.e., inde-

pendent of the model class or implementation. However, its shortcoming is that does

not guarantee an effective modification i.e., there may be scenarios in which the mod-

94

ified data point is classified differently by the LIME approximation but its class is

unchanged in the original model. This can happen if an approximation demonstrates

high Fidelity at the adverse data point but a low Fidelity in the neighborhood of the

modified data point. Hence, it is best to minimize the Euclidean distance between

the original and modified data point.

95

96

Chapter 7

Generating Explanations: Rationales

and Effective Modifications

In this chapter, we generate textual explanations for three HELOC applicants using

the modified implementation of LIME described in Chapter 6. We provide each

applicant rationales for why they were classified the way they were. If they were

classified adversely, we suggest actionable steps for them to become Creditworthy and

if found Creditworthy, we present cautionary advice for them to remain Creditworthy.

Through these examples, we show first that model approximation techniques can be

used to generate effective modifications and second that such modifications must be

combined with domain-knowledge to produce explanations of pragmatic utility.

7.1 Methodology

We select three HELOC applicants from the test set. Let us denote them as X('), X(2)

and X('). The first applicant, X(1) and the third, X(3) have ground truth classifica-

tions of Non-creditworthy and the second, X(2) as Creditworthy. Our best-performing

model, an MLP trained on WoE Data, classifies them correctly as well. The original

97

feature values, the corresponding Weight of Evidence (WoE) bins and WoE values

are tabulated for all three applicants in Tables 7.1, 7.2, and 7.3 respectively.

We compute a linear local approximation of the MLP at each of these sample

points using the modified implementation of LIME. We use the regression coefficients

of these approximations and the feature values of the data point to identify the

factors most influential for each classification. These provide the rationales for the

classifications.

As described in Section 6.2.4, our modification algorithm can suggest changes to

an input data point and determine if its classification reverses. We use this approach

to generate effective modifications for our three sample data points.

7.2 Examples

We use the first two examples to demonstrate how effective modifications can be

generated from numerical techniques that are agnostic to the credit domain. The third

example serves to show the shortcomings of this approach and motivates the need for

incorporating domain-knowledge to produce modifications of pragmatic utility.

7.2.1 Example 1: Actionable Steps For A Non-Creditworthy

Applicant

In this example, our algorithm generates an effective modification that reverses the

classification of a Non-creditworthy applicant. As described earlier, this modification

is generated purely numerically and is agnostic to the domain-specific meaning of

our features. We see that the advice suggested is both actionable and practically

straightforward to implement for the credit applicant.

98

Feature] Original Value WoE Bin I WoE Value
ExternalRiskEstimate 65 [64,68) 0.813

MSinceFirstLOC 172 [138,214) -0.054
MSinceNewestLOC 4 [2,10): 0.04

AvgAgeOfLOC 68 [60,75) 0.077
NumLOCNotDelq 28 [17,32) -0.157

NumLOC60PlusDaysDelq 1 [1,2) 0.465
NumLOC90PlusDaysDelq 0 [0,1) -0.194

PercentLOCNeverDelq 66 [0,82) 1.182
MSinceMRecentDelq 22 [16,32) 0.286

MaxDelqLast12M G [GH) 0.085
MaxDelqEver E [CF) 0.545

NumTotalLOC 29 [28,inf) -0.264
NumLOCInLast12M 2 [2,3) 0.017

PercentlnstLOC 28 [0,29) -0.24
MSinceNewLOCReqExPastWeek 0 [0,1) 0.371

NumLOCReqLast6M 3 [2,4) 0.211
NumLOCReqLast6MExPastWeek 3 [3,4) 0.25

FracRevLOCLimitUse 45 [38,48) 0.278
FraclnstLOCUse 80 [70,84) 0.197

NumRevLOCWBalance 8 [8,inf) 0.584
NumInstLOCWBalance 2 [2,3) -0.049

NumBank/NatlLoansWHighUtil 1 [1,2) 0.212
PercentLOCWBalance 71 [69,74) 0.069

Table 7.1: Original and WoE Feature Values of The Non-creditworthy Applicant X
MaxDelqEver = E means the credit applicant has been 60+ days delinquent ever.
MaxDelqLast12M = G means their maximum delinquency in the last 12 months is
is unknown.

Classification

The LIME approximation predicts the probability of default of this applicant is 0.805.

Figure 7-1 visualizes the contribution of each feature towards this prediction by weigh-

ing the regression coefficients of the LIME approximation by the respective WoE en-

coded feature values. The bars in purple and slanted lines represent the contributions

of those features that increase the probability of default and the bars in dotted yellow

represent the contribution of the features that decrease that probability. The LIME

regression's prediction is the sum of these feature contributions and the regression

99

offset.

LIME Feature Contribution For Pr(Y=1|X) = 0.805

PercentLOCNeverDelq -
NumRevLOCWBalance -

MSinceNewLOCReqExPastWeek -
MaxDelqEver -

ExtemaiRiskEstimate -
MsinceMRecentDelq -
NumLOCReqLast6M -

NumTotaILOC -
FracRevLOCLimitUse -

PercentinstLOC -
NumLOCReqLast6MExPastWeek -

NumLOC60PIusDaysDeIq -
NumLOCNotDeIq -

NumBankOrNatlLoansWHighUtil -
AvgAgeOfLOC -

FraclnstLOCUse -
MaxDeIqLastl2M -

NumInstLOCWBalance -
MSinceNewestLOC -

NumLOC90PIusDaysDeIq -
PercentLOCWBalance -

NumLOCInLast12M -
MsinceFirstLOC -

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10

Figure 7-1: Rationales for the Prediction of Pr(Y = 1IX(1)) = 0.805 Produced by the LIME
Linear Approximation. The features with bars in purple and slanted lines increased the
probability of default and those with bars in dotted yellow decreased that probability.

