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Abstract

I envision a system that enables successful collaborations between humans and machine
learning models by harnessing the relative strength to accomplish what neither can do

alone. Machine learning techniques and humans have skills that complement each other
- machine learning techniques are good at computation on data at the lowest level of

granularity, whereas people are better at abstracting knowledge from their experience,
and transferring the knowledge across domains. The goal of this thesis is to develop a

framework for human-in-the-loop machine learning that enables people to interact effec-

tively with machine learning models to make better decisions, without requiring in-depth

knowledge about machine learning techniques. Many of us interact with machine learning

systems everyday. Systems that mine data for product recommendations, for example, are

ubiquitous. However these systems compute their output without end-user involvement,
and there are typically no life or death consequences in the case the machine learning

result is not acceptable to the user. In contrast, domains where decisions can have serious

consequences (e.g., emergency response panning, medical decision-making), require the

incorporation of human experts' domain knowledge. These systems also must be trans-

parent to earn experts' trust and be adopted in their workflow. The challenge addressed in

this thesis is that traditional machine learning systems are not designed to extract domain

experts' knowledge from natural workflow, or to provide pathways for the human domain

expert to directly interact with the algorithm to interject their knowledge or to better un-

derstand the system output. For machine learning systems to make a real-world impact in

these important domains, these systems must be able to communicate with highly skilled

human experts to leverage their judgment and expertise, and share useful information or

patterns from the data.
In this thesis, I bridge this gap by building human-in-the-loop machine learning models

and systems that compute and communicate machine learning results in ways that are

compatible with the human decision-making process, and that can readily incorporate hu-

man experts' domain knowledge. I start by building a machine learning model that infers

human teams' planning decisions from the structured form of natural language of team

meetings. I show that the model can infer a human teams' final plan with 86% accuracy
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on average. I then design an interpretable machine learning model then "makes sense to
humans" by exploring and communicating patterns and structure in data to support hu-

man decision-making. Through human subject experiments, I show that this interpretable
machine learning model offers statistically significant quantitative improvements in inter-
pretability while preserving clustering performance. Finally, I design a machine learning

model that supports transparent interaction with humans without requiring that a user

has expert knowledge of machine learning technique. I build a human-in-the-loop machine
learning system that incorporates human feedback and communicates its internal states

to humans, using an intuitive medium for interaction with the machine learning model.

I demonstrate the application of this model for an educational domain in which teachers
cluster programming assignments to streamline the grading process.

Prof. Julie Shah
Thesis Supervisor

Prof. Randall Davis
Thesis Committee Member

Prof. Cynthia Rudin
Thesis Committee Member

Prof. Finale Doshi-Velez
Thesis Reader

Prof. Andrea Thomaz
Thesis Reader
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Chapter 1

Introduction

Machine learning (ML) techniques and humans have skills that complement each other

- ML techniques are good at computation on data at the lowest level of granularity,

whereas people are better at abstracting knowledge from their experience, and transferring

the knowledge across domains. I envision a system that enables successful collaborations

between humans and machine learning models by harnessing their relative strength to

accomplish what neither can do alone. The goal of this thesis is to develop a framework

for human-in-the-loop machine learning that enables people to interact effectively with

ML models to make better decisions, without requiring in-depth knowledge about machine

learning techniques.

Many of us interact with ML systems everyday. Systems that mine data for product

recommendations, for example, are ubiquitous. However these systems compute their

output without end-user involvement, and there are typically no life or death consequences

in the case the ML result is not acceptable to the user. In contrast, domains where

decisions can have serious consequences (e.g., emergency response planning, and medical

decision-making), require the incorporation of human experts' domain knowledge. These

systems also must be transparent to earn experts' trust and be adopted in their workflow.

The challenge addressed in this thesis is that traditional machine learning systems are

not designed to extract domain experts' knowledge from natural workflow, or to provide

pathways for the human domain expert to directly interact with the algorithm to inject their

knowledge or to better understand the system output. For ML systems to make a real-
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Figure 1-1: Outline of the thesis

world impact in these important domains, these systems must be able to communicate

with highly skilled human experts to leverage their judgment and expertise, and share

useful information or patterns from the data.

In this thesis, I bridge this gap by building human-in-the-loop machine learning models

and systems that compute and communicate machine learning results in ways that are

compatible with the human decision-making process, and that can readily incorporate

human experts' domain knowledge. This process is depicted in Figure 1-1. I start by

building a machine learning model that infers human teams' planning decisions from the

structured form of natural language of team meetings. I then design an interpretable

ML model that "makes sense to humans" by exploring and communicating patterns and

structure in data to support human decision-making. Finally, I design a machine learning

model that supports transparent interaction with humans without requiring that a user

has expert knowledge of the machine learning technique. I build a human-in-the-loop

machine learning system that incorporates human feedback and communicates its internal

states to humans, using an intuitive medium for interaction with the ML model.

There has been limited prior work on the explicit design of ML systems that interac-

tively incorporate human expert knowledge and explain the results in an intuitive man-

ner. Related work can be categorized in two ways - the direction of communication

18



(e.g., humans to machines, machines to humans, between machines and humans) and

the level of system modification upon the interaction (i.e., how much the internal states

of models or systems change). Active learning [37, 128, 102], semi-supervised learn-

ing [36, 15], interactive machine learning [18, 89, 7] and a set of application-specific

systems [119, 125, 42, 131, 5, 14, 7] are some examples of work that enable com-

munication from humans to machines while improving the way to represent machines'

internal states via interaction [89, 65, 8] or building models whose internal states are

interpretable [126, 43, 45, 39, 20] to enable communication from machines to humans.

Work that enables the communication between human experts and machines include ex-

pert systems [30, 26, 28, 29, 47, 98, 42] and a subset of interactive machine learning

systems [92].

Another way to categorize related work is the way in which the machines? internal

states are updated and modified upon the interaction from/to humans. Some work makes

no changes to internal states [126, 43, 45, 39, 20], while some work changes only the

way information is presented upon the interaction [89, 65, 8]. Others update and modify

internal states of models and systems based on the interaction (e.g., as is done in active

learning [37, 128, 102], semi-supervised learning [36, 15], interactive machine learning [18,

89, 7], and expert systems [30, 26, 28, 29, 47, 98, 42]).

Systems using active learning and semi-supervised learning allow interaction from hu-

mans to machines in order to improve the goal task by updating the internal states of

models and systems. Interacting with humans to gather data labels that are informative

for the machine learning model's task is one of the most common forms of interaction,

as is done in active learning [37, 128, 102]. In an active learning framework, the new

data point to be queried is often selected by machine learning models, not by humans.

On the other hand, semi-supervised methods [36, 15] enable humans to select the data

points based on their browsing and exploration of the data. Then, human feedback is

often incorporated into machine learning models in the form of constraints or adjustment

on the underlying similarity metric used by the clustering algorithm [21, 16]. While these

frameworks are designed to interact with humans, they are not designed to "make sense to

humans" by building a unified framework to explain the machine learning results through

19



interaction with humans.

Interactive machine learning systems enable communication from humans to machines

and the internal states of machines and systems are often updated upon the interaction.

Interactive machine learning systems include systems that are using active learning and

semi-supervised learning frameworks as well as systems that allow humans to provide

information beyond data labels. In more complex domains, such as clustering documents,

interactive clustering systems are available [18, 89]; however, the medium of interaction

assumes that a user has an expert level of knowledge, for example about n-grams for

machine learning systems [18] or keyword weights for topic clusters [89]. Some works

had users communicate their feedback through data points [7, 6], such as by providing

positive and negative examples to train a classifier [6]. However, the difference between the

machine representation (e.g., the averaged features of data points) and representation of

information obtained from human feedback (i.e., the examples) may lead to inconsistencies

in how user feedback is incorporated into the machine.

Interactive interfaces and interactive visualization enable communication from ma-

chines to humans with small to no changes to internal states of models or systems. Inter-

faces that improve user workflow when modifying model settings are intended to reduce

the burden of repeated processes to achieve the desired clustering results [105]. Instead

of modifying model settings, some systems aim to improve the user's internalization of

the current clustering through visualization [89, 65, 8]. Visualization techniques are often

developed for specific domains (e.g., topic model visualization [31]). Some also introduce

new metrics to help users internalize and conceptualize clustering results [63].

Another way to enable communication from machines to humans is to build models

whose internal states are interpretable to humans. Interpretable models enable commu-

nication from machines to humans, without changing internal states of models. In my

view, there are at least three widely known types of interpretable models: sparse linear

classifiers ([126, 32, 129]); discretization methods, such as decision trees and decision lists

(e.g., [43, 134, 45, 90, 60]); and prototype- or case-based classifiers (e.g., nearest neigh-

bors [39] or a supervised optimization-based method [20]). The work presented in this

thesis is intended as the third model type, but uses unsupervised generative mechanisms
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to explain clusters instead of supervised approaches [61] or myopic focus on neighboring

points [13].

Expert systems allow communication between humans and machines and modify their

internal states based on the information gathered from communication. An expert system

is defined as a computer system that emulates the decision-making abilities of human

experts [751 and is of particular to the fields of medicine [120], fault diagnosis [31 and

science [135]. The most relevant works to this thesis are those that design systems to

interactively communicate the ML results [30, 26, 28, 29, 47, 98]. For example, Davis et

al. [42] enable experts to interact with their system (TEIRESIAS) using styled interaction

to build a knowledge base. The work support two-way interaction - the system explains

the results and motivations for its actions to the human experts, and the human experts

adds to or modifies the knowledge base. The distinguishing feature of this prior work

as it relates to the thesis is that this approach enables interaction with users who are

not programmers or machine learning experts. The system guides the user to add to

or modify rules by asking questions, such as yes/no questions. The work demonstrates

that it is advantageous to ask questions, as it helps to narrow down the missing or wrong

knowledge quickly. The system also supports "second guessing" in which the model checks

whether the new knowledge from the user is consistent with its existing model. However,

one key disadvantage of these expert systems is that they do not leverage machine learning

techniques to also incorporate information or structure from large data sets that can

potentially improve results.

Lin et al. [92] leverages both machine learning techniques and domain expert knowl-

edge by combining past data of lost-person behaviors with search and rescue workers'

domain knowledge to generate search plans that target the likely walking paths of lost-

persons. However, the interaction between the human experts and the model (machine)

is highly constrained. The experts' knowledge is taken into account as a prior probability

distribution over likely travel paths and there is no feedback loop through which human

experts can interactively contribute their domain knowledge and observe the impact of

their feedback. In contrast, the proposed work aims to support more flexible interac-

tions between humans and machine learning models that allow interactive incorporation
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of domain experts' knowledge.

This thesis aims to provide a framework and proof-of-concept implementations that

establish collaboration between humans and ML systems, where the system leverages

information in data, communicates it to the user in an interpretable manner, and the user

communicates their knowledge with the system to improve the final result. This thesis

aims to demonstrate the feasibility of this approach with users who are not experts in ML

models.

This chapter provides an executive summary of the key innovations presented in this

thesis; its section structure follows the chapter structure of this thesis. In Section 1.1, I

present a model that infers decisions of humans - it infers the final plan from a processed

form of the human team's planning conversation. I show that the model can infer a human

teams' final plan with 86% accuracy on average. Next, I propose a model that can make

sense to humans in Section 1.2. I propose and validate a new unsupervised clustering model

that provides interpretable explanations to humans about machine learning results, who use

examples as a fundamental part of their decision-making strategies. This model, Bayesian

Case Model (BCM), is a general framework for Bayesian case-based reasoning that brings

the intuitive power of case-based reasoning to a Bayesian generative framework. Through

human subject experiments, I show that BCM offers statistically significant quantitative

improvements in interpretability while preserving clustering performance. Building on to

BCM, Section 1.3 presents the interactive Bayesian Case Model (iBCM), which opens a

communication channel between the clustering model and the user. Users provide direct

input to iBCM in order to achieve effective clustering results, and iBCM optimizes the

clustering by achieving a balance between what the data indicate and what makes the

most sense to the user. iBCM provides feedback for users and does not assume any

prior knowledge of machine learning on their part. I demonstrate the application of this

model for an educational domain in which teachers cluster programming assignments to

streamline the grading process.
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1.1 Infers Decisions of Humans - Inferring Human

Task Plan

The goal in this chapter is to demonstrate the feasibility of an ML system to extract

relevant information from the natural workflow of domain experts. As proof-of-concept,

I study the emergency response domain, in which teams of people plan the deployment

of resources, and I present a machine learning model that infers the final plan from a

processed form of the human team's planning conversation.

This hybrid approach combines probabilistic generative modeling with logical plan

validation used to compute a highly structured prior over possible plans, enabling us to

overcome the challenge of performing inference over a large solution space with only a

small amount of noisy data from the team planning session. I validate the model through

human subject experimentations and show that it is able to infer a human team's final

plan with 86% accuracy on average. I also describe a robot demonstration in which two

people plan and execute a first-response collaborative task with a PR2 robot. To the best

of my knowledge, this is the first work to integrate a logical planning technique within a

generative model to perform plan inference.

Goal: Infer human teams' final plan from a processed form of the

human team's planning conversation

I describe the formal definition, the input and output of the problem. Formally, this

problem can be viewed as one of plan recognition, where the plan follows the formal

representation of the Planning Domain Description Language (PDDL). The PDDL has

been widely used in the planning research community and planning competitions (i.e.,

the International Planning Competition). A plan is valid if it achieves a user-specified

goal state without violating user-specified plan constraints. Actions may be constrained

to execute in sequence or in parallel with other actions. Other plan constraints can

include discrete resource constraints (e.g. the presence of two medical teams) and temporal

deadlines (e.g. a robot can only be deployed for up to 1 hour at a time due to battery life

23



constraints).

The input to the model is a machine-understandable form of human conversation data.

Text data from the human team conversation is collected in the form of utterances, where

each utterance is one person's turn in the discussion. Each utterance is formally repre-

sented as ordered tuple of sets of grounded predicates. This structured form captures the

actions discussed and the proposed ordering relations among actions for each utterance. In

this work, I focus on inferring a final plan using text data that can be logged from chat or

transcribed speech. Processing human dialogue into more machine-understandable forms

is an important research area [86, 124, 84, 104, 110], but I view this as a separate problem

and do not focus on it in this paper.

The form of input I use preserves many of the challenging aspects of natural human

planning conversations, and can be thought of as noisy observation of the final plan.

Because in my work, the team is discussing the plan under time pressure, planning ses-

sions often consist of a small number of succinct communications. This hybrid approach

combines probabilistic generative modeling with logical plan validation can infer the final

agreed-upon plan using a single planning session, despite a small amount of noisy data.