Using the bars in purple and slanted lines in Figure 7-1, we can identify the top

four factors' that adversely affected the classification of this applicant. This provides

the rationale for the classification.

1. Too many of their lines of credit have been delinquent at least once (Percent-

LOCNeverDelq).

2. They have too many revolving lines of credit with outstanding balances (Num-

RevLOCWBalance).

'The Fair Credit Reporting Act (FCRA) mandates that a lender must be able to disclose up to

four factors that adversely affected a denied applicant

100

3. They have a poor global credit score (ExternalRiskEstimate).

4. They requested for a new line of credit too recently (MSinceNewLOCReqEx-

PastWeek).

Given that X1 understands the rationale of why they were classified adversely,

they would now be interested in actionable steps to reach a favorable classification

the next time.

Effective Modifications

An effective modification is one that produces the desired change in the classification

of a sample data point. Recall that our algorithm selects an increasingly extreme

value of Ptarget in each iteration and finds modifications such that the probability

of default of the modified point is equal to p"re". In this particular instance, the

algorithm finds a modification at ptarge = 0.40 with four changes, all of which need

to be made for the applicant to receive a favorable classification:

1. Increase the number of months since the newest request for a line of credit

excluding the past week from its current value of 0 to 9 or more (MSince-

NewLOCReqExPastWeek), and

2. Increase the average age of all lines of credit from its current value of 68 to at

least 98 (AvgAgeOfLOC), and

3. Decrease the number of requests for new lines of credit in the last 6 months

from its current value of 3 to 0 (NumLOCReqLast6M), and

4. Decrease the number of revolving lines of credit with outstanding balances from

its current value of 8 to 5 or fewer (NumRcvLOCWBalance).

Expressed in more straightforward English, the advice suggests:

101

1. Do not apply for a new line of credit for at least the nine months prior to

applying for the HELOC (MSinceNewLOCReqExPastWeek), and

2. Wait for at least 30 months (2.5 years) to improve the average age of your

existing lines of credit (AvgAgeOfLOC), and

3. Do not apply for any new lines of credit during the six months prior to applying

for the HELOC (NumLOCReqLast6M), and

4. Pay off at least 3 of your 8 revolving lines of credit that have outstanding

balances (NumRevLOCWBalance).

Our algorithm determines that these changes do indeed reverse the classification

of the Non-Creditworthy applicant to Creditworthy. Note that the advice in Step 3

is a subset of that given in Step 1, though they are motivated by different features

(NumLOCReqLast6M and MSinceNewLOCReqExPastWeek respectively). This hap-

pens because our algorithm treats these features purely numerically and is agnostic

to their meaning. In this particular case, it is not a problem because the applicant

can accomplish both steps by completing Step 1.

A linear approximation determines its output Pr(Y = 11X) from a linear combi-

nation of the Xi's, weighted by the #j's. As we are interested in moving the applicant

to the other side of the decision boundary, we consider the 03's with the largest abso-

lute values. Changes in the values of the corresponding Xi's will produce the greatest

effect on Pr(Y =1X). Notice that these X2 's are not necessarily the same ones that

were chosen as key rationales to explain the applicant's adverse classification. For

instance, the average age of all lines of credit (AvgAgeOfLOC) and the number of

requests for new lines of credit (NumLOCReqLast6M) were not among the four key

factors that adversely affected the applicant.

102

7.2.2 Example 2: Cautionary Advice For A Creditworthy Ap-

plicant

Our second example deals with an applicant that was deemed Creditworthy. This

applicant would not be interested in understanding how to become Non-creditworthy,

but instead in how to remain Creditworthy. We demonstrate how our algorithm can

be used to provide cautionary advice that satisfies this need. Again, the effective

modification suggested in this example uses a purely numerical analysis and does not

incorporate any domain-knowledge.

Feature Original Value WoE Bin WoE Value

ExternalRiskEstimate 82 [79,84) -1.023
MSinceFirstLOC 374 [325,inf) -0.661

MSinceNewestLOC 4 [2,10) 0.04
AvgAgeOfLOC 100 [98,inf) -0.624

NumLOCNotDelq 26 [17,32) -0.157
NumLOC60PlusDaysDelq 0 [0,1) -0.28
NumLOC90PlusDaysDelq 0 [0,1) -0.194

PercentLOCNeverDelq 100 [98,inf) -0.511
MSinceMRecentDelq -7 -7 -0.498

MaxDelqLast12M H [Hj] -0.568
MaxDelqEver 8 [Hj] -0.501

NumTotalLOC 27 [21,28) -0.068
NumLOCInLastl2M 3 [3,4) 0.122

PercentInstLOC 22 [0,29) -0.24
MSinceNewLOCReqExPastWeek 3 [1,4) -0.456

NumLOCReqLast6M 2 [2,4) 0.211
NumLOCReqLast6MExPastWeek 2 [2,3) 0.193

FracRevLOCLimitUse 28 [13,29) -0.353
FracInstLOCUse 94 [84,inf) 0.263

NumRevLOCWBalance 3 [3,4) -0.237
NumInstLOCWBalance 4 [4,inf) 0.261

NumBank/NatlLoansWHighUtil 2 [2,3) 0.519
PercentLOCWBalance 50 [50,61) -0.349

Table 7.2: Original and WoE Feature Values of The Creditworthy Applicant XN. The
values of MaxDelqEver and MaxDelqLast12M mean that the applicant has never had
a delinquency.