The output of my program is an inferred final plan, sampled from the probability dis-

tribution over the final plans. The final plan has the same representation as the structured

utterance tags (ordered tuple of sets of grounded predicates). The predicates in each set

represent actions that should happen in parallel, and the ordering of sets indicates the

sequence. Unlike the utterance tags, however, the sequence ordering relations in the final

plan represent the absolute order in which the actions are to be carried out. An example

of a plan is ({A1 , A2 }, {A3 1, {A4 , A5, A6}), where Ai represents a predicate. In this plan,

A1 and A 2 will happen at step 1 of the plan, A3 happens at step 2 of the plan, and so

on.
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Approach: Combine a Bayesian Generative Model with Logic-

Based Prior

Planning conversations performed under time pressure exhibit unique characteristics and

challenges for inferring the final plan. First, these planning conversations are succinct -

participants tend to write quickly and briefly, and to be in a hurry to make a final decision.

Second, there may be a number of different valid plans for the team's deployment - even

with a simple scenario, people tend to generate a broad range of final plans. This variety

of final plans represents the typical challenges faced during real rescue missions, where

each incident is unique and participants cannot have a library of plans to choose from at

each time. Third, these conversations are noisy - often, many suggestions are made and

rejected more quickly than they would be in a more casual setting. In addition, there are

not likely to be many repeated confirmations of agreement, which might typically ease

detection of the agreed-upon plan.

It might seem natural to take a probabilistic approach to the plan inference problem, as

we are working with noisy data. However, the combination of a small amount of noisy data

and a large number of possible plans means that inference using typical, uninformative

priors over plans may fail to converge to the team's final plan in a timely manner.

This problem could also be approached as a logical constraint problem of partial order

planning, if there were no noise in the utterances: If the team were to discuss only partial

plans relating to the final plan, without any errors or revisions, then a plan generator or

scheduler [38] could produce the final plan using global sequencing. Unfortunately, data

collected from human conversation is sufficiently noisy to preclude this approach.

These circumstances provided motivation for a combined approach, wherein I built

a probabilistic generative model and used a logic-based plan validator [72] to compute

a highly structured prior distribution over possible plans. Intuitively speaking, this prior

encodes my assumption that the final plan generated by human planners is likely, but not

required, to be a valid plan. This approach naturally deals with both the noise in the data

and the challenge of performing inference over plans with only a limited amount of data. I

performed sampling inference in the model using Gibbs and Metropolis-Hastings sampling
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to approximate the posterior distribution over final plans, and empirical validation with

human subject experiments indicated that the model achieves 86% accuracy on average.

Results and Contributions

I formulate the novel problem of performing inference to extract a finally agreed upon

plan from a human team planning conversation. I propose and validate a hybrid approach

to perform this inference that applies the logic-based prior probability over the space of

possible agreed-upon plans. This approach performs efficient inference for the probabilistic

generative model. I demonstrate the benefit of this approach using human team meeting

data collected from human subject experiments (total 96 subjects) and am able to infer

a human team's final plan with 86% accuracy on average.

1.2 Make Sense To Humans - Provide Explanations

to Humans (Bayesian Case Model)

I present the Bayesian Case Model (BCM), a general framework for Bayesian case-based

reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive

power of CBR to a Bayesian generative framework. The BCM learns prototypes, the

"quintessential" observations that best represent clusters in a dataset, by performing joint

inference on cluster labels, prototypes and important features. Simultaneously, BCM

pursues sparsity by learning subspaces, the sets of features that play important roles

in the characterization of the prototypes. The prototype and subspace representation

provides quantitative benefits in interpretability while preserving classification accuracy.

Human subject experiments verify statistically significant improvements to participants'

understanding when using explanations produced by BCM, compared to those given by

prior art.
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Goal: Provide quantitative benefits in interpretability while pre-

serving classification accuracy

Numerous studies have demonstrated that exemplar-based reasoning, involving various

forms of matching and prototyping, is fundamental to humans' most effective strategies

for tactical decision-making ([101, 35, 83]). For example, naturalistic studies have shown

that skilled decision makers in the fire service use recognition-primed decision making, in

which new situations are matched to typical cases where certain actions are appropriate

and usually successful [83]. To assist humans in leveraging large data sources to make

better decisions, we desire that machine learning algorithms provide output in forms that

are easily incorporated into the human decision-making process.

The same basic idea lies behind studies of human decision-making and cognition that

provided the key inspiration for artificial intelligence Case-Based Reasoning (CBR) ap-

proaches [2, 122]. CBR relies on the idea that a new situation can be well-represented

by the summarized experience of previously solved problems [122]. CBR has been used

in important real-world applications [91, 19], but is fundamentally limited, in that it does

not learn the underlying complex structure of data in an unsupervised fashion and may

not scale to datasets with high-dimensional feature spaces (as discussed in [123]).

My approach, the Bayesian Case Model (BCM), simultaneously performs unsupervised

clustering and learns both the most representative cases (i.e., prototypes) and important

features (i.e., subspaces). BCM preserves the power of CBR in generating interpretable

output (phrased in terms of specific examples), where interpretability comes not only from

sparsity but from the prototype exemplars.

The inputs to this model can be any datasets with discrete values. The output of this

model is clustering results of those data points and explanations of the clustering results

using prototypes and subspaces.
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water, whole c oves
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Figure 1-2: Learned prototypes and subspaces for the Handwritten Digit and Recipe

datasets. Ingredients in red rectangles are subspaces of each prototype in Recipe datasets.

Approach: Combine Case-Based Reasoning and Bayesian Genera-

tive Model

In BCM, the prototype is the exemplar that is most representative of the cluster. The

subspace representation is a powerful output of the model because it improves transparency

- we neither need nor want the best exemplar to be similar to the current situation in

all possible ways: for instance, a moviegoer who likes the same horror films as we do

might be useful for identifying good horror films, regardless of their cartoon preferences.

I model the underlying data using a mixture model, and infer sets of features that are

important within each cluster (i.e., subspace). This type of model can help to bridge the

gap between machine learning methods and humans, who use examples as a fundamental

part of their decision-making strategies.

Results and Contributions

I show that BCM produces prediction accuracy comparable to or better than prior art

for standard datasets (76% versus 77% on average). I also show that the exemplar-
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based output of BCM resulted in statistically significant improvements to participants'

performance of a task requiring an understanding of clusters within a dataset, as compared

to outputs produced by prior art. BCM learns prototypes and subspaces that are presented

as meaningful feedback for the characterization of important aspects of the dataset (shown

in Figure 3-4).

1.3 Interact with Humans - interactive Bayesian Case

Model

Clustering methods optimize the partitioning of data points with respect to an internal

metric, such as likelihood, in order to approximate the goodness of clustering for users.

However, this internal metric does not necessarily translate into effective clustering from

the user's perspective. This work presents the interactive Bayesian Case Model (iBCM),

a model that opens a communication channel between the clustering model and the user.

Users can provide direct input to iBCM in order to achieve more useful clustering results,

and iBCM optimizes the clustering by creating a balance between what the data indicate

and what makes the most sense to the user. This model provides feedback for users

and does not assume any prior knowledge of machine learning on their part. I provide

quantitative evidence that users are able to obtain more satisfactory clustering results

through iBCM than without an interactive model. I also demonstrate the use of this

method in a real-world setting where computer language class teachers utilize iBCM to

cluster students' coding assignments for grading.

Goal: Enable intuitive communication between a clustering model

and humans to incorporate humans' expertise and leverage useful

patterns in data

The ultimate goal of any clustering method is to partition data points in the most effective

and useful way for the user. A number of existing methods [49] are able to group a large

number of data points according to certain internal metrics. Unlike classification methods
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where ground truth is available and prediction accuracy often serves as an evaluation

metric, clustering metrics that directly optimize for a particular application are difficult

to articulate and can be domain-specific. In clustering, there might be multiple ways to

cluster data points that are equally good according to the internal metric of the given

model, but some of these methods may better align with a user's knowledge or preference.

For example, if a user in a retail setting wants to cluster customer data in order to build

a recommendation engine and pair sales staff with appropriate customers using purchase

records, clustering with respect to item categories or region of residence could yield equally

good results. However, clustering with respect to region may offer a more cost-effective

implementation of the engine by matching the recommendation plans with the existing

team structure of the company.Hard-coding such information does not translate to other

domains, and requires in-depth knowledge of machine learning.

iBCM aims to enable efficient and intuitive use of clustering models, without requiring

in-depth knowledge about machine learning. iBCM combines CBR approaches [2, 122]

with a Bayesian generative model to both generate effective clustering and provide an

intuitive medium for interaction. Specifically, iBCM uses examples (data points provided

by the user) for communication, enabling interaction between the model and any user with

some degree of familiarity with the data. The use of examples as a medium for interaction

is well-grounded in several cognitive science studies that demonstrated that exemplar-

based reasoning, involving various forms of matching and prototyping, is fundamental to

humans' most effective strategies for tactical decision-making ([101, 35, 83]). In order

to assist user decision-making by leveraging data sources, we desire machine learning

algorithms that communicate in forms that are easily incorporated into the human decision-

making process.

The inputs to this model are datasets with discrete feature values and humans' feed-

back. The output of this model is clustering results of input data points and explanations

of the clustering results.
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Approach: Iteratively Incorporate Humans' feedback in the Infer-

ence Loop using Interactive Bayesian Case Model

iBCM empowers users via direct, intuitive interaction with a clustering model, in order

to incorporate their domain knowledge and preference while simultaneously optimizing

the internal goodness of clustering metric. Moreover, the communication channel is bi-

directional: iBCM communicates back to its users by providing explanations in natural

language, offering insight into potential conflicts between user feedback and data point

patterns and allowing for more fluent collaboration between the user and machine learning

models.

The communication channel does not assume that a user has prior knowledge of ma-

chine learning. Instead, users provide examples (i.e., data points) and features of these

examples in order to articulate their feedback. For example, when building a recommen-

dation engine for films, users may think that the length of a specific movie is not an

important feature for clustering, even if its use would yield good results. Instead, the user

may think that genre or the number of awards each film has received are more important

features. iBCM incorporates the user's feedback and propagates it to the inference engine

in order to achieve better clustering. If incorporating user-suggested features does not

yield good clustering, iBCM then provides feedback using the examples the user provided.

Results and Contributions

I performed a human experiment, along with a proof-of-concept study, to validate our

approach. The experiment was designed to measure quantifiable improvements in how

well final clustering performed with iBCM matches the intent of the subject compared

with clustering with BCM. The proof-of-concept study was a demonstration of iBCM in

a real-world setting (computer science education).
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def dotProduct(listA, listB):

listA: a list of numbers
listB: a list of numbers of the same length as listA
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return res
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Figure 1-3: Interface combining iBCM to help teachers grade and provide useful feedback
for students

Users are able to obtain statistically significantly more satisfactory clustering

through iBCM.

In order to obtain objective measures of iBCM's performance, I designed an experiment

such that the quality of clustering obtained through interaction can be evaluated while
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controlling for data characteristics that can affect clustering results. I constructed datasets

that could be clustered in multiple ways, all of which were equal in terms of likelihoods,

with the optimal ways to cluster according to internal metrics also known a priori.

iBCM achieved significantly better agreement with the users' intentions, while creating

a balance between what the data indicates and what makes sense to user in all given

conditions. The complexity of the domain, the interaction with iBCM or of the dataset

did not influence the effectiveness of the model. This experiment validates that the

subjects achieved significantly more satisfying results using iBCM compared with BCM,

even though the results from BCM provided equally good solutions according to the

model's internal metric.

I demonstrate the use of iBCM for computer programming language education.

Teachers are able to obtain statistically significantly more satisfactory exploring

students submission using iBCM.

I also present an implementation of iBCM for a real-world application: introductory pro-

gramming education. My institute, for example, offers several courses that teach basic

programming to hundreds of students simultaneously. It can take hours for teachers to

grade exams for courses of this size, and many teachers generate grading rubrics for each

problem based on a small random sample of student solutions. Rather than depend on

such a sample, I implemented a system for introductory Python programming teachers that

uses iBCM as the main computational engine for grouping. The system utilizes iBCM to

help teachers group their students' assignments for grading and provide helpful comments

for the students. I invited twelve teachers of introductory Python computer language

classes (i.e., domain experts) to interact with the system to cluster students' assignment

submissions, to show that using iBCM allows the users to easily explore variations across

hundreds of student solutions before designing a grading rubric or composing feedback for

students. Teachers explored the range of student submission using iBCM and a version of

BCM in which they requested multiple sets of clusters. On a Likert-style questionnaire, the

teachers agreed more strongly that they were satisfied with the interaction and that they

better explored student responses using iBCM compared to the BCM baseline. Responses
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to the open-ended questionnaire also highlighted the strength of iBCM. Comments include

I was able to pull out examples that were really representative of a lot of the solutions

and then skim through each solution set to find the minor differences." and that iBCM

allowed to explore "in depth as to how students could do". A few also noted that "[iBCM]

is useful with large datasets where brute-force would not be practical".
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Chapter 2

Inferring Team Task Plans from

Human Meetings: A Generative

Modeling approach with Logic-Based

Prior

2.1 Introduction

The goal in this chapter is to demonstrate the feasibility of an ML system to extract

relevant information from the natural workflow of domain experts. As proof-of-concept,

I study the emergency response domain, in which teams of people plan the deployment

of resources, and I present a machine learning model that infers the final plan from a

processed form of the human team's planning conversation.

I present an approach that can interpret decisions of humans by inferring the final plan

from a processed form of the human team's planning conversation. Inferring the plan from

noisy and incomplete observation can be formulated as a plan recognition problem [117,

17, 95, 33, 25, 64, 51]. The noisy and incomplete characteristics of observation stem

from the fact that not all observed data (e.g., the team's planning conversation) will be

a part of the plan that I am trying to infer, and that the entire plan may not be observed.
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The focus of existing plan recognition algorithms is often to search an existing knowledge

base given noisy observation. However, deployment plans for emergency situations are

seldom the same, making it infeasible to build a knowledge base. In addition, planning

conversations are often conducted under time pressure and are, therefore, often short

(i.e., contain a small amount of data). Shorter conversations result in a limited amount

of available data for inference, often making the inference problem more challenging.

My approach combines probabilistic generative modeling with logical plan validation,

which is used to compute a highly structured (i.e., non-uniform, more informative prior)

prior over possible plans. This hybrid approach enables us to overcome the challenge of

performing inference over a large solution space with only a small amount of noisy data

collected from the team planning session.

In this thesis, I focus on inferring a final plan using text data that can be logged from

chat or transcribed speech. Processing human dialogue into more machine-understandable

forms is an important research area [86, 124, 84, 104, 110], but I view this as a separate

problem and do not focus on it in this thesis.