103

Classification

The LIME approximation of the MLP at X(2) predicts that the probability of default

of the applicant is 0.17. This is below the 0.5 threshold and hence, they are Credit-

worthy. As per the dotted yellow bars in Figure 7-2, we see that the top four factors

that contributed favorably towards the applicant's classification are:

1. The average age of their lines of credit is high (AvgAgeOfLOC).

2. They have not applied for new lines of credit too recently (MSinceNewLOCRe-

qExPastWeek).

3. They have not had a delinquency too recently (MSinceMRecentDelq).

4. They have a good global credit score (ExternalRiskEstimate).

Effective Modifications As Cautions

Our algorithm suggests two pieces of cautionary advice at a target probability of

default, Ptarget - 0.51:

1. Do not decrease the number of months since the newest request for an additional

line of credit from its current value of 3 to 0 (MSinceNewLOCReqExPastWeek),

and

2. Do not decrease the average age of your lines of credit from its current value of

100 to less than 28 (AvgAgeOfLOC).

Using the calculations in Appendix 9.1.1, we can restate this advice in more un-

derstandable terms as:

104

LIME Feature Contribution For Pr(Y=1IX) = 0.17

AvgAgeOfLOC -
MSinceNewLOCReqExPastWeek -

MSinceMRecentDelq -
MaxDelqEver -

ExtemaiRiskEstimate -
PercentLOCNeverDelq -

FracRevLOCLimitUse -
NumRevLOCWBalance -

NumLOCReqLast6M -
NumBankOrNatlLoansWHighUtil -

MaxDelqLastl2M -
PercentinstLOC -

NumLOCNotDelq -
NuminstLOCWBalance -

NumLOCReqLast6MExPastWeek -
FracinstLOCUse -

NumLOC60PIusDaysDeIq -
NumTotaILOC -

NumLOCInLastl2M -
PercentLOCWBalance -

MsinceNewestLOC -
NumLOC90PIusDaysDeIq -

MSinceFirstLOC I

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04

Figure 7-2: Rationales for the Prediction of Pr(Y = 1X(2)) = 0.17 Produced by the LIME
Linear Approximation. The features with bars in purple and slanted lines increased the
probability of default and those with bars in dotted yellow decreased that probability.

1. Do not shop for other lines of credit in the month prior to your next HELOC

application (MSinceNewLOCReqExPastWeek), and

2. Be wary of opening 70 or more lines of credit because doing so will decrease the

average age of your lines of credit (AvgAgeOfLOC) too substantially.

The second piece of advice might sound extreme but it informs the candidate that

they can comfortably open a few additional lines of credit, should they desire.

105

7.2.3 Example 3: Actionable Steps For A Non-Creditworthy

Applicant, A Problematic Case

The fact that we are generating modifications agnostic to the credit domain will

become particularly evident in this example. In contrast to the previous examples,

we see that our algorithm generates a modification that is not pragmatically-useful.

To address this, we augment our algorithm with domain-knowledge and demonstrate

how we can generate an effective and domain-informed modification. An interesting

aspect about the modification in this examples is that it advises the applicant both

on what they should do and what they shouldn't, to reach a favorable classification.

Feature Original Value WoE Bin WoE Value

ExternalRiskEstimate 62 160,64) 1.25
MSinceFirstLOC 275 [214,325) -0.342

MSinceNewestLOC 6 [2,10) 0.04
AvgAgeOfLOC 99 [98,inf) -0.624

NumLOCNotDelq 21 [17,32) -0.157
NumLOC60PlusDaysDelq 1 [1,2) 0.465
NumLOC90PlusDaysDelq 1 [1,2) 0.536

PercentLOCNeverDelq 91 [89,93) 0.365
MSinceMRecentDelq 12 [9,16) 0.694

MaxDelqLast12M G [G,H) 0.085
MaxDelqEver G [GH) 0.308
NumTotalLOC 22 121,28) -0.068

NumLOCInLast12M 1 [1,2) -0.096
PercentInstLOC 55 [48,79) 0.471

MSinceNewLOCReqExPastWeek 15 [9,inf) -0.9
NumLOCReqLast6M 0 [0,1) -0.302

NumLOCReqLast6MExPastWeek 0 [0,1) -0.284
FracRevLOCLimitUse 87 [77,inf) 1.451

FracInstLOCUse 71 [70,84) 0.197
NumRevLOCWBalance 6 [6,8) 0.286
NumInstLOCWBalance 5 [4,inf) 0.261

NumBank/NatlLoansWHighUtil 5 [5,inf) 1.207
PercentLOCWBalance 92 [87,inf) 0.914

Table 7.3: Original and WoE Value Of The Non-Creditworthy Applicant.
MaxDelqEver = G and MaxDelqLast12M = G both means it is not known if
the applicant has ever had a delinquency in the respective time lines.

106

Classification

The LIME approximation of the MLP predicts the probability of default of this

applicant is 0.695. This is above the 0.5 threshold and matches the applicant's ground-

truth label of Non-creditworthy. Using Figure 7-3, we identify the rationales for the

applicant's adverse classification:

1. They use a high fraction of their available revolving credit limits (FracRevLO-

CLimitUse).

2. They had a delinquency too recently (MSinceMRecentDelq).

3. They have a poor global credit score (ExternalRiskEstimate).

4. The have too many bank or national loans with high utilization (NumBank/ NatLoansWHighUtil.)

Effective Modifications

At the very first value of pa'ret = 0.5, the algorithm finds an effective modification

with six suggestions. The applicant must act appropriately on all of them to be

deemed Creditworthy.

1. Do not decrease the number of months since the newest request for a line of

credit from its desirable current value of 15 (MSinceNewLOCReqExPastWeek),

and

2. Do not decrease the average age of all lines of credit from its desirable current

value of 99 (AvgAgeOfLOC), and

3. Do not increase the number of requests for new lines of credit in the past 6

months from its desirable current value of 0 (NumLOCReqLast6M), and

107

LIME Feature Contribution For Pr(Y=1X) = 0.695

MSinceNewLOCReqExPastWeek -
FracRevLOCLimitUse -

AvgAgeOfLOC -
MSinceMRecentDelq -

ExternaIRiskEstimate -
NumBankOrNatlLoansWHighUtil -

PercentinstLOC -
NumLOCReqLast6M -

NumRevLOCWBalance -
PercentLOCNeverDelq -

MaxDelqEver -
NumLOCReqLast6MExPastWeek -

NumLOC60PIusDaysDeIq -
NumLOCNotDeIq -

NuminstLOCWBalance -
PercentLOCWBalance -

FracinstLOCUse -
NumTotaILOC -

MaxDelqLast12M -
NumLOC90PIusDaysDeIq -

NumLOCInLastl2M -
MSinceNewestLOC -

MSinceFirstLOC

-0.15 -0.10 -0.05 0.00 0.05 0.10

Figure 7-3: Rationales for the Prediction of Pr(Y = 1IX(3)) = 0.695 Produced by the LIME

Linear Approximation. The features with bars in purple and slanted lines increased the

probability of default and those with bars in dotted yellow decreased that probability.

4. Decrease the number of revolving loans with outstanding balances from its cur-

rent value of 6 to 2 or fewer. (NumRevLOCWBalance), and

5. Increase the number of months since the most recent delinquency from its current

value of 12 to 48 or more (MSinceMRecentDelq), and

6. Change the maximum delinquency ever from its current value of 30+ days

delinquent (MaxDelqEver)

This advice reveals both a noteworthy capability and a shortcoming of the modifi-

cation algorithm. While Section 7.2.1 shows how the algorithm can advise a favorably

classified applicant on what not to do, this example shows its capability to do the

same for an adversely classified applicant. In fact, the first three modifications are

108

instances of cautionary pieces of advice. The caveat is that the algorithm has identi-

fied only those features with the will produce the highest change in output per unit

change in feature values. This list is thus not exhaustive.

The shortcoming of the algorithm is that in this particular instance, one of its

suggested modifications is infeasible: The applicant cannot change the value of their

maximum delinquency ever (MaxDelqEver) to a less unfavorable value. Once an

applicant has been 30+ days delinquent ever, they can only further deteriorate the

feature value by being more delinquent (say by 60+ days) but they cannot improve it.

This shortcoming cannot be addressed if the algorithm is domain-agnostic. Instead,

it must use domain-knowledge to distinguish between features that are controllable

by the applicant and those that are not. We implement this change and run the

modification algorithm on the same applicant. It arrives at a modification with iden-

tical changes in Steps 1 to 5, but this time suggests modifications to the features

NumLOCNotDelq and NumTotalLOC in place of MaxDelqEver in Step 6. These

additional steps are:

1. Increase the number of lines of credit that are not currently delinquent from its

current value of 21 to at least 32 (NumLOCNotDelq), and

2. Increase the number of total lines of credit from 22 to at least 28 (NumTotal-

LOC).

Once again, expressed in more straightforward English, the advice suggests:

1. Do not apply for a new line of credit prior to applying for the HELOC (MSince-

NewLOCReqExPastWeek), and

2. Do not apply for any new line of credit for the six months prior to applying for

the HELOC (NumLOCReqLast6M), and

3. Pay off at least 4 of your 6 revolving lines of credit that have outstanding

balances (NumRevLOCWBalance), and

109

4. Do not have another delinquency for the next 3 years (MSinceMRecentDelq),

and

5. Open 11 new lines of credit that are not delinquent (NumLOCNotDelq), and

6. Open 6 additional lines of credit (NumTotalLOC).

Among other actions, the advice suggests the credit applicant open 11 additional

lines of credit. Given that the applicant already has 22 lines of credit, this may be an

infeasible request. Embarking on this advice may prove to be particularly problematic

for the applicant in case they do not get approved for all 11 lines of credit. Yet, even

if they did, it would result in second-order effects on the values of other features. As

per the calculations in Appendix 9.2, there are six additional effects that we must

account for:

1. The number of months since the applicant opened their newest line of credit

will drop from 6 to 0 (MSinceNewestLOC).

2. Immediately after all new lines of credit have been established, the average age

of all lines of credit will reduce from 99 to 66 (AvgAgeOfLOC).

3. The percentage of lines of credit that have never been delinquent will increase

from 91 to 94 (PercentLOCNeverDelq).

4. The number of lines of credit the applicant will have opened in the last 12

months will increase from 1 to 12 (NumLOCInLastl2M).

5. Assuming all new lines of credit are revolving, the percentage of installment

lines of credit will decrease from 55 to 37 (PercentInstLOC).

6. Assuming the applicant has not yet started using the newly established lines

of credit, the percent of lines of credit with outstanding balances will decrease

from 92 to 61 (PercentLOCWBalance).

110

Additional complications arise because some of the second-order effects are com-

plex.

1. The new external risk estimate cannot be computed without knowing its formula

(ExternalRiskEstimate).