The form of input I use preserves many of the challenging aspects of natural human

planning conversations, and can be thought of as noisy observation of the final plan.

Because the team is discussing the plan under time pressure, planning sessions often

consist of a small number of succinct communications. My approach can infer the final

agreed-upon plan using a single planning session, despite a small amount of noisy data.

I validate the approach through experiments with 96 human subjects and show that I

am able to infer a human team's final plan with 86% accuracy on average. To the best

of my knowledge, this is the first work to integrate a logical planning technique within a

generative model to perform plan inference.

This chapter includes the following contributions:

* I formulate the novel problem of performing inference to extract a finally agreed-

upon plan from a human team planning conversation.

" I propose and validate a hybrid approach to perform this inference that applies the

logic-based prior probability over the space of possible agreed-upon plans. This
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approach performs efficient inference for the probabilistic generative model.

* I demonstrate the benefit of this approach using human team meeting data collected

from human subject experiments (total 96 subjects) and am able to infer a human

team's final plan with 86% accuracy on average.

The formulation of the problem is presented in Section 2.2, followed by the technical

approach and related work in Section 2.3. My approach is described in Section 2.4. The

evaluation of the approach using various data sets is shown in Sections 2.5 and 2.6.

Finally, I discuss the benefits and limitations of the current approach in Section 2.7, and

conclude in Section 2.8.

2.2 Problem Formulation

Disaster response teams are increasingly utilizing Web-based planning tools to plan de-

ployments [44]. Hundreds of responders access these tools to develop their plans using

audio/video conferencing, text chat and annotatable maps. Rather than working with

raw, natural language, my approach takes a structured form of the human dialogue from

these Web-based planning tools as input. The goal of this chapter is to infer a human

team's final plan from a processed form of the human team's planning conversation. In

doing so, this work can be used to design an intelligent agent for these planning tools that

can actively participate during a planning session to improve the team's decision.

This section describes the formal definition, input and output of the problem. Formally,

this problem can be viewed as one of plan recognition, wherein the plan follows the formal

representation of the Planning Domain Description Language (PDDL). The PDDL has

been widely used in the planning research community and planning competitions (i.e.,

the International Planning Competition). A plan is valid if it achieves a user-specified

goal state without violating user-specified plan constraints. Actions may be constrained

to execute in sequence or in parallel with other actions. Other plan constraints can

include discrete resource constraints (e.g. the presence of two medical teams) and temporal

deadlines (e.g. a robot can only be deployed for up to 1 hour at a time due to battery life
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constraints).

I assume that the team reaches agreement on a final plan. The techniques introduced

by [82] can be used to detect the strength of this agreement, and to encourage the team

to further discuss the plan to reach an agreement if necessary. Situations where a team

agrees upon a flexible plan with multiple options to be explored will be included in future

study. Also, while I assume that the team is more likely to agree on a valid plan, I do not

rule out the possibility that the final plan is invalid.

2.2.1 Input

Text data from the human team conversation is collected in the form of utterances, where

each utterance is one person's turn in the discussion, as shown in Table 2.1. The input to

my approach is a machine-understandable form of human conversation data, as illustrated

in the right-hand column of Table 2.1. This structured form captures the actions discussed

and the proposed ordering relations among actions for each utterance.

Although I am not working with raw, natural language, this form of data still cap-

tures many of the characteristics that make plan inference based on human conversation

challenging. Table 2.1 shows part of the data using the following shorthand:

ST = SendTo

rr = red robot, br = blue robot

rm red medical, bm = blue medical

e.g. ST(br, A) = SendTo(blue robot, room A)

Utterance tagging

An utterance is tagged as an ordered tuple of sets of grounded predicates. Following

a formal definition for first-order languages, a grounded predicate is an atomic formula

whose argument terms are grounded (i.e., no free variables; all variables have an assigned

value). In my case, a predicate represents an action applied to a set of objects (a crew

member, robot, room, etc.), and an utterance can be represented as ordered sets of
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Natural dialogue Structured form (ordered tuple
of sets of grounded predicates)

So I suggest using Red robot to cover "up- ({ST(rr,A),ST(br,E),
Ul per" rooms (A, B, C, D) and Blue robot to ST(rr,B),ST(br,F),

cover "lower" rooms (E, F, G, H). ST(rr,C),ST(br,G),
ST(rr,D),ST(br,H)})

U2 Okay. so first send Red robot to B and Blue ({ST(rr,B),ST(br,G)})
robot to G?

U3 Our order of inspection would be (B, C, D, ({ST(rr,B),ST(br,G)},
A) for Red and then (G, F, E, H) for Blue. {ST(rr,C),ST(br,F)},

{ST(rr,D),ST(br,E)},
{ST(rr,A), ST(br,H)})

U4 Oops I meant (B, D, C, A) for Red. ({ST(rr,B)},{ST(rr,D)},
{ST(rr,C)},{ST(rr,A)})

U5 So I can have medical crew go to B when ({ST(m,B), ST(r,C)})
robot is inspecting C

U6 First, Red robot inspects B ({ST(r,B)})
U7 Yes, and then Red robot inspects D, Red ({ST(r,D),ST(rm,B)})

medical crew to treat B

Table 2.1: Utterance tagging: Dialogue and structured form examples. (The structured
form uses the following shorthand - ST: send to, rr: red robot, br: blue robot, rm: red
medical, bm: blue medical, e.g. ST(br,A) : "send the blue robot to room A.")
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these actions. I only consider utterances related to plan formation; greetings and jokes,

for example, are not tagged. Each set of grounded predicates represents a collection of

actions that, according to the utterance, should happen simultaneously. The order of

the sets of grounded predicates indicates the relative order in which these collections of

actions should happen. For example, ({ST(rr, B), ST(br, G)}, {ST(rm, B)}) corresponds

to sending the red robot to room B and the blue robot to room G simultaneously, followed

by sending the red medical team to room B.

As indicated in Table 2.1, the structured dialogue still includes high levels of noise

(i.e., dialogue contains a number of predicates that do not ned up in the final plan). Each

utterance (i.e. U1-U7) discusses a partial plan, and only predicates explicitly mentioned

in the utterance are tagged (e.g. U6-U7: the "and then" in U7 implies a sequencing

constraint with the predicate discussed in U6, but the structured form of U7 does not

include ST(r,B)). Mistakes in utterances and misinformation are tagged without correction

(e.g. B, C, D, A in U3), and any utterances indicating a need to revise information are

not placed in context (e.g. U4). Utterances that clearly violate the ordering constraints

(e.g. Ul: all actions cannot happen at the same time) are also tagged without correction.

In addition, information regarding whether an utterance was a suggestion, rejection of

or agreement with a partial plan is not coded. The coding is done by four independent

analysts, with each team planning session tagged and reviewed by two of these four

analysts.

Note that the utterance tagging only contains information about relative ordering

between the predicates appearing in that utterance, not the absolute ordering of their

appearance in the final plan. For example, U2 specifies that the two grounded predicates

happen at the same time. It does not state when the two predicates happen in the final

plan, or whether other predicates will happen in parallel. This simulates how humans con-

versations often unfold - at each utterance, humans only observe the relative ordering,

and infer the absolute order of predicates based on the whole conversation and an under-

standing of which orderings would make a valid plan. This utterance tagging scheme is

also designed to support the future transition to automatic natural language processing.

Automatic semantic role labeling [761, for example, can be used to detect the argu-
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ments of predicates from sentences. One of the challenges with incorporating semantic

role labeling into my system is that the dialogue from my experiments is often colloquial

and key grammatical components of sentences are often omitted. Solving this problem

and processing free-form human dialogue into more machine-understandable forms is an

important research area, but I view that as a separate problem and do not focus on it in

this thesis.

2.2.2 Output

The output of the approach is an inferred final plan, sampled from the probability dis-

tribution over the final plans. The final plan has the same representation the structured

utterance tags (ordered tuple of sets of grounded predicates). The predicates in each set

represent actions that should happen in parallel, and the ordering of sets indicates the

sequence. Unlike the utterance tags, however, the sequence ordering relations in the final

plan represent the absolute order in which the actions are to be carried out. An example

of a plan is ({A1, A 2}, {A3}, {A4, A5, A6}), where Ai represents a predicate. In this plan,

A1 and A2 will happen at step 1 of the plan, A3 happens at step 2 of the plan, and so

on.

2.3 Approach in a Nutshell and Related Work

Planning conversations performed under time pressure exhibit unique characteristics and

challenges for inferring the final plan. First, these planning conversations are succinct -

participants tend to write quickly and briefly, and to be in a hurry to make a final decision.

Second, there may be a number of different valid plans for the team's deployment -

even with a simple scenario, people tend to generate a broad range of final plans. This

represents the typical challenges faced during real rescue missions, where each incident

is unique and participants cannot have a library of plans to choose from at each time.

Third, these conversations are noisy - often, many suggestions are made and rejected

more quickly than they would be in a more casual setting. In addition, there are not likely

to be many repeated confirmations of agreement, which might typically ease detection of
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Skiatinn (Reference the map below):
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Three street corners will be crime hot-spots (HS) from 8:30pm to 9pm
A street robbery is reported at Spm. No injury occurred, but you need to talk to the
victim

What need to do:
Respond to as many incidents as possible given the resources below.

Wat you have:
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Patrol Hotspot IS min with I robot
13 min with 2 robots
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r Respond to the street
robbery Talk to the victim in:

1n0n wa h1police car
Put out fire in:

Delta 30 min with I fire truck

Fire Tracks Eco Pat out fire 1 min with 2 fire trucks
10 min with 3 fire trucksFottrot (same for both dorm and
Theater)

Addinal Infermatim.

Fire inddent
- Putting out a fire requires at least I firefighting team and I police car equipped with a special robot.
* Police cars also have robot operators in them, the operator has to stay with the robot until the
evacuation is over.

Only a robot can perform the evacuation. Firefighters and police men cannot.
- A robot can only be used once.
- Successfully responding to fire requires both evacuating people and putting out the fire. You need to
do both, but they can happen simultaneously.

Crime Hotipots
Responding to a hot spot patrol requires one police car to be located at the hotspot for a fully specified

amount of time.

Stred Robbery
* Only need I police car to respond to the street robbery

Other,
Priority of each task are intentionaao y not provided. Use yourjudgement.

*If there is no information about traffic, you can assume that travel time from places to places is
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AL

Figure 2-1: Web-based tool developed and used for data collection
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the agreed-upon plan.

It might seem natural to take a probabilistic approach to the plan inference problem, as

we are working with noisy data. However, the combination of a small amount of noisy data

and a large number of possible plans means that inference using typical, uninformative

priors over plans may fail to converge to the team's final plan in a timely manner.

This problem could also be approached as a logical constraint problem of partial order

planning, if there were no noise in the utterances: If the team were to discuss only partial

plans relating to the final plan, without any errors or revisions, then a plan generator or

scheduler [381 could produce the final plan using global sequencing. Unfortunately, data

collected from human conversation is sufficiently noisy to preclude this approach.

These circumstances provided motivation for a combined approach, where I built a

probabilistic generative model and used a logic-based plan validator [72] to compute a

highly structured (i.e., nonuniform, more informative prior) prior distribution over possible

plans. Intuitively speaking, this prior encodes my assumption that the final plan is likely,

but not required, to be a valid plan. This approach naturally deals with both the noise in

the data and the challenge of performing inference over plans with only a limited amount

of data. I performed sampling inference in the model using Gibbs and Metropolis-Hastings

sampling to approximate the posterior distribution over final plans, and empirical validation

with human subject experiments indicated that the approach achieves 86% accuracy on

average. More details of my model and inference methods are presented in Section 2.4.

The related work can be categorized into two categories: 1) application and 2) tech-

nique. In terms of application, my work relates to plan recognition (Section 2.3.1). In

terms of technique, my approach relates to methods that combine logic and probability,

though with different focused applications (Section 2.3.2).

2.3.1 Plan Recognition

Plan recognition has been an area of interest within many domains, including interactive

software [117, 17, 951, story understanding [33] and natural language dialogue [25, 64].

The literature can be categorized in two ways. The first is in terms of requirements.

43



Some studies [94, 79] require a library of plans, while others [137, 115, 112, 118] replace

this library with relevant structural information. If a library of plans is required, some

studies [132, 78] assumed that this library can be collected, and that all future plans are

guaranteed to be included within the collected library. By contrast, if a library of plans is

not required, it can be replaced by related structure information, such as a domain theory

or the possible set of actions performable by agents. The second categorization for the

literature is in terms of technical approach. Some studies incorporated constraint-based

approaches, while others took probabilistic or combination approaches.

First, I reviewed work that treated plan recognition as a knowledge base search problem.

This method assumes that you either have or can build a knowledge base, and that your

goal is to efficiently search this knowledge base [94, 79]. This approach often includes

strong assumptions regarding the correctness and completeness of the plan library, in

addition to restrictions on noisy data [132, 78], and is applicable in domains where the

same plan reoccurs naturally. For example, Gal et al. [51] studied how to adaptively adjust

educational content for a better learning experience, given students' misconceptions, using

a computer-based tutoring tool. Similiarly, Brown et al. [24] investigated users' underlying

misconceptions using user data collected from multiple sessions spent trying to achieve

the same goal. In terms of technical approach, the above approaches used logical methods

to solve the ordering constraints problem of searching the plan library.

I also reviewed work that replaced a knowledge base with the structural information of

the planning problem. Zhou et al. [137] replaced the knowledge base with action models

of the domain, and formulated the problem as one of satisfiability to recognize multi-agent

plans. A similar approach was taken in Ramirez et al. [115], wherein action models were

used to replace the plan library, while Pynadath et al. [112] incorporated an extension

of probabilistic context free grammars (PCFGs) to encode a set of predefined actions

to improve efficiency. More recently, Markov logic was applied to model the geometry,

motion model and rules for the recognition of multi-agent plans while playing a game of

capture the flag [118]. Replacing the knowledge base with structural information reduces

the amount of prior information required. However, there are two major issues with the

application of prior work to recognize plans from team conversation: First, the above
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work assumed some repetition of previous plans. For example, learning the weights in

Markov logic (which represent the importance or strictness of the constraints) requires

prior data from the same mission, with the same conditions and resources. Second, using

first-order logic to express plan constraints quickly becomes computationally intractable

as the complexity of a plan increases.

In contrast to logical approaches, probabilistic approaches allow for noisy observations.

Probabilistic models are used to predict a user's next action, given noisy data [4, 71]. These

works use actions that are normally performed by users as training data. However, the

above approaches do not consider particular actions (e.g., actions that must be performed

by users to achieve certain goals within a software system) to be more likely. In other

words, while they can deal with noisy data, they do not incorporate structural information

that could perhaps guide the plan recognition algorithm. An additional limitation of these

methods is that they assume predefined domains. By defining a domain, the set of possible

plans is limited, but the possible plans for time-critical missions is generally not a limited

set. The situation and available resources for each incident are likely to be different.

A method that can recognize a plan from noisy observations, and from an open set of

possible plans, is required.

Some probabilistic approaches incorporate structure through the format of a plan

library. Pynadath and Wellman [112] represented plan libraries as probabilistic context

free grammars (PCFGs). Then this was used to build Bayes networks that modeled

the underlying generative process of plan construction. However, their parsing-based

approaches did not deal with partially-ordered plans or temporally interleaved plans. Geib

et al. [53, 52] overcame this issue by working directly with the plan representation without

generating an intermediate representation in the form of a belief network. At each time

step, their technique observed the previous action of the agent and generated a pending

action set. This approach, too, assumed an existing plan library and relied on the domains

with some repetition of previous plans. More recently, Nguyen et al. [103] introduced

techniques to address incomplete knowledge of the plan library, but for plan generation

rather than plan recognition applications.

My approach combines a probabilistic approach with logic-based prior to infer team
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plans without the need for historical data, using only situational information and data

from a single planning session. The situational information includes the operators and

resources from the domain and problem specifications, which may be updated or modified

from one scenario to another. I do not require the development or addition of a plan

library to infer the plan, and demonstrate my solution is robust to incomplete knowledge

of the planning problem.

2.3.2 Combining Logic and Probability

The combination of a logical approach with probabilistic modeling has gained interest in

recent years. Getoor et al. [55] introduced a language for the description of statistical

models over typed relational domains, and demonstrated model learning using noisy and

uncertain real-world data. Poon et al. [108] proposed statistical sampling to improve

searching efficiency for satisfiability testing. In particular, the combination of first-order

logic and probability, often referred to as Markov Logic Networks (MLN), was studied.

MLN forms the joint distribution of a probabilistic graphical model by weighting formulas

in a first-order logic [116, 121, 109, 113].

My approach shares with MLNs the philosophy of combining logical tools with prob-

abilistic modeling. MLNs utilize first-order logic to express relationships among objects.

General first-order logic allows for the use of expressive constraints across various applica-

tions. However, within the planning domain, enumerating all constraints in first-order logic

quickly becomes intractable as the complexity of a plan increases. For example, first-order

logic does not allow the explicit expression of action preconditions and postconditions, let

alone constraints among actions. PDDL has been well-studied in the planning research

community [96], where the main focus is to develop efficient ways to express and solve

planning problems. My approach exploits this tool to build a highly structured planning

domain within the probabilistic generative model framework.
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2.4 My Approach

This section presents the details of my approach. I describe my probabilistic generative

model and indicate how this model is combined with the logic-based prior to perform

efficient inference. The generative model specifies a joint probability distribution over

observed variables (e.g., human team planning conversation) and latent variables (e.g., the

final plan); my model learns the distribution of the team's final plan, while incorporating a

logic-based prior (plan validation tool). My key contribution is the design of this generative

model with logic-based prior. I also derive the Gibbs sampling [121 representation and

design the scheme for applying Metropolis-Hasting sampling [971 for performing inference

on this model.

2.4.1 Generative Model

I model the human team planning process, represented by their dialogue, as a probabilistic

Bayesian model. In particular, I utilize a probabilistic generative modeling approach that

has been extensively used in topic modeling (e.g., [23]).

We start with a plan latent variable that must be inferred through observation of

utterances made during the planning session. The model generates each utterance in the

conversation by sampling a subset of the predicates in plan and computing the relative

ordering in which they appear within the utterance. The mapping from the absolute

ordering in plan to the relative ordering of predicates in an utterance is described in

more detail below. Since the conversation is short and the level of noise is high, my

model does not distinguish utterances based on the order in which they appear during

the conversation. This assumption produces a simple yet powerful model, simplifies the

inference steps. However, the model can also be generalized to take the ordering into

account with a simple extension. I include further discussion on this assumption and the

extension in Section 2.7.4.

The following is a step-by-step description of the generative model:

1. Variable plan: The plan variable in Figure 2-2 is defined as an ordered tuple of

sets of grounded predicates, and represents the final plan agreed upon by the team.
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Figure 2-2: Graphical model representation of the generative model. The plan latent
variable represents the final agreed-upon plan. The pn variable represents the nth predicate
of tth utterance, while s" represents the absolute ordering of that predicate in the plan.
The s' represents the relative ordering of sn within the utterance t. The latent variable
WP represents the noisiness of predicates, and 3 represents the noisiness of the ordering.

It is distributed over the space of ordered tuples of sets of grounded predicates. I

assume that the total number of grounded predicates in one domain is fixed.

The prior distribution over the plan variable is given by:

p(plan) oc eo if the plan is valid

11 if the plan is invalid.
(2.1)

where a is a positive number. This models my assumption that the final plan is

more likely, but is not necessarily required, to be a valid plan.

The likelihood of the plan is defined as:

p(s, pIplan, op) ~ Ip(s ,p"plan, wp)
t n2

~~'-~ Fl1J 1~plan, st w t ps1plan)
t n2
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Each set of predicates in plan is assigned a consecutive absolute plan step index s,

starting at s = 1 working from left to right in the ordered tuple. For example, given

plan = ({A 1 , A 2 }, {A 3}, {A 4 , A 5 , A 6 }), where each Ai is a predicate, A1 and A 2

occur in parallel at plan step s = 1, and A6 occurs at plan step s = 3.

2. Variable sg: sn represents a step index (i.e., absolute ordering) of the nth predicate

in the tth utterance in the plan. A step index represents an absolute timestamp

of the predicate in the plan. In other words, s" indicates the absolute order of the

predicate p' as it appears in plan. I use st = {si, s ... } to represent a vector of

orderings for the tth utterance, where the vector st may not be a set of consecutive

numbers.

s is sampled as follows: For each utterance, n predicates are sampled from plan.

For example, consider n = 2, where the first sampled predicate appears in the second

set (i.e., the second timestamp) of plan and the second sampled predicate appears

in the fourth set. Under these conditions, s' = 2 and s2 = 4. The probability of a

set being sampled is proportional to the number of predicates contained within that

set. For example, given plan = ({A 1 , A 2}, {A 3 }, {A 4 , A5 , A 6}), the probability of

selecting the first set ({A 1 , A 2}) is 2. This models the notion that people are more

likely to discuss plan steps that include many predicates, since plan steps with many

actions may require more effort to elaborate. Formally:

i#plan) # predicates in set i in plan
total # of predicates in plan(

The likelihood of st is defined as:

p(stlpt, s) p(st plan)p(pt, sI st,, wp,plan)

Sp(I st, 0) H p(sflplan)p(pj |plan, sn, wP)
n
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3. Variable s' and 3: The variable s' is an array of size n, where s' = {s, s .... s }.

The s'n random variable represents the relative ordering of the nth predicate within

the tth utterance in the plan, with respect to other grounded predicates appearing

in the tth utterance.

s' is generated from st as follows:

p~s,|s) o 0 if s, = (s)p(sl Ist) 0C {e3 (2.3)
1 if s, f f(st).

where 3 > 0. The # random variable is a hyper-parameter that represents the

noisiness of the ordering of grounded predicates appearing throughout the entire

conversation. It takes a scalar value, and is sampled from gamma distribution:

p(03Ik, 0) - Gamma(k,, 0) (2.4)

where both k1 and 0, are set to 10.

The function f is a deterministic mapping from the absolute ordering st to the

relative ordering s'. f takes a vector of absolute plan step indices as input, and

produces a vector of consecutive indices. For example, f maps st = (2, 4) to

s' = (1, 2) and st = (5, 7, 2) to s' = (2, 3, 1).

This variable models the way predicates and their orders appear during human

conversation: People frequently use relative terms, such as "before" and "after," to

describe partial sequences of a full plan, and do not often refer to absolute ordering.

People also make mistakes or otherwise incorrectly specify an ordering. My model

allows for inconsistent relative orderings with nonzero probability; these types of

mistakes are modeled by the value of 3.

4. Variable pn and w : The variable pn represents the nth predicate appearing in

the tth utterance. The absolute ordering of this grounded predicate is sn. The pn

is sampled given sn, the plan variable and a parameter, wp.
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The wp random variable (hyper-parameter) represents the noisiness of grounded

predicates appearing throughout the entire conversation. It takes a scalar value,

and is sampled from beta distribution:

p(wpjk.) ,,,) ~ beta(ks,, 0,), (2.5)

where k, is set to 40, and 0,, is set to 10.

With probability wp, I sample the predicate p" uniformly with replacement from the

"correct" set s" in plan as follows:

A - n . # pred.1 if i is in set
insep(p, = i plan, st =j) =

0 o.w.

With probability 1 - wp, I sample the predicate pn uniformly with replacement from

any" set in plan (i.e., from all predicates mentioned in the dialogue). Therefore:

1
ptp = ilplan, st = 1) =.(2.6)total # predicates(

In other words, with higher probability wp, I sample a value for pn that is consis-

tent with s" but allows for nonzero probability that p' is sampled from a random

plan. This allows the model to incorporate noise during the planning conversation,

including mistakes or plans that are later revised.

2.4.2 Plan validation tool

I use the Planning Domain Description Language (PDDL) 2.1 plan validation tool [72]

to evaluate the prior distribution over possible plans. In this section, I briefly review the

PDDL, and the plan validation tool that is used to form the prior in Equation 2.1.
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Planning Domain Description Language

The Planning Domain Description Language (PDDL) [96] is a standard planning language,

inspired by the Stanford Research Institute Problem Solver (STRIPS) [48] and Action

Description Language (ADL) [106], and is now utilized in the International Planning

Competition.

A PDDL model of a planning problem has two major components: a domain specifi-

cation and a problem specification. The domain description consists of a domain-name

definition, requirements on language expressivity, definition of object types, definition of

constant objects, definition of predicates (i.e. templates for logical facts), and the defini-

tion of possible actions that are instantiated during execution. Actions have parameters

that may be instantiated with objects, preconditions, and conditional or unconditional ef-

fects. An excerpt of the PDDL domain file used in this work, called the RESCUE domain,

is shown below. For example, the predicate isSaved encodes the logical fact of whether or

not a particular patient has been rescued, and the action SEND-ROBOT is instantiated

during execution to send a particular robot to particular location.
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(define (domain RESCUE)

(:requirements :typing :durative-actions :negative-preconditions)

(:types patient valve - thingsToFix location - location

med-crew mechanic robot - resource)

(:predicates

(isAt ?p - thingsToFix ?l - location)

(isSaved ?p - patient)

(isFixed ?v - valve)

(isInspected ?l - location)

(isAvail ?r - resource)

)

(:durative-action SEND-ROBOT

:parameters (?r - robot ?l - location)

:duration (= ?duration 1)

:condition (and

(at start (isAvail ?r))

(at start (not (isInspected ?l)))

)

:effect (and

(at start (not (isAvail ?r) ) )

(at end (isAvail ?r))

(at end (isInspected ?l))

The problem specification consists of a problem-name definition, the definition of the

related domain-name, the definition of all the possible objects relevant to the planning

problem, the initial state of the planning environment as a conjunction of true/false facts,

and the definition of goal-states as a logical expression over true/false facts. An excerpt

of the PDDL problem specification file used in this work is shown below. The 'init' section

describes initial conditions - for example, patient pB is initially situated at location B,

and patient pD is at D. The 'goal' section indicates the desired final state - in this

case all rooms must be inspected, all patients must be rescued, and all valves fixed. The

'metric' section defines the metric that the planner optimizes when producing a plan.
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(define (problem rescuepeople)

(:domain RESCUE)

(:objects

pB pD pG - patient

vC vF - valve

A B C D E F G H - location

redMed blueMed - med-crew

redR blueR - robot

mechi - mechanic)

(:init

(isAt pB B)

(isAt pD D)

(isAvail redMed)

(isAvail blueMed)

(isAvail redR)

(isAvail blueR)

(isAvail mechi)

(not (isSaved pB))

(not (isInspected A))

(not (isInspected B))

(not (isFixed vC))

(not (isFixed vF))

)

(:goal (and

(isSaved pB)

(isSaved pD)

(isFixed vC)

(isFixed vF)

(isInspected A)

(isInspected B)

)

)

;(:metric minimize (total-time))

)

54



For my work, I note that domain specification could be reused from one planning

session to another if the capabilities of a team do not change. For example, once the set

of possible set of actions is defined in domain specification, it may be sufficient to merely

modify the number and names of locations, medical crews, or robots in the problem

specification. The domain and the problem specification files represent the only 'prior

knowledge' that my approach requires in order to infer the final agreed-upon plan. A

valid plan is defined as a totally or partially ordered sequence of grounded predicates that

achieves the goal state from the initial state, without violating any constraints. Otherwise,

the plan is invalid. The next section describes a plan validation tool that assesses the

validity of a given plan, given the domain and problem specification files.

Plan Validation Tool (VAL)

The plan validator is a standard tool that takes as input a planning problem described in

PDDL and a proposed solution plan. The tool incorporates three input files: 1) a domain

definition file, 2) a problem definition file and 3) a proposed solution plan file. The domain

definition file contains types of parameters (e.g., resources, locations), predicate definitions

and actions (which also have parameters, conditions and effects). The problem definition

file contains information specific to the situation: For example, the number of locations

and victims, initial goal conditions and a metric to optimize. A proposed solution plan file

contains a single complete plan, described in PDDL. The output of a plan validation tool

indicates whether the proposed solution plan is valid (true) or not (false).

Metrics represent ways to compute a plan quality value. For the purpose of this study,

the metrics used included: 1) the minimization of total execution time for the radioactive

material leakage scenario, and 2) the maximization of the number of incidents responded

to in the police incident response scenario. Intuitively speaking, metrics are intended

to reflect the preference of human experts. It is natural to assume that human experts

would try to minimize the total time to completion of time-critical missions (such as in

the radioactive material leakage scenario). If first responders cannot accomplish all the

necessary tasks in a scenario due to limited availability of resources, they would most likely

try to maximize the number of completed tasks (such as in the police incident response
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scenario).

One could imagine that these input files could be reused in subsequent missions, as

the capabilities (actions) of a team may not change dramatically. However, the number

of available resources might vary, or there might be rules implicit in a specific situation

that are not encoded in these files (e.g., to save endangered humans first before fixing

a damaged bridge). In Section 2.6, I demonstrate the robustness of my approach using

both complete and degraded PDDL plan specifications.