2. The new ratio of the fraction of the revolving lines of credit used will depend

on the credit limits of the new lines of credit (FracRevLOCLimitUse).

3. The number of lines of credit the candidate applied for in the previous six

months depends on whether they applied for all 11 credit lines at once, staggered

them over a period of time, or were offered to open some of the new credit

lines, in which case they do not count towards their requests for lines of credit

(NumLOCReqLast6M, NumLOCReqLast6MExPastWeek).

The explanation we provide above is both effective and consists only of changes

that a credit applicant can control. In particular, it avoids its previous mistake of

recommending changes to the external risk estimate, a feature that a credit appli-

cant cannot directly control. We generate this explanation using our modification

algorithm by explicitly defining which features are controllable and which are not.

However, the explanation falls short in asking a credit applicant to modify a control-

lable feature by a potentially infeasible value: opening 11 additional lines of credit

may not be practical. Furthermore, the modification implicitly assumes independence

of features, yet opening 11 new lines of credit will result in second-order effects on six

additional feature values, some precisely measurable and others uncertain. In fact,

once we account for these second-order effects on the feature values of the modified

point, it is classified again as Non-creditworthy by the MLP model. Simply put, the

modification fails.

Clearly, it is insufficient to consider only the numerical properties of features

to generate pragmatically-useful modifications. We must also understand whether

features are controllable, and if so, what changes to their feature values are feasible.

111

We need to go even further and consider the interdependencies between features, so

that if one feature value changes, we can account for its indirect effects on other

feature values.

7.3 Explanatory Utility

The examples in this chapter illustrate that treating features purely numerically, ag-

nostic to their domain-specific meaning, can produce effective modifications that may

not be pragmatically-useful. The modifications could have three types of shortcom-

ings:

1. They suggest changes to the value of a feature that is in fact not controllable

by a credit applicant.

2. They suggest practically infeasible changes to the value of a feature, even if it

is controllable.

3. They do not account for the second-order effects of changing feature values,

resulting from interdependencies among features.

To deal with these, we claim that our algorithm must consider the explanatory

utility of each feature in a modification. We define explanatory utility as the prag-

matic utility of a feature in an explanation. Such a value depends not only on the

feature itself but also on the change in its value proposed. For instance, a control-

lable feature like the total number of lines of credit (NumTotalLOC) has a higher

explanatory utility than an uncontrollable one such as the external risk estimate (Ex-

ternalRiskEstimate). Within a controllable feature like NumTotalLOC, increasing

the number of lines of credit from 0 to 11 is more practical and thus has a higher ex-

planatory utility than increasing it from 22 to 33. Developing such a notion requires

domain expertise and human judgment.

112

Our algorithm described in Section 6.2.4 generates domain-agnostic modifications.

To generate domain-informed modifications, we augment our algorithm with domain-

knowledge in three ways:

1. Account for the Controllability of Features - We explicitly categorize each

predictor feature as controllable (e.g. the number of total lines of credit) or non-

controllable (e.g. the external risk estimate). We constrain our algorithm to

suggest changes only to the values of features that are controllable.

2. Account for Second-Order Effects - We consider the interdependencies be-

tween features and account for them programmatically. For instance, if a new

line of credit is opened, the average age of all lines of credit will change in a

computationally predictable manner, among other effects. The effects of some

features may not be as precise and require assumptions about the future be-

havior of a credit applicant (e.g. what is the most likely effect of opening a new

line of credit on the fraction of the revolving lines of credit used?). These must

be constructed in consultation with domain experts.

3. Evaluate the Feasibility of Changing Feature Values - We use human

judgment to determine if an effective and domain-informed modification is also

pragmatically-useful. We believe that there is an opportunity to automate this

step in future work.

These changes are reflected in the flowchart presented in Figure 7-4. Once a

domain-agnostic modification is generated, we determine whether it is effective. If

yes, we use domain-knowledge to constrain the modification to changes in controllable

features only and account for second-order effects due to interdependencies among fea-

tures. We then produce a domain-informed modification. We test for its effectiveness

programmatically and finally, use human judgment to evaluate its pragmatic utility.

In summary, we demonstrate that generating explanations for a credit applicant

should not be a purely numerical exercise. Domain-knowledge can and must be

113

incorporated to generate pragmatically-useful modifications.

114

PCt"" imL 7e

by 001 LOWr LOW.
1 pP=*na*M of ML

Yes

Decramert
by 0.01

pW >0.5NO Dmi-god
<NO Exoefd Un? N oIcalAgmin

LYe

No
Effeadve?

omewkin

NO Effe"nv?

No

Figure 7-4: Flow Chart for Generating Domain-Informed Modifications. Once it is dete r-
mined that a domain-agnostic modification is effective, the explanatory utility of features
are considered to produce a domain-informed modification. If found effective as well, the
modification is evaluated by human judgment for its pragmatic utility.

115

116

Chapter 8

Conclusion and Next Steps

This thesis focused on answering two questions relevant to understanding the pre-

diction of any machine learning model for a sample data point. Why was the data

point classified the way it was? What small changes in its feature values could re-

verse its classification? We motivated these objectives by the needs of the credit risk

modeling domain. Specifically, we chose to generate explanations most useful for a

credit applicant. These include rationales for their classification. They also include

effective modifications that suggest actionable steps to reverse their classification.

While the former is a legal requirement by the Fair Credit Report Act, the latter is

of considerable practical use to a denied credit applicant. The key takeaway of the

thesis is that while model-approximation techniques can be used to generate effective

modifications, they must incorporate domain-knowledge to produce modifications of

pragmatic utility.