The computation of a plan's validity is generally cheaper than that of a valid plan gen-

eration. The plan validator gives us a way to compute p(plan) (defined in Section 2.4.1)

up to proportionality in a computationally efficient manner. Leveraging this efficiency, I

use Metropolis-Hastings sampling, (details described in Section 2.4.3) without calculating

the partition function.

2.4.3 Gibbs Sampling

I use Gibbs sampling to perform inference on the generative model. There are four latent

variables to sample: plan, the collection of variables s', w, and /. I iterate between

sampling each latent variable, given all other variables. The PDDL validator is used when

the plan variable is sampled.

Sampling plan using Metropolis-Hastings

Unlike s', where I can write down an analytic form to sample from the posterior, it is

intractable to directly resample the plan variable, as doing so would require calculating the

number of all possible plans, both valid and invalid. Therefore, I use a Metropolis-Hasting

(MH) algorithm to sample from the plan posterior distribution within the Gibbs sampling

steps.

The posterior of plan can be represented as the product of the prior and likelihood,
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as follows:

p(planls, p) oc p(plan)p(s, plplan)

T N

p(plan) J flp(s,p"Iplan)

t=1 n=1
T N

= p(plan) f[ 17 p(s"|plan)p(pz"plan, sn) (2.7)
t=1 n=1

The MH sampling algorithm is widely used to sample from a distribution when direct

sampling is difficult. This algorithm allows us to sample from posterior distribution ac-

cording to the user-specified proposal distribution without having to calculate the partition

function. The typical MH algorithm defines a proposal distribution, Q(x'Ixt), which sam-

ples a new point (i.e., x': a value of the plan variable in my case) given the current point

xt. The new point can be achieved by randomly selecting one of several possible moves,

as defined below. The proposed point is then accepted or rejected, with a probability of

min(1, acceptance ratio).

Unlike simple cases, where a Gaussian distribution can be used as a proposal distri-

bution, my distribution needs to be defined over the plan space. Recall that plan is

represented as an ordered tuple of sets of predicates. In this work, the new point (i.e.,

a candidate plan) is generated by performing one of the following moves on the current

plan:

" Move to next: Randomly select a predicate that is in the current plan, and move

it to the next timestamp. If it is in the last timestamp in the plan, move it to the

first timestamp.

" Move to previous: Randomly select a predicate that is in the current plan, and move

it to the previous timestamp. If it is in the first timestamp in the plan, move it to

the last timestamp.

" Add a predicate to plan: Randomly select a predicate that is not in the current plan,

and randomly choose one timestamp in the current plan. Add the predicate to the

chosen timestamp.
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* Remove a predicate from plan: Randomly select and remove a predicate that is in

the current plan.

These moves are sufficient to allow for movement from one arbitrary plan to another.

The intuition behind designing this proposal distribution is described in Section 2.7.5.

Note that the proposal distribution, as it is, is not symmetrical - Q(x'Ixt) / Q(xt x').

We need to compensate for that according to the following,

p*( ')Q('I xt) = p*(x)Q(Xtx'), (2.8)

where p* is the target distribution. This can be done simply by counting the number of

moves possible from x' to get to x, and from x' to x, and weighing the acceptance ratio

such that Equation 2.8 is true. This is often referred to as Hastings correction, which is

performed to ensure that the proposal distribution does not favor some states over others.

Next, the ratios of the proposal distribution at the current and proposed points are

calculated. When plan is valid, p(plan) is proportional to ec, and when plan is invalid,

it is proportional to 1, as described in Equation 2.1. Plan validity is calculated using the

plan validation tool. The remaining term, p(sn plan)p(pnIplan, s"), is calculated using

Equations 2.2 and 2.6.

Then, the proposed plan is accepted with the following probability: min (i, ,* it I s$),

where p* is a function proportional to the posterior distribution.

Although I chose to incorporate MH, it is not the only usable sampling method. Any

other method that does not require calculation of the normalization constant (e.g., rejec-

tion sampling or slice sampling) could also be used. However, for some methods, sampling

from the ordered tuple of sets of grounded predicates can be slow and complicated, as

pointed out by Neal et al. [100].

Sampling hyper-paremeters # and wp with slice sampling

I use slice sampling to sample both / and wp. This method is simple to implement and

works well with scalar variables. Distribution choices are made based on the valid value

each can take. 3 can take any value, preferably with one mode, while w, can only take a
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value between [0, 1]. MH sampling may also work; however, this method could be overly

complicated for a simple scalar value. I chose the stepping out procedure, as described by

Neal et al [100].

Sampling s'

Fortunately, an analytic expression exists for the posterior of s:

p( st 1plan, pt , s' ) oc p( st lplan)p(pt , s'l~plan, st )

P(stIplan)p(ptlplan, st)p(s'tst)

N

= p(s'Ist) J7Jp(snjplan)p(pn plan, s")
n=1

Note that this analytic expression can be expensive to evaluate if the number of possible

values of sn is large. In that case, one can marginalize s', as the variable we truly care

about is the plan variable.

2.5 Experimentation

2.5.1 Web-based Tool Design

Disaster response teams are increasingly using Web-based tools to coordinate missions

and share situational awareness. One of the tools currently used by first responders is

the Next Generation Incident Command System (NICS) [44]. This integrated sensing and

command-and-control system enables the distribution of large-scale coordination across

multiple jurisdictions and agencies. It provides video and audio conferencing capabilities,

drawing tools and a chat window, and allows for the sharing of maps and resource infor-

mation. Overall, the NICS enables the collection and exchange of information critical to

mission planning.

I designed a Web-based collaboration tool modeled after this system, with a modifica-

tion that requires the team to communicate solely via text chat. This tool was developed

using Django [70], a free and open-source Web application framework written in Python.
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Django is designed to ease working with heavy-duty data, and provides a Python API to

enable rapid prototyping and testing. Incoming data can be easily maintained through

a user-friendly administrative interface. Although it is a simplified version of the NICS,

it provides the essence of the emerging technology for large-scale disaster coordination

(Figure 2-1).

2.5.2 Scenarios

Human subjects were given one of two fictional rescue scenarios and asked to formulate a

plan by collaborating with their partners. I collected human team planning data from the

resulting conversations (i.e., the user input to the web-based tool), and used this data to

validate my approach. The first scenario involves a radioactive material leakage accident

in a building with multiple rooms, where all tasks (described below) were assumed to

take one unit of time. I added complexity to the scenario by announcing a new piece of

information halfway through the planning conversation, requiring the team to change their

plan. The second scenario also included time-durative actions (e.g., action A can only

take place if action B is taking place). These scenarios are inspired by those described in

emergency response team training manuals [461, and are designed to be completed in the

reasonable time for my experiments.

First scenario: radioactive material leakage

This disaster scenario involves the leakage of radioactive material on a floor consisting

of eight rooms. Each room contains either a patient requiring in-person assessment or a

valve that must be repaired (Figure 2-4).

Goal State: All patients are assessed in-person by a medical crew. All valves are fixed

by a mechanic. All rooms are inspected by a robot.

Constraints: There are two medical crews, red and blue (discrete resource constraint),

one human mechanic (discrete resource constraint) and two robots, red and blue (discrete
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Figure 2-3: Radioactive material leakage scenario

resource constraint). For safety purposes, a robot must inspect the radioactivity of a room

before human crews can be sent inside (sequence constraint).

Assumption: All tasks (e.g. inspecting a room, fixing a valve) take the same amount

of time (one unit), and there are no hard temporal constraints. This assumption was

made to conduct the initial proof-of-concept experimentation described in this thesis, and

is relaxed in the scenario described in Section 2.5.2.

Announcement: During the planning session, the team receives a situation update that

the red robot is now out of order, requiring the team to modify their previously discussed

plan to only use one robot for deployment. The announcement triggers automatically once

the team has exchanged 20 utterances. The purpose of this announcement is to increase

task complexity for the team, to have at least two competing plans and to increase the

level of noise in the conversation.

This scenario produces a large number of possible plans (more than 1012), many of

which are valid for achieving the goals without violating the constraints.

Second scenario: police incidents response

The second scenario involves a team of police officers and firefighters responding to a series

of incidents occurring in different time frames. This scenario includes more complicated
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Figure 2-4: Police incident response scenario

time-durative actions than the first, as well as interdependency of tasks that has to be

taken into account when planning. The current time is given as 8 p.m. Two fires have

started at this time: one at a college dorm and another at a theater building, as shown

in Figure 2-4. Also, three street corners, indicated as crime hot-spots (places predicted

to experience serious crimes, based on prior data), become active between 8:30 p.m. and

9 p.m. There is also a report of a street robbery taking place at 8 p.m. No injury has

occurred; however, a police officer must speak with the victim to file an incident report.

Goal State: Respond to as many incidents as possible given the resources listed in Table

2.2.

Constraints:

" Putting out a fire requires one fire truck and one police car equipped with a robot.

" A police car must stay with the robot until an evacuation is over.

* Only a robot can perform an evacuation.

" Each robot can only be used once.

" Successfully responding to a fire requires both evacuating the building and putting

out the fire. Both actions can happen simultaneously.
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Evacuate one building in:
Patrol hotspot 30 min with one robot

Police teams Alpha 15 min with two robots
with Bravo Deploy robot for evacuation 10 min with three robots
robots Charlie

Respond to the street robbery Talk to the victim in:
10 min with one police car
Put out fire in:

Delta 30 min with one fire truck
Fire trucks Echo Put out fire 15 min with two fire trucks

Foxtrot 10 min with three fire trucks

(same for both dorm and theater)

Table 2.2: Resources available in police incident response scenario

o Responding to a hot-spot patrol requires one police car to be located at the site for

a specified amount of time.

* Only one police car is necessary to respond to the street robbery.

Assumption and announcement: If no information about traffic is provided, the travel

time from place to place is assumed to be negligible. During the planning session, the

team receives the following announcement: "The traffic officer just contacted us, and

said the First and Second bridges will experience heavy traffic at 8:15 pm. It will take at

least 20 minutes for any car to get across a bridge. The travel time from the theater to

any hot-spot is about 20 minutes without using the bridges." Once this announcement is

made, the team must account for the traffic in their plan.

2.6 Evaluation

In this section, I evaluate the performance of my approach for plan inference through

initial proof-of-concept human subject experimentation, and show I am able to infer a

human team's final plan with 86% accuracy on average, where "accuracy" is defined as

a composite measure of task allocation and plan sequence accuracy measures. The task

allocation represents assignments of actions to agents, while the sequence represents the

order in which the tasks are executed. I also describe a robot demonstration in which two
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people plan and execute a first-response collaborative task with a PR2 robot.

2.6.1 Human Team Planning Data

As indicated previously, I designed a Web-based collaboration tool modeled after the

NICS system [441 used by first-response teams, but with a modification that requires the

team to communicate solely via text chat. For the radioactive material leakage scenario,

before announcement, 13 teams of two (a total of 26 participants) were recruited through

Amazon Mechanical Turk and from the greater Boston area. Recruitment was restricted

to those located in the US to increase the probability that participants were fluent in

English. For the radioactive material leakage scenario, after announcement, 21 teams

of two (a total of 42 participants) were recruited through Amazon Mechanical Turk and

from the greater Boston area. For the police incident response scenario, 14 teams of two

(total 28 participants) were recruited from the greater Boston area. Participants were

not required to have prior experience or expertise in emergency or disaster planning, and I

note that there may be structural differences in the dialog of expert and novice planners.

I leave this topic for future investigation.

Each team received one of the two fictional rescue scenarios described in Section 2.5.2,

and was asked to collaboratively plan a rescue mission. Upon completion of the planning

session, each participant was asked to summarize the final agreed-upon plan in the struc-

tured form described previously. An independent analyst reviewed the planning sessions

to resolve discrepancies between the two members' descriptions when necessary.

Four independent analysts performed utterance tagging, with each team planning

session tagged and reviewed by two of these four analysts. The resulting tagged utterances

shows that 36% of predicates mentioned per data set did not end up in the final plan on

average.

2.6.2 Method Implementation

This work is implemented in Python, and the VAL PDDL 2.1 plan validator [72] was used.

I performed 2,000 Gibbs sampling steps on the data from each planning session. The
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initial plan value was set to two to five moves (from MH proposal distribution) away from

the true plan. The initial value for s variable was randomly set to any timestamp in the

initial plan value.

Within one Gibbs sampling step, I performed 30 steps of the Metropolis-Hastings

(MH) algorithm to sample the plan. Every 20 samples were selected to measure accuracy

(median), after a burn-in period of 200 samples.

Results I assessed the quality of the final plan produced by my approach in terms of the

accuracy of task allocation among agents (e.g. which medic travels to which room) and

the accuracy of the plan sequence.

Two metrics for task allocation accuracy were evaluated: 1) The percent of inferred

plan predicates appearing in the team's final plan [% Inferred], and 2) the percent noise

rejection of extraneous predicates that were discussed but do not appear in the team's

final plan [% Noise Rej].

I evaluated the accuracy of the plan sequence as follows: A pair of predicates is cor-

rectly ordered if it is consistent with the relative ordering in the true final plan. I measured

the percent accuracy of sequencing [% Seq] by * cotly ore pairs of corre predicates. Only

correctly estimated predicates were compared, as there is no ground truth relation for

predicates not included in the true final plan. I used this relative sequencing measure

because it does not compound sequence errors, as an absolute difference measure would

(e.g. where an error in the ordering of one predicate early in the plan shifts the position

of all subsequent predicates).

Overall "composite" plan accuracy was computed as the arithmetic mean of the task

allocation and plan sequence accuracy measures. This metric summarizes the two relevant

accuracy measures so as to provide a single metric for comparison between conditions.

I evaluated my approach under four conditions: 1) perfect PDDL files, 2) PDDL

problem file with missing goals/constants (e.g. delete available agents), 3) PDDL domain

file missing a constraint (e.g. delete precondition), and 4) using an uninformative prior

over possible plans.

The purpose of the second condition, PDDL problem file with missing goals/constants,

was to test the robustness of my approach to incomplete problem information. This PDDL
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problem specifiction was intentionally designed to omit information regarding one patient

(pG) and one robot (blueR). It also omitted the following facts about the initial state:

that pG was located at G, the blueR was available to perform inspections, and patient pG

patient was not yet rescued. The goal state omitted that pG patient was to be rescued.

This condition represented a significant degradation of the problem definition file, since

the original planning problem involved only three patients and two robots.

The purpose of the third condition, PDDL domain file with a missing constant, was

to test the robustness of my approach to missing constraints (or rules for successful

execution). It is potentially easy for a person to miss specifying a rule that is often

implicitly assumed. The third condition omitted the following constraint from the domain

file: all the rooms are to be inspected prior to sending any medical crews. This condition

represented a significant degradation of the domain file, since this constraint affected any

action involving one of the medical crew teams.