8.1 Key Results

In this thesis, we considered simplicity as a key ingredient in interpretability. This

motivated our approach to interpreting a black-box model by approximating it with a

117

simpler model. We considered linear regressions to be simple because of their decom-

posability into individual coefficients. Instead of approximating an entire black-box

model with a single, poorly-performing linear approximation, we chose to approximate

the model piece-wise using several linear approximations. We constructed local ap-

proximations of our best-performing MLP using LIME, a local model approximation

technique. We then used these approximations to generate rationales and effective

justifications for credit applicants.

LIME approximates the decision boundary of a black-box machine learning model

at a particular data point by constructing a locally-weighted linear regression. The

regression is trained on perturbed data points in the neighborhood of the input data

point. The original implementation of LIME assumed that features are independent.

As described in Section 4.3.1, our HELOC dataset violated this assumption as it had

3 pairs of features with correlations greater than 0.8. As a result, sampling feature

values independently, as per the original implementation of LIME, resulted in sam-

pling invalid perturbed data points. To address this shortcoming, we implemented

a modified version of LIME that relaxed this assumption and accounted for the cor-

relation of features. We found that the correlation of features of perturbed points

sampled from our modified implementation resembled that of the training data more

closely compared to that of perturbed points sampled from the original implementa-

tion. We also found that the modified implementation of LIME sampled perturbed

points with greater validity, as measured by the number of constraints violated.

We evaluated the two implementations of LIME on their ability to approximate

our best-performing model - a Multi-Layer Perceptron (MLP) trained on WoE data

with 74.7% test accuracy. The two criteria for the evaluation were Fidelity and Mod-

ification Power. Fidelity measured how often the linear approximation matched the

prediction of the underlying model at the data point of interest. Modification Power

measured the rate with which the classification of a set of adversely classified data

points could be reversed using modifications derived from linear approximations. We

found that the modified implementation of LIME outperformed the original imple-

118

mentation in both criteria in certain scenarios. While this was not true in all scenarios,

we believe that accounting for the correlations of features in LIME's algorithm, as

we did, is the correct approach when dealing with datasets with highly correlated

features.

Using a linear approximation as a proxy for the decision boundary of an underlying

model, we computed rationales for predictions. We also used the linear approxima-

tions to implement a generate and test algorithm that can suggest effective modifica-

tions intended to reverse the classification of a data point. Our algorithm identifies

changes to the feature values of a sample credit applicant to achieve a target proba-

bility of default ptaret. It also produces changes that result in the smallest possible

Euclidean distance between the original and modified point. It accomplishes this by

optimizing changes in the features with the greatest coefficient values. An interesting

result was that features that might contribute most adversely to a classification may

not be the best features to change in a modification.

Although our methodology does not guarantee an effective modification, we saw

promising results empirically on our HELOC dataset. As per Table 6.3, we found that

the effectiveness of modifications increased with increasingly extreme (lower in this

case) values for par9et. We also saw that the modified implementation of LIME had

a significantly greater Modification Power compared to the original implementation

when parge' was close to the edge of the decision boundary. The significance of this

difference decreased as we decreased ptrget. This result made sense intuitively because

even coarse approximations may be sufficient to guide a data point deep across the

other side of the decision boundary.

We used three examples to show that effective modifications may not be pragmat-

ically useful. The modifications may suffer from three possible types of shortcomings:

1. They suggest changes to the value of a feature that is in fact not controllable

by a credit applicant.

119

2. They suggest practically infeasible changes to the value of a feature, even if it

is controllable.

3. They do not account for the second-order effects of changing feature values,

resulting from interdependencies among features.

Through our results, we claim that these shortcomings cannot be dealt with by

numerical analysis that is agnostic to the domain of the data. Instead, we argue

that modifications must use domain-knowledge and consider the explanatory utility

of each feature i.e., its pragmatic utility in an explanation. We augment our domain-

agnostic modification algorithm to generate domain-informed modifications in three

ways:

1. Account for the Controllability of Features - We explicitly categorize each

predictor feature as controllable (e.g. the number of total lines of credit) or non-

controllable (e.g. the external risk estimate). We constrain our algorithm to

suggest changes only to the values of features that are controllable.

2. Account for Second-Order Effects - We consider the interdependencies be-

tween features and account for them programmatically. For instance, if a new

line of credit is opened, the average age of all lines of credit will change in a

computationally predictable manner, among other effects.

3. Evaluate the Feasibility of Changing Feature Values - We use human

judgment to determine if an effective and domain-informed modification is also

pragmatically-useful.

8.2 Further Work

There are several possible directions to further this work. As we outlined in Section

6.2.2, the coefficients of a LIME regression cannot be interpreted reliably in the

120

presence of highly correlated features. As a consequence, the rationales produced

by LIME regressions are not guaranteed to be reliable as well. SHAP is another

local interpretability technique described in Section 3.2.1 that can produce feature

attributions for a particular prediction, robust to the presence of highly correlated

features. However, unlike LIME, SHAP does not produce a linear approximation to

the underlying model. Due to this, we cannot directly use SHAP to generate effective

modifications using our generate and test algorithm. One potential solution might be

to infer a local approximation that is consistent with the SHAP feature attributions

for a particular data point and the feature values of that data point. It would be

interesting to benchmark the performance of a SHAP-inferred approximation with a

LIME approximation on our criteria of evaluation, namely Fidelity and Modification

Power.

Second, we modified the implementation of LIME to relax the assumption of inde-

pendence of features in sampling perturbed points. We found that the modified im-

plementation of LIME had several desirable properties. It sampled perturbed points

with greater validity. The correlation of features in the perturbed points sampled

from the modified implementation closely resembled that of features in the training

data. Moreover, the average violation of constraints per perturbed point sampled was

lower for the modified implementation than that of the original implementation. In

certain scenarios, we also saw the modified implementation of LIME outperformed

the original implementation, as measured by Fidelity and Modification Power.

One limitation of our modified implementation is that it only accounts for the

correlation of continuous features while sampling perturbed points. As a result, one

extension of our work could be to account for the correlations of categorical features

while sampling perturbed points.

Lastly and most importantly, we believe there is a scope to improve our generate

and test modification algorithm. In this thesis, we demonstrate that purely numer-

ical analysis, agnostic to the domain of the data cannot produce modifications of

121

pragmatic utility. By augmenting our modification algorithm, we demonstrate how

domain-knowledge can be incorporated to produce effective modifications that are

also pragmatically-useful. We accomplished this by considering the explanatory util-

ity of features: whether they are controllable, what changes in their feature values

are feasible, and how they are interdependent with each other.

In the final step of our correction algorithm, we use human judgment to evaluate

the practical feasibility of the changes in feature values suggested by an effective

and domain-informed modification. One extension of our work is to automate this

judgment. For instance, could our algorithm automatically decide that it is better to

advise an applicant to open a smaller number of lines of credit than to wait for an

unreasonably long period of time to improve the average age of their lines of credit?

Such an exercise could itself be a machine learning task that learns from previous

human judgments about the explanatory utility of suggested changes.

Another extension to our work could be to account for second-order effects with

greater granularity. In our work, we demonstrate that opening a new line of credit

affects the values of several interdependent features. Estimating the precise change in

the values of some features requires the ability to predict the future behavior of credit

applicants. For instance, how does the fraction of the revolving credit limit used by a

credit applicant tend to change after they have opened one new line of credit or ten?

We demonstrated in this work that capturing such second-order effects as accurately

as possible is essential for generating explanations of pragmatic utility.

122

Chapter 9

Appendix

9.1 Calculations for Example 2

In this section, we include calculations required for Example 2 in Chapter 7.

9.1.1 Average Age of All Lines Of Credit

We are interested in computing the number of additional lines of credit that would

have to be opened to change the average age of all lines of credit from its current

value of 100 to 28.

We know the formula,

TotalAgeOf LOC
NumTotalLOC

Or,

TotalAgeOf LOC = AvgAgeOf LOC - NumTotalLOC = 100 - 27 = 2700

123

Months.

Our target value for

AvgAgeOf LOCodified = 28

Hence,

NumTotalLOC,dif ied =
TotalAgeOf LOC

AvgAgeOf LOCmodified

2700
~96

-28

Therefore,

ANumT otalLOC = NumTotalLOCodif id - NumTotalLOC = 96 - 26 = 70

9.2 Calculations for Example 3

In this section, we detail the calculations for Example 3 in Chapter 7. Specifically, we

are interested in computing the second order effects of increasing the total number of

lines of credit from 22 to 33 by opening 11 new revolving lines of credit.

9.2.1 Average Age of All Lines Of Credit

We find that AvgAgeOf LOCmodified = 66.

We know that,
TotalAgeOf LOCvggej

- NumTotalLOC

124

Or,

TotalAgeOf LOC = AvgAgeOf LOC - NurmTotalLOC = 99 - 22 = 2178

Months.

Once we open the 11 revolving lines of credit,

NumTotaLOCodif ied =33

Hence,

TotalAgeOf LOC
Avg AgeO f LNC m l=O

NumTotaILOC

2178 =
= =66

9.2.2 Percentage Of Lines Of Credit Never Delinquent

We compute that PercentLOCNevrDelqmodified = 94.

By definition,

PercentLOCEverDelq
100 - PercentLOCNeverDelq

0.09
100

The formula for

PercentLOCEverDelq =
NumLOCEverDelq

NumTotalLOC

NumLOCEverDelq = PercentLOCEverDelq -NumTotalLOC = 0.09- 22 ~ 2

125

Hence,

Given that

NumTotaLOCodified = 33

We get

PercentLOCEverDelqmodified
NumLOCEverDelq

NumT otaLOCodified

2
- 0.06

PercentLOCNeverDelqmodified = (1-PercentLOCEverDelqmodified)-100 = (1-0.06).100 = 94

9.2.3 Percentage Of Installment Lines Of Credit

We calculate that PercentInstLOCmodified = 37

By definition,

PercentInstLOC
NumInstLOC

NumTotalLOC

Rearranging,

NumInstLOC =
PercentlnstLOC - NumTotalLOC

100
55 -22

100
1210
100

By opening 11 new revolving lines of credit, the number of installment lines of

credit remains unchanged.

Plugging in

NumTotaLOCodif ied = 33

126

Or,

We see that

_ NumlnstLOC

NumTotaLOCmodified

12
-100 = -- - 100 ~ 37

33

9.2.4 Percentage Of Lines Of Credit With Balance

We calculate that PercentLOCWBalancemodified = 61

By definition,

PercentLOCW Balance =
NumLOCWBalance

NumTotalLOC

Rearranging,

NumLOCWBalance =
PercentLOCWBalance - NumTotalLOC

100
92 -22

100
2024

= 10 20
100

By opening 11 new revolving lines of credit, the number of lines of credit remains

unchanged.