Results shown in Tables 2.3-2.5 are produced by sampling plan and s variables and

fixing 3 = 5 and w, = 0.8. The tables report median values for the percent of the inferred

plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise Rej.], and

sequence accuracy [% Seq.]. I show that my approach infers final plans with greater than

86% composite accuracy on average. I also show that my approach is relatively robust to

degraded PDDL specifications (i.e., PDDL with missing goals, constants and constraints).

Further discussion of sampling hyper-parameters is found in Section 2.7.2.

2.6.3 Concept-of-Operations Robot Demonstration

I illustrate the use of my approach for plan inference through a robot demonstration in

which two people plan and execute a first-response collaborative task with a PR2 robot.

The participants plan an impending deployment using the Web-based collaborative tool I

developed. Once the planning session is complete, the dialogue is tagged manually. The

plan inferred from this data is confirmed with the human planners and provided to the

robot for execution. The registration of predicates to robot actions, and room names to

map locations, is performed offline in advance. While the first responders are on their
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Task Allocation Composite

% Inferred % Noise Rej. ~ % Acc.

PDDL 61 100 97 86
PDDL with missing goals 100 58 77 78

and constants
PDDL with missing constraint 70 100 87 86

No PDDL 70 58 66 65

Table 2.3: Radioactive material leakage scenario plan accuracy results, before announce-

ment (13 teams / 26 subjects). The table reports median values for the percent of the

inferred plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise

Rej.], and sequence accuracy [% Seq.]. Composite % Accuracy is calculated as the average

of the previous three measures.

Task Allocation Composite

% Inferred % Noise Rej. % % Acc.

PDDL 77 100 83 87
PDDL with missing goals 100 54 97 84

and constants
PDDL with missing constraint 72 100 90 87

No PDDL 100 54 81 78

Table 2.4: Radioactive material leakage scenario plan accuracy results, after announce-

ment (21 teams / 42 subjects). The table reports median values for the percent of the

inferred plan predicates appearing in the final plan [% Inferred], noise rejection [% Noise

Rej.J, and sequence accuracy [% Seq.]. Composite % Accuracy is calculated as the average

of the previous three measures.

Task Allocation Composite

% Inferred % Noise Rej. % % Acc.

PDDL 97 89 97 86
PDDL with missing goals 92 86 92 83

and constants
PDDL with missing constraint 97 89 97 85

No PDDL 81 95 81 82

Table 2.5: Police incidents response scenario plan accuracy results (14 teams / 28 sub-

jects). The table reports median values for the percent of the inferred plan predicates

appearing in the final plan [% Inferred], noise rejection [% Noise Rej.], and sequence ac-

curacy [% Seq.]. Composite % Accuracy is calculated as the average of the previous three

measures.
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way to the accident scene, the PR2 autonomously navigates to each room, performing

online localization, path planning and obstacle avoidance. The robot informs the rest of

the team as it inspects each room and confirms it is safe for human team members to

enter. Video of this demo can be found here: http: //tiny. cc/uxhcrw.

2.7 Discussion

In this section I discuss the results and trends in Tables 2.3-2.5. I then discuss how

sampling hyper-parameters improves inference accuracy, and provide an interpretation

of inferred hyper-parameter values and how they relate to data characteristics. I also

provide additional support for the use of PDDL by analyzing multiple Gibbs sampling runs.

My rationale behind the i.i.d assumption on utterances made in the generative model is

explained, and I show how a simple extension to my model can relax this assumption.

Finally, I provide my rationale for designing the proposal distribution for the sampling

algorithm.

2.7.1 Results

The average accuracy of the inferred final plan improved across all three scenarios with

the use of perfect PDDL as compared to an uninformative prior over possible plans. The

sequence accuracy also consistency improved with the use PDDL, regardless of noise

level or the type of PDDL degradation. The three scenarios exhibited different levels of

"noise," defined as the percentage of utterances that did not end up in the finally agreed

upon plan. The police incidents response scenario produced substantially higher noise

(53%), as compared to the radioactive material leaking scenario before announcement

(38%) and after announcement (17%). This is possibly because the police incidents

scenario included durative-actions, whereas the others did not. Interestingly, perfect PDDL

produced more substantial improvements in sequence accuracy when noise level was higher,

in the radioactive material leaking scenario before announcement, and in police incidents

scenario.

Accuracy in task allocation, on the other hand, did differ depending on the noise level
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and the type of PDDL degradation. The noise rejection ratio was the same or better with

PDDL or PDDL with a missing constraint, as compared to an uninformative prior, for

scenarios with less noise (e.g. the radioactive material leaking scenarios before and after

announcement). However, PDDL did not provide benefit to the noise rejection ratio for

the police incidents scenario where the noise level was more than 50%. However, in this

case PDDL did provide improvements in inferred task allocation.

The composite accuracy of PDDL and PDDL with missing constant are comparable,

although they differ in task allocation and sequence accuracies. One of the possible

explanations is that teams mostly did not violate the missing constraint (i.e., send robots

before sending human), therefore, missing the constrain did not significantly impact the

composite accuracy.

2.7.2 Sampling Hyper-parameters

This section discusses the results of hyper-parameter sampling. First, I show that each

data point (i.e., each team's conversation) converges to different hyper-parameter values,

then show that those values capture the characteristics of each data point. Second, I show

how learning different sets of hyper-parameters improves different measures of accuracy,

and describe how this is consistent with my interpretation of the hyper-para meters in my

model.

Improvements in sequence accuracy versus noise rejection

The hyper-parameter 0 represents the noisiness in predicate ordering, while the hyper-

parameter wp represents the noisiness in the assignment of predicates. Setting these

parameters to a fixed value corresponds to an assumption about the noisiness of the data

set. We can learn these parameters through Gibbs sampling, allowing these values to be

adjusted according to different characteristics of each data set. The details of how I sample

hyper-parameters were explained in Section 2.4.3. I performed 2,000 Gibbs sampling steps

on the data from each planning session. The initial values of wp and 3 were sampled from

their prior, where the parameters were set to the values described in Section 2.4.1.
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Figure 2-5: Percent improvements in median noise rejection and median sequence accuracy
when sampling hyper-parameters versus setting w = 0.8 and 0 = 5.

I found that when I learned wp (with 3 = 5), the noise rejection rate improved

compared with when I fixed w, = 0.8. In the radioactive material leakage scenario, both

before and after the mid-scenario announcement, the noise rejection ratio was improved

by as much as 41% and 45%, respectively; in the police incident response scenario, I

observed up to a 13% improvement (Figure 2-5a). Note that in all cases the median noise

rejection ratio was maintained or improved with the sampling of wi,.

Similarly, when I learned 3 (with Li = 0.8), sequence accuracies generally improved.

In the radioactive material leakage scenario, before and after the announcement, the

sequence accuracy improved by up to 26% and 16%, respectively; in the police incident

response scenario, I observed up to an 18% improvement (Figure 2-5b). Note that three

cases did see a degradation in accuracy of up to 4-8%. However in nine out of the twelve

cases the sequence accuracy was maintained or improved with the sampling of /.

Interestingly, most of the samples achieved the highest overall composite accuracy

when only plan and s were learned, and the hyper-parameters were fixed. In particular, I

observed an average 5% ( 3%) decrease in composite accuracy when sampling all four

variables together. One of the possible explanations for this finding is that, due to the

limited amount of data, Gibbs sampling may require many more iterations to converge all

the variables. This result suggests that one may choose the set of hyper-parameters to
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learn based on which measure of accuracy is more important to the user.

Interpretation of inferred values of hyper-parameters

(a) Examples of 3 value convergences
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Figure 2-6: Inferred values of hyper-pa ra meters (only showing subset of data set)

As described in Section 2.4.1, the w, parameter models the level of noise in predicates

within the data. In other words, the w, parameter is designed to model how many
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suggestions the team makes during the conversation that are subsequently included in

the final plan. The high noise level means that a smaller number of predicates from the

planning conversation are included in the final plan. A lower-valued wp will represent

the characteristics of the conversation well, which may allow for better performance.

(However, if the noise level is too high, the inference may still fail.)

To compare the learned value of wp with the characteristics of the conversation, I need

a way to calculate how noisy the conversation is. The following is one way to compute

the value of wp: First, count the utterances that contain any predicates. Then, count the

utterances that contain predicates included in the final plan. The ratio between these two

numbers can be interpreted as noisiness in the predicates; the lower the number, the more

the team talked about many possible plans.

I performed this manual calculation for two teams' trials - Team 3 and 10 - to

compare their values to the learned values. In Team 3's trial, only 19.4% of the sugges-

tions made during the conversation were included in the final plan (i.e., almost 80% of

suggestions were not relevant to the final plan). On the other hand, 68% of suggestions

made in Team 10's trial were included in the final plan. Using this interpretation, Team

3's trial is more than twice as noisy as Team 10's trial.

The converged value of w, is lower in Team 3's trial than in Team 10's trial, reflecting

the characteristics of each data set. Figure 2-6b shows the converged value of wp for each

team's trial (sub-sampled, and for a subset of the dataset). The figure presents values

of wp at each iteration of the Gibbs sampling step. Note that the samples from Team

3's trial converge to 20%, while the samples from Team 10's trial converge to 40%. The

lower value of wp represents higher noise level, and matches my intuition.

However, there is no conclusive way to prove that these converged values are the true

values. In theory, the Gibbs sampling algorithm only guarantees convergences to the true

value with an infinite number of iterations. Therefore, I cannot prove that the converged

wp variables shown in Figure 2-6 are the true values. In practice, a trace plot, such as that

in Figure 2-6, is drawn in order to demonstrate convergence to a local optimum. The fact

that the values appear to plateau after a burn-in period provides support of convergence

to a local optimum point. Investigation of this potentially local optimum point suggests
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that the w, value for each data point can be different, and that I can observe some

relationship between the wp value and the characteristics of the data set. In addition, the

manual calculation of 'noisiness' is only one way of interpreting the 'noisiness' of the data

set. Therefore, this analysis should be considered as one possible way to gain insight into

the learned values; not a rigorous proof of the relation between the learned value of the

hyper-parameter and the characteristics of the data.

2.7.3 The Benefit of PDDL

This section provides additional evidence of the benefit of using PDDL by analyzing mul-

tiple runs using the same data and sampling algorithm. As explained in Section 2.4.3,

Gibbs sampling is an approximate inference algorithm that can produce different results

on each run.

In this section I evaluate runs over a wide range of different settings to show that

the benefit of PDDL applies not just to a particular setting of parameters, but also to

different settings. I analyzed three cases across a range of parameters: 1) learning both

plan and s, 2) learning plan, s and wp and 3) learning plan, s and /. In the first case,

I changed the value of a to range from 3 to 1,000, w, from 0.3 to 0.8, and / from 1 to

100. In the second case, in addition to a and /3 parameters, I varied the parameters for

the prior distribution of wp - k, and OP; both ranging from 2 to 70. In the third case,

in addition to a and wp parameters, I varied the parameters for the prior distribution of

# - k8 and 00; both ranging from 0.1 to 50. Values from the all ranges were selected

randomly to produce a total of 613 runs.

Eighty-two percent of the 613 runs showed higher accuracy when PDDL was used

than when PDDL was not used. This suggests that adding the structured prior improves

accuracy over a wide range of parameter settings. Figure 2-7 presents the ratio of runs

that saw benefit from the use of the PDDL, for each of the three scenarios.

Interestingly, the highest accuracy was not always achieved with perfect PDDL files;

in some cases, the highest accuracy was achieved with imperfect PDDL files (e.g., PDDL

file with missing goals/constraints, as described in Section 2.6). This observation may be
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Figure 2-7: Ratio of runs that show the benefit of using PDDL

explained by the possibility that some finally agreed-upon plans 1) are not complete and/or

2) violate constraints (mostly due to participants' misunderstandings). For example: Prior

to the announcement during the radioactive material leakage scenario, a number of teams

had not finished building complete plans. Therefore, the final plans in these cases may

have been better inferred with incomplete PDDL files (consistent with Table 2.4). In the

police incident response scenario, however, a number of teams missed the constraint that

the hot-spot patrolling task is only considered complete if that hot-spot is fully covered

from 8:30 p.m. to 9 p.m. A number of teams dispatched police cars only for a portion of

that time window, resulting in invalid plans with the perfect PDDL files (consistent with

Table 2.5)

The improvements achieved by adding the structure to the prior using PDDL suggest

that the structural information is beneficial to my inference problem. It would be interest-

ing to systematically investigate the smallest set of structural information that achieves

accuracy improvements, given a fixed computation budget, in future work.
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2.7.4 The i.i.d Assumption on the Utterance in the Generative

Model

My generative model considers that all utterances are independent and identically dis-

tributed samples from the plan variable. In other words, I consider that all utterances give

equal evidence to a plan, regardless of the order in which they appear during the conver-

sation. An alternative would be to have a different weight for each utterance, to take the

ordering into account. In this section, I explain the reasons for the i.i.d. assumption, and

how a simple extension to the current model can relax this assumption.

In the human subject data collected for this work, I did not observe a clear relationship

between the order of an utterance and whether the suggestion is included in the final plan.

For example, a number of teams decided to include parts of a plan that were discussed

at the beginning of the conversation within their final plan, after discussing many other

possibilities. The distribution of the utterances included in the final plan shown in Figure 2-

8 suggests that a high portion of utterances discussed at the be beginning of the meeting

are included in the final plan.

An additional reason for the i.i.d. assumption is that, when a team discusses plans

under time pressure, the planning sessions often consist of a small number of succinct

communications. For example, the average number of predicates in all utterances in a

planning session is 90, whereas the average number of predicates in a final plan is 12. A

succinct conversation yields less available data for the inference; therefore, a complicated

model may fail to correctly infer all the latent variables. A time series model, wherein the

ordering is taken into account and the weight of each utterance is a latent variable that

needs to be learned from the data, is an example of such a model.

However, a simple extension of the current model can relax this assumption and in-

corporate the different importance of each utterance. One way to decide an utterance's

importance is to integrate human cognitive models. Human cognitive architectures [10]

model human cognitive operations, such as the memory model [111. For example, I can

decrease the importance of each utterance as time proceeds in the planning session by

applying varying weights to each utterance. A simple extension to the current model can
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Figure 2-8: The distribution of the utterances included in the final plan (normalized)

be made to incorporate the memory model. Specifically, the variables Wp and 3 can be

modified to be vectors that represent weight or activation level of each utterance from

the human cognition model [11]. The vector of wp will have the length of the utter-

ances, w= {wpj, Wp,, - - - , Wp,T }, where each wp,, represents the activation level of each

utterance. Similarly, I can extend 3 to be a vector, where each Ot can represent how

noisy each utterance is, weighing it accordingly. However, while these cognitive models

are empirically well-verified, Whitehill et al. [133] pointed out that there is no structured

way to set parameters for these models. In addition, it is unclear how the human memory

model would differ depending on the characteristics of a given task. For example, the

memory model may differ significantly for short, succinct conversations conducted under

time pressure.

2.7.5 Engineering the Proposal Distribution in the Metropolis-

Hastings Sampling Algorithm

This section describes the impact of different proposal distributions in the MH sampling

step, and our rationale for designing the proposal distribution as described in Section 2.4.3.

There have been numerous studies conducted on selecting a family of candidate-
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generating density functions [97, 66, 56, 54]. However, as pointed out by Chib et al. [34],

there is no structured way to choose the proposal distribution. It becomes more challenging

when the sampled object is not a simple scalar variable, but a more complicated object,

such as the plan variable (i.e., tuples of sets of grounded predicates) in this work. For

such an object, there are larger spaces of potential proposal distributions to choose from.

However, a good choice for proposal distribution can improve performance. Figure 2-

9 shows the results of the two different proposal distributions used for this work. The

preliminary version of this work [80] applied the following distribution:

* Select a predicate from the set of possible predicates. If it is in the current plan,

move it to either: 1) the next set of predicates or 2) the previous set, or 3) remove

it from the current plan. If it is not in the current plan, move it to one of the

existing sets.

o Select two sets in the current plan and switch their orders.

One difference between the proposal distribution above and the one outlined in Sec-

tion 2.4.3 is the set of allowed timestamps that a selected predicate can move to at each

iteration. The above proposed distribution allows a predicate to move to any timestamp,

whereas the one in Section 2.4.3 only allows a predicate to move to an adjacent timestamp.

The key insight into proposal distribution in this work is gained by investigating se-

quences of MH sampling steps and observing when a proposal distribution fails to propose

a good move. In other words, I identify what moves are necessary to move a proposed

value (i.e., proposed new plan) to the true value of the latent variable (i.e., true plan)

when they are close to each other. Often, a predicate is one timestamp off from the

true timestamp (i.e., one timestamp after or before), and the proposal distribution as

contained in the preliminary work [80] often fails to suggest a better proposed point. This

motivated us to create a proposal distribution enabling more frequent moves between ad-

jacent timestamps than between any two timestamps. As a result, I observed a substantial

improvement to accuracy in all scenarios, as shown in Figure 2-9.

While this particular proposal distribution cannot be applied to all cases, this insight

suggests that the following approach could be useful when designing a proposal distribution
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for non-scalar valued variables: First, a distance metric is defined between the two non-

scalar valued variables. In my case, this step included defining the distance between two

tuples of sets of predicates (i.e., plan variables). For example, the distance could be

the average number of missing or extraneous predicates or the number of predicates that

have incorrect timestamps. Second, starting from an initial proposed distribution, the

distance between each sample and the true value is measured. Third, I can filter sample

sequences when the distance is short, and visualize them. The shorter distance indicates

moments when sampling could have almost reached the true value, but did not. Finally,

the proposed distribution is modified to include the move that converts the samples in

the third step to the true value within one or two moves. This process allows for insight

into designing the proposal distribution. I leave further investigation of the systematic

approach to future work.

2.8 Conclusion and Future Work

In this chapter, I have formulated the novel problem of performing inference to extract

a finally agreed-upon plan from a human team's planning conversation. I presented my
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approach that combines a probabilistic approach with logical plan validation, used to

compute a highly structured prior over possible plans. My approach infers team plans

without the need for historical data, using only situational information and data from a

single planning session. I do not require the development or addition of a plan library

to infer the plan, and demonstrate my solution is robust to incomplete knowledge of the

planning problem. I demonstrated the benefit of this approach using human team meeting

data collected from large-scale human subject experiments (total 96 subjects) and were

able to infer the human teams' final plans with 86% accuracy on average.
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Chapter 3

The Bayesian Case Model: A

Generative Approach for Case-Based

Reasoning and Prototype

Classification

The human team decision-making process requires exchange of ideas. In order to build a

machine that collaborates with humans in the decision-making process, machine learning

algorithms must communicate to humans by providing output in forms that make sense

to humans and are easily incorporated into the human-decision making process. While

Chapter 2 demonstrated a machine learning model that "interpret decisions of humans,"

this chapter presents models that can "makes sense to humans" by exploring and com-

municating patterns and structure in data to support human decision-making. I propose

and validate a new unsupervised clustering model that provides interpretable explanations

about machine learning results to humans, who use examples as a fundamental part of

humans' decision-making strategies.

Bayesian Case Model (BCM) is a general framework for Bayesian case-based reason-

ing (CBR) and prototype classification and clustering. BCM brings the intuitive power of

CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential"

81



observations that best represent clusters in a dataset, by performing joint inference on

cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity

by learning subspaces, the sets of features that play important roles in the characteriza-

tion of the prototypes. The prototype and subspace representation provides quantitative

benefits in interpretability while preserving classification accuracy. Human subject exper-

iments verify statistically significant improvements to participants' understanding when

using explanations produced by BCM, compared to those given by prior art.

3.1 Introduction

People like to look at examples. Through advertising, marketers present examples of

people we might want to emulate in order to lure us into making a purchase. We might

ignore recommendations made by Amazon.com and look instead at an Amazon customer's

Listmania to find an example of a customer like us. We might ignore medical guidelines

computed from a large number of patients in favor of medical blogs where we can get

examples of individual patients' experiences.

Numerous studies have demonstrated that exemplar-based reasoning, involving various

forms of matching and prototyping, is fundamental to humans' most effective strategies

for tactical decision-making ([101, 35, 83]). For example, naturalistic studies have shown

that skilled decision makers in the fire service use recognition-primed decision making, in

which new situations are matched to typical cases where certain actions are appropriate

and usually successful [83]. To assist humans in leveraging data sources to make better

decisions, we desire that machine learning algorithms provide output in forms that are

easily incorporated into the human decision-making process.

Studies of human decision-making and cognition provided the key inspiration for arti-

ficial intelligence CBR approaches [2, 122]. CBR relies on the idea that a new situation

can be well-represented by the summarized experience of previously solved problems [122].

CBR has been used in important real-world applications [91, 19], but it does not learn

the underlying complex structure of data in an unsupervised fashion and may not scale to

datasets with high-dimensional feature spaces (as discussed in [123]).
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In this thesis, I introduce a new Bayesian model, called the Bayesian Case Model

(BCM), for prototype clustering and subspace learning. In this model, the prototype is

the exemplar that is most representative of the cluster. The subspace representation is

a useful output of the model because we neither need nor want the best exemplar to be

similar to the current situation in all possible ways: for instance, a moviegoer who likes the

same horror films as we do might be useful for identifying good horror films, regardless

of their cartoon preferences. I model the underlying data using a mixture model, and

infer sets of features that are important within each cluster (i.e., subspace). This type of

model can help to bridge the gap between machine learning methods and humans, who

use examples as a fundamental part of their decision-making strategies.

I show that BCM produces prediction accuracy comparable to or better than prior art

for standard datasets. I also verify through human subject experiments that the prototypes

and subspaces provide meaningful feedback for the characterization of important aspects of

a dataset. In these experiments, the exemplar-based output of BCM resulted in statistically

significant improvements to participants' performance of a task requiring an understanding

of clusters within a dataset, as compared to outputs produced by prior art.

3.2 Background and Related Work

People organize and interpret information through exemplar-based reasoning, particularly

when they are solving problems ([101, 27, 35, 83]). Al Cased-Based Reasoning approaches

are motivated by this insight, and provide example cases along with the machine-generated

solution. Studies show that example cases significantly improve user confidence in the

resulting solutions, as compared to providing the solution alone or by also displaying a rule

that was used to find the solution [411. However, CBR requires labels (i.e. solutions) for

previous cases, and does not learn the underlying structure of the data in an unsupervised

fashion. Maintaining transparency in complex situations also remains a challenge [123].

CBR models designed explicitly to produce explanations [1] rely on the backward chaining

of the causal relation from a solution, which may not scale as complexity increases. The

cognitive load of the user also increases with the complexity of the similarity measure used
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for comparing cases [50]. Other CBR models for explanations require the model to be

manually crafted in advance by experts [99].

An alternative way to organize information is using clustering. The mixture model is

a powerful tool for discovering cluster distributions in an unsupervised fashion. However,

this approach does not provide intuitive explanations for the learned clusters (as pointed

out in [32]). Sparse topic models are designed to improve interpretability by reducing the

number of words per topic [134, 45]. However, using the number of features as a proxy

for interpretability is problematic, as sparsity is often not a good or complete measure of

interpretability [50]. Explanations produced by mixture models are typically presented as

distributions over features. Even users with technical expertise in machine learning may

have a difficult time interpreting such output, especially when the cluster is distributed

over a large number of features [50].

My approach, the BCM, simultaneously performs unsupervised clustering and learns

both the most representative cases (i.e., prototypes) and important features (i.e., sub-

spaces). BCM preserves the power of CBR in generating interpretable output, where

interpretability comes not only from sparsity but from the prototype exemplars.

In my view, there are at least three widely known types of interpretable models: sparse

linear classifiers ([126, 32, 129]); discretization methods, such as decision trees and deci-

sion lists (e.g., [43, 134, 45, 90, 60]); and prototype- or case-based classifiers (e.g., nearest

neighbors [391 or a supervised optimization-based method [20]). (See [50] for a review of

interpretable classification.) BCM is intended as the third model type, but uses unsuper-

vised generative mechanisms to explain clusters, rather than supervised approaches [61]

or by focusing myopically on neighboring points [13].

3.3 The Bayesian Case Model

Intuitively, BCM generates each observation using the important pieces of related pro-

totypes. The model might generate a movie profile made of the horror movies from

a quintessential horror movie watcher, and action movies from a quintessential action

moviegoer.
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Figure 3-1: Graphical model for the Bayesian Case Model

BCM begins with a standard discrete mixture model [69, 23] to represent the un-

derlying structure of the observations. It augments the standard mixture model with

prototypes and subspace feature indicators that characterize the clusters. I show in Sec-

tion 3.4.2 that prototypes and subspace feature indicators improve human interpretability

as compared to the standard mixture model output. The graphical model for BCM is

depicted in Figure 4-1.

I start with N observations, denoted by x = {X, x2 ,... , XN}, with each xi represented

as a random mixture over clusters. There are S clusters, where S is assumed to be

known in advance. (This assumption can easily be relaxed through extension to a non-

parametric mixture model.) Vector 7ri are the mixture weights over these clusters for the

ith observation xi, 7ri E Rs. Each observation has P features, and I denote the jth feature

of the ith observation as xij. Each feature j of the observation xi comes from one of

the clusters, the index of the cluster for xij is denoted by zij and the full set of cluster

assignments for observation-feature pairs is denoted by z. Each zij takes on the value of

a cluster index between 1 and S. Hyperparameters q, A, c, and a are assumed to be fixed.

The explanatory power of BCM results from how the clusters are characterized. While a

standard mixture model assumes that each cluster take the form of a predefined parametric
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distribution (e.g., normal), BCM characterizes each cluster by a prototype, ps, and a

subspace feature indicator, ws. Intuitively, the subspace feature indicator selects only a

few features that play an important role in identifying the cluster and prototype (hence,

BCM clusters are subspace clusters). I intuitively define these latent variables below.

Prototype, ps: The prototype p. for cluster s is defined as one observation in x

that maximizes p(p, w, z, x), with the probability density and w, as defined below. My

notation for element j of p, is p8 3 . Since p. is a prototype, it is one of the observations,

so psj = xi for some i. Note that more than one maximum may exist per cluster; in this

case, one prototype is arbitrarily chosen. Intuitively, the prototype is the "quintessential"

observation that best represents the cluster.

Subspace feature indicator w,: Intuitively, w. 'turns on' the features that are important

for characterizing cluster s and selecting the prototype, ps. Here, W. C {0, 1} is an

indicator variable that is 1 on the subset of features that maximizes p(wsjps, z, x), with

the probability for ws as defined below. Here, w, is a binary vector of size P, where each

element is an indicator of whether or not feature j belongs to subspace s.

The generative process for BCM is as follows: First, I generate the subspace clusters. A

subspace cluster can be fully described by three components: 1) a prototype, p,, generated

by sampling uniformly over all observations, 1. .. N; 2) a feature indicator vector, W., that

indicates important features for that subspace cluster, where each element of the feature

indicator (w8j) is generated according to a Bernoulli distribution with hyperparameter q;

and 3) the distribution of feature outcomes for each feature, #,, for subspace s, which I

now describe.

Distribution of feature outcomes 0, for cluster s: Here, #s is a data structure where

each "row" #,j is a discrete probability distribution of possible outcomes for feature j.

Explicitly, #sj is a vector of length V, where V is the number of possible outcomes of

feature j. Let us define e as a vector of the possible outcomes of feature j (e.g., for

feature 'color', E = [red, blue, yellow]), where E, represents a particular outcome for that

feature (e.g., 0, = blue). I will generate #, so that it mostly takes outcomes from the

prototype p. for the important dimensions of the cluster. I do this by considering the
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vector g, indexed by possible outcomes v, as follows:

gpqj,wsj,\(v) = A(1 + CI[wj= and p,,j=ei),

where c and A are constant hyperparameters that indicate how much we will copy the

prototype in order to generate the observations. The distribution of feature outcomes will

be determined by g through 0,, ~ Dirich let(g ). To explain at an intuitive level:

First, consider the irrelevant dimensions j in subspace s, which have waj = 0. In that

case, 0,,j will look like a uniform distribution over all possible outcomes for features j; the

feature values for the unimportant dimensions are generated arbitrarily according to the

prior. Next, consider relevant dimensions where w.y = 1. In this case, 0,,j will generally

take on a larger value A + c for the feature value that prototype p, has on feature j, which

is called E),. All of the other possible outcomes are taken with lower probability A. As

a result, we will be more likely to select the outcome e, that agrees with the prototype

ps In the extreme case where c is very large, we can copy the cluster's prototype directly

within the cluster's relevant subspace and assign the rest of the feature values randomly.