Using

NumTotaLOC"odif ied = 33

We find that

PercentLOCWBalancemodified -
NumLOCWBalance

NumTotalLOCmodif ied
20

-100 =- 100 ~ 61
33

127

128

Bibliography

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. "ImageNet Classi-

fication with Deep Convolutional Neural Networks". In: Advances In Neural

Information Processing Systems (2012). ISSN: 10495258. DOI: http: //dx.doi.

org/10.1016/j.protcy.2014.09.007. arXiv: 1102.0183.

[2] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks

for Large-Scale Image Recognition". In: International Conference on Learning

Representations (ICRL) (2015). ISSN: 09505849. DOI: 10 . 1016 / j . inf sof

2008.09.005. arXiv: 1409.1556.

[31 The Center for Microeconomic Data. 2018. URL: https //www .newyorkf ed.

org/microeconomics/hhdc.html (visited on 07/31/2018).

14] Andrew Ng. Machine Learning. URL: https: //www. coursera. org/learn/

machine-learning (visited on 07/31/2018).

[5] Nykamp DQ. Function definition - Math Insight. URL: https: //mathinsight.

org/def inition/function (visited on 07/31/2018).

[6] Justin Sirignano, Apaar Sadhwani, and Kay Giesecke. "Deep Learning for Mort-

gage Risk". In: (July 2016). arXiv: 1607.02470. URL: http://arxiv. org/abs/

1607.02470.

[7] Bryce Goodman and Seth Flaxman. "European Union regulations on algorith-

mic decision-making and a "right to explanation"". In: (2016). DOI: 10. 1609/

129

aimag.v38i3.2741. arXiv: 1606.08813. URL: http://arxiv.org/abs/1606.

08813%20http://dx.doi.org/10.1609/aimag.v38i3.2741.

[81 Finale Doshi-Velez and Been Kim. "Towards A Rigorous Science of Interpretable

Machine Learning". In: (Feb. 2017). arXiv: 1702.08608. URL: http://arxiv.

org/abs/1702.08608.

[9] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust

You?: Explaining the Predictions of Any Classifier". In: (Feb. 2016). arXiv:

1602.04938. URL: http: //arxiv. org/abs/1602.04938.

[101 Cody Marie Wild. One Feature Attribution Method to (Supposedly) Rule Them

All: Shapley Values. URL: https : //towardsdatascience .com/one-feature-

attribution- method- to - supposedly- rule - them- all - shapley- values -

f3e04534983d (visited on 07/31/2018).

1111 Scott Lundberg and Su-In Lee. "An unexpected unity among methods for in-

terpreting model predictions". In: (Nov. 2016). arXiv: 1611.07478. URL: http:

//arxiv. org/abs/1611.07478.

[121 David Baehrens et al. "How to Explain Individual Classification Decisions". In:

(Dec. 2009). arXiv: 0912.1128. URL: http: //arxiv. org/abs/0912.1128.

[131 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. "Axiomatic Attribution for

Deep Networks". In: (Mar. 2017). arXiv: 1703. 01365. URL: http: //arxiv.

org/abs/1703.01365.

[14] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. "Interpreting Neural

Network Judgments via Minimal, Stable, and Symbolic Corrections". In: (Feb.

2018). arXiv: 1802.07384. URL: http://arxiv.org/abs/1802.07384.

1151 R. Dennis. Cook and Sanford Weisberg. Residuals and influence in regres-

sion. Chapman and Hall, 1982, p. 230. ISBN: 0412242800. URL: https : / /

conservancy.umn.edu/handle/11299/37076.

130

[16] Pang Wei Koh and Percy Liang. "Understanding Black-box Predictions via

Influence Functions". In: (Mar. 2017). arXiv: 1703.04730. URL: http: //arxiv.

org/abs/1703.04730.

[171 Been Kim Google Brain. Interpretable Machine Learning: The fuss, the concrete

and the questions. Tech. rep. URL: https: //xkcd. com/.

[18] Joseph Sill. Monotonic Networks. Tech. rep. URL: https: //papers. nips . cc/

paper/1358-monotonic-networks.pdf.

[19] Maya Gupta, Jan Pfeiffer, and Seungil You. TensorFlow Lattice: Flexibility Em-

powered by Prior Knowledge. 2017. URL: https: //ai. googleblog. com/2017/

10/tensorflow-lattice-flexibility.html (visited on 07/31/2018).

[20] Introducing TensorFlow Feature Columns. 2017. URL: https: //developers.

googleblog. com/2017 /11/ introducing - tensorf low - f eature - columns .

html (visited on 07/31/2018).

[21] Dhruv Sharma. "Improving the Art, Craft and Science of Economic Credit Risk

Scorecards Using Random Forests: Why Credit Scorers and Economists Should

Use Random Forests". In: SSRN Electronic Journal (June 2011). ISSN: 1556-

5068. DOI: 10.2139/ssrn. 1861535. URL: http://www.ssrn.com/abstract=

1861535.

122] Gilles Louppe. "Understanding Random Forests: From Theory to Practice". In:

(July 2014). arXiv: 1407.7502. URL: http: //arxiv. org/abs/1407.7502.

[23] Kanchan Sarkar. ReLU : Not a Differentiable Function: Why used in Gradient

Based Optimization? 2018. URL: https : / / medium . com / Qkanchansarkar /

relu-not-a-differentiable-function-why-used- in-gradient-based-

optimization-7fef3a4cecec (visited on 07/31/2018).

[24] Zachary C. Lipton. "The Mythos of Model Interpretability". In: (June 2016).

arXiv: 1606.03490. URL: http://arxiv.org/abs/1606.03490.

131