An observation is then a mix of different prototypes, wherein we take the most impor-

tant pieces of each prototype. To do this, mixture weights 7ri are generated according to a

Dirichlet distribution, parameterized by hyperparameter a. From there, to select a cluster

and obtain the cluster index Zij for each xij, I sample from a multinomial distribution

with parameters 7r. Finally, each feature for an observation, xij, is sampled from the

feature distribution of the assigned subspace cluster (#2 1 ). (Note that Latent Dirichlet

Allocation (LDA) [23] also begins with a standard mixture model, though feature values

in my model exist in a discrete set that is not necessarily binary.) Here is the full model,

with hyperparameters c, A, q, and a:

w , ~ Bernoulli(q) Vs,j p, ~ Uniform(1, N) Vs

#rj - Dirichlet(gp,j,A,,) Vs,j where g ,, (v) = A(1 + cl[we=1 and ,j=E)

Iri ~ Dirichlet(a) Vi zij ~ Multinomial(-r) Vi,j xi Multinomial(#z2jj) Vij.
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My model can be readily extended to different similarity measures, such as standard

kernel methods or domain specific similarity measures, by modifying the function g. For

example, I can use the least squares loss i.e., for fixed threshold c, gp,,W,,A(v) = A(1 +

CI[w.=1 and (pS.-e,,)2<E]); or, more generally, gj (v) A(1 + Cl[w.j1 and e(pEo)<<])-

In terms of setting hyperparameters, there are natural settings for a (all entries being

1). This means that there are three real-valued parameters to set, which can be done

through cross-validation, another layer of hierarchy with more diffuse hyperparameters,

or plain intuition. To use BCM for classification, vector -ri is used as S features for a

classifier, such as SVM.

3.3.1 Motivating example

This section provides an illustrative example for prototypes, subspace feature indicators

and subspace clusters, using a dataset composed of a mixture of smiley faces. The feature

set for a smiley face is composed of types, shapes and colors of eyes and mouths. For the

purpose of this example, assume that the ground truth is that there are three clusters,

each of which has two features that are important for defining that cluster. In Table 3.1,

I show the first cluster, with a subspace defined by the color (green) and shape (square)

of the face; the rest of the features are not important for defining the cluster. For the

second cluster, color (orange) and eye shape define the subspace. I generated 240 smiley

faces from BCM's prior with a = 0.1 for all entries, and q = 0.5, A = 1 and c = 50.

BCM works differently from Latent Dirichlet Allocation (LDA) [23], which presents

its output in a very different form. Table 3.1 depicts the representation of clusters in

both LDA (middle column) and BCM (right column). This dataset is particularly simple,

and I chose this comparison because the two most important features that both LDA

and BCM learn are identical for each cluster. However, LDA does not learn prototypes,

and represents information differently. To convey cluster information using LDA (i.e., to

define a topic), I must record several probability distributions - one for each feature. For

BCM, I need only to record a prototype (e.g., the green face depicted in the top row,

right column of the figure), and state which features were important for that cluster's

88



Data in assigned to cluster LDA BCM
Top 3 words and proba- Prototype Subspaces
bilities

MNVOMME9MIMM

1 MmumuMMMIN.. % [I 00 color (%) and shape

) are important.
EE.Evu..E.E.

0.26 0.23 0.12

2 color ( ) and eye
m 0 (00) are important.

0.26 0.24 0.16

3 z eye ( ) and mouth

V Z* Z: V t z y(t,)areimportant.

0.35 0.27
0.15

Table 3.1: The mixture of smiley faces for LDA and BCM

subspace (e.g., shape and color). For this reason, BCM is more succinct than LDA with

regard to what information must be recorded in order to define the clusters. One could

define a "special" constrained version of LDA with topics having uniform weights over a

subset of features, and with "word" distributions centered around a particular value. This

would require a similar amount of memory; however, it loses information, with respect to

the fact that BCM carries a full prototype within it for each cluster.

A major benefit of BCM over LDA is that the "words" in each topic (the choice of

feature values) are coupled and not assumed to be independent - correlations can be

controlled depending on the choice of parameters. The independence assumption of LDA

can be very strong, and this may be crippling for its use in many important applications.

Given my example of images, one could easily generate an image with eyes and a nose

that cannot physically occur on a single person (perhaps overlapping). BCM can also

generate this image, but it would be unlikely, as the model would generally prefer to copy

the important features from a prototype.

BCM performs joint inference on prototypes, subspace feature indicators and cluster

labels for observations. This encourages the inference step to achieve solutions where

clusters are better represented by prototypes. I will show that this is beneficial in terms

of predictive accuracy in Section 3.4.1. I will also show through an experiment involving

human subjects that BCM's succinct representation is very effective for communicating
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the characteristics of clusters in Section 3.4.2.

3.3.2 Inference: collapsed Gibbs sampling

I use collapsed Gibbs sampling to perform inference, as this has been observed to converge

quickly, particularly in mixture models [62]. I sample wsj, zij, and ps, where 4 and ir are

integrated out. Note that I can recover # by simply counting the number of feature values

assigned to each subspace. Integrating out # and 7r results in the following expression for

sampling zig:

a/S + n(s,i,,j,.) g(Psj' Wsj, A) + n (s,.,j,xm,)
P(Izj= SI i~' X P b 7 7A) a + n XE, g (psj, wjg, A) + n (,,-,j, ) 31

where n(s,i,j,v) = 1(zij = s, xi = v). In other words, if xij takes feature value v for

feature j and is assigned to cluster s, then n(s,i,j,v) = 1, or 0 otherwise. Notation n(s,.,j,v)

is the number of times that the Jth feature of an observation takes feature value v and

that observation is assigned to subspace cluster s (i.e., n(s,.,j,v) = EIL(zi = s, Xij = v)).

Notation nf(s,.,j,.) means sum over i and v. I use n(,,,,,,) to denote a count that does not

include the feature j. The derivation is similar to the standard collapsed Gibbs sampling

for LDA mixture models [62].

Similarly, integrating out q results in the following expression for sampling W,8 :

B(g(psj, 1, A) + n(,,(,3)).2
p (w sj = bIq, p , A, #, x , z,a ) oc ' 'g x(j, , , )

qx 0Ab=0,B(g(p 3, 0, A))

where B is the Beta function and comes from integrating out # variables, which are

sampled from Dirichlet distributions.

3.4 Results

In this section, I show that BCM produces prediction accuracy comparable to or better

than LDA for standard datasets. I also verify the interpretability of BCM through human
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subject experiments involving a task that requires an understanding of clusters within

a dataset. I show statistically significant improvements in objective measures of task

performance using prototypes produced by BCM, compared to output of LDA. Finally, I

visually illustrate that the learned prototypes and subspaces present as meaningful feedback

for the characterization of important aspects of the dataset.

3.4.1 BCM maintains prediction accuracy.

I show that BCM output produces prediction accuracy comparable to or better than

LDA, which uses the same mixture model (Section 3.3) to learn the underlying structure

but does not learn explanations (i.e., prototypes and subspaces). I validate this through

use of two standard datasets: Handwritten Digit [73] and 20 Newsgroups [88]. I use

the implementation of LDA available from [107], which incorporates Gibbs sampling, the

same inference technique used for BCM.

Figure 3-2a depicts the ratio of correctly assigned cluster labels for BCM and LDA. In

order to compare the prediction accuracy with LDA, the learned cluster labels are provided

as features to a support vector machine (SVM) with linear kernel, as is often done in the

LDA literature on clustering [23]. The improved accuracy of BCM over LDA, as depicted

in the figures, is explained in part by the ability of BCM to capture dependencies among

features via prototypes, as described in Section 3.3. I also note that prediction accuracy

when using the full 20 Newsgroups dataset acquired by LDA (accuracy: 0.68t 0.01)

matches that reported previously for this dataset when using a combined LDA and SVM

approach [136]. Also, LDA accuracy for the full Handwritten Digit dataset (accuracy:

0.76 + 0.017) is comparable to that produced by BCM using the subsampled dataset (70

samples per digit, accuracy: 0.77 0.03).

As indicated by Figure 3-2b, BCM achieves high unsupervised clustering accuracy as a

function of iterations (e.g., about 70% for the Handwritten Digit dataset). I can compute

this measure for BCM because each cluster is characterized by a prototype - a particular

data point with a label in the given datasets. (Note that this is not possible for LDA.) I set

a to prefer each 7ri to be sparse, so only one prototype generates each observation, and I
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Figure 3-2: Prediction test accuracy reported for the Handwritten Digit [73] and 20
Newsgroups datasets [88]. (a) applies SVM for both LDA and BCM, (b) presents the
unsupervised accuracy of BCM for Handwritten Digit (top) and 20 Newsgroups (bottom)
and (c) depicts the sensitivity analysis conducted for hyperparameters for Handwritten
Digit dataset. Datasets were produced by randomly sampling 10 to 70 observations of
each digit for the Handwritten Digit dataset, and 100-450 documents per document class

for the 20 Newsgroups dataset. The Handwritten Digit pixel values (range from 0 to

255) were rescaled into seven bins (range from 0 to 6). Each 16-by-16 pixel picture was

represented as a 1D vector of pixel values, with a length of 256. Both BCM and LDA
were randomly initialized with the same seed (one half of the labels were incorrect and
randomly mixed), The number of iterations was set at 1,000. S = 4 for 20 Newsgroups
and S = 10 for Handwritten Digit. a = 0.01, A = 1, c = 50, q = 0.8.
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use that prototype's label for the observation. Sensitivity analysis in Figure 3-2c indicates

that the additional parameters introduced to learn prototypes and subspaces (i.e., q, A

and c) are not too sensitive within the range of reasonable choices.

3.4.2 Verifying the interpretability of BCM

I verified the interpretability of BCM by performing human subject experiments that incor-

porated a task requiring an understanding of clusters within a dataset. This task required

each participant to assign 16 recipes, described only by a set of required ingredients (recipe

names and instructions were withheld), to one cluster representation out of a set of four

to six. (This approach is similar to those used in prior work to measure comprehensibil-

ity [74].) I chose a recipe dataset' for this task because such a dataset requires clusters

to be well-explained in order for subjects to be able to perform classification, but does not

require special expertise or training.

My experiment incorporated a within-subjects design, which allowed for more powerful

statistical testing and mitigated the effects of inter-participant variability. To account for

possible learning effects, I blocked the questions with different conditions and balanced

the assignment of participants into the two ordering groups: Half of the subjects were

presented with all eight questions in condition 1 (e.g., BCM) first, while the other half first

saw the eight questions in condition 2 (e.g., LDA). Subjects were encouraged to answer

the questions as quickly and accurately as possible, but were instructed to take a 5-second

break every four questions in order to mitigate the potential effects of fatigue.

Examples from BCM v.s LDA

Cluster representations (i.e., explanations) from LDA were presented as the set of top

ingredients for each recipe topic cluster. For BCM I presented the ingredients of the

prototype without the name of the recipe and without subspaces. The number of top

ingredients shown for LDA was set as the number of ingredients from the corresponding

BCM prototype and ran Gibbs sampling for LDA with different initializations until the

'Computer Cooking Contest: http://liris. cnrs.fr/ccc/ccc2014/
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New dish

salt
water

vanilla
sugar

peach

flour

egg
cream cheese

sour cream
whipped cream
bakinq powder

Category 1
Category 2
Category 3
Category 4

brownie
cheesecake Category 1 Category 2 Category 3 Category 4
chili Example Example Example Example
chutney powder sugar vinegar chili powder vinegar
cornbread cracker apple broth potato
crepe sour cream cinnamon cumin bell pepper
curry
gingerbreac cream cheese cranberry garlic carrot

meatloaf egg ginger onion hot sauce

pancake pie filling raisin pepper olive

pasta sugar sugar tomato juice onion
pizza vanilla tomato paste sugar
potato butter oil oil
salad turkey chili powder

punch black bean corn
quicheconsl
salsa n salt

Figure 3-3: Web-interface for the human subject experiment

ground truth clusters were visually identifiable. Given a new recipe (i.e., given by as a

set of ingredients) and cluster representations either from BCM or LDA, participants are

asked to classify the new recipe. Twenty-four participants (10 females, 14 males, average

age 27 years) performed the task, answering a total of 384 questions.

Using explanations from BCM, the average classification accuracy was 85.9%, which

was statistically significantly higher (c 2 (1, N = 24) = 12.15,p < 0.001) than that of

LDA, (71.3%). For both LDA and BCM, each ground truth label was manually coded

by two domain experts: the first author and one independent analyst (kappa coefficient:

1). These manually-produced ground truth labels were identical to those that LDA and

BCM predicted for each recipe. There was no statistically significant difference between

BCM and LDA in the amount of time spent on each question (t(24) = 0.89,p = 0.37);

the overall average was 32 seconds per question, with 3% more time spent on BCM than

on LDA. Subjective evaluation using Likert-style questionnaires produced no statistically

significant differences between reported preferences for LDA versus BCM.
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Prototype A -

Subspace A

Prototype B

Subspace B

Prototype C - -

Subspace C

Prototype D

Subspace D

Prototype E

Subspace E

Iteration

(a) Handwritten Digit dataset
Cluster Prototype (Recipe Ingredients ( Subspaces

names)
1 Herbs and Tomato in basil, garlic, Italian season-

Pasta ing, oil pasta pepper salt,
tomato'

2 Generic chili recipe beer j chili powder| cumin,
garlic, meat, oil, onion, pep-
per, salt, Ltomatol

3 Microwave brownies baking powderj sugar, but-

ter, chocolate chopped
pecans, eggs, flour, salt,
vanilla

4 Spiced-punch cinnamon stick,
lemon juice [orange juice

pineapple juice] sugar,
water, whole cloves

(b) Recipe dataset

Figure 3-4: Learned prototypes and subspaces for the Handwritten Digit and Recipe
datasets.
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3.4.3 Learning subspaces

Figure 3-4a illustrates the learned prototypes and subspaces as a function of sampling

iterations for the Handwritten Digit dataset. For the later iterations, shown on the right

of the figure, the BCM output effectively characterizes the important aspects of the data.

In particular, the subspaces learned by BCM are pixels that define the digit for the cluster's

prototype.

Interestingly, the subspace highlights the absence of writing in certain areas. This

makes sense: For example, one can define a '7' by showing the absence of pixels on the

left of the image where the loop of a '9' might otherwise appear. The pixels located where

there is variability among digits of the same cluster are not part of the defining subspace

for the cluster.

Because I initialized randomly, in early iterations, the subspaces tend to identify fea-

tures common to the observations that were randomly initialized to the cluster. This is

because w, assigns higher likelihood to features with the most similar values across obser-

vations within a given cluster. For example, most digits 'agree' (i.e., have the same zero

pixel value) near the borders; thus, these are the first areas that are refined, as shown in

Figure 3-4a. Over iterations, the third row of Figure 3-4a shows that BCM learns a cluster

of the digits "5" and "3," which tend to share many pixel values in similar locations. Note

that the sparsity of the subspaces can be customized by hyperparameter q.

Next, I show results for BCM using the Computer Cooking Contest dataset in Figure 3-

4b. Each prototype consists of a set of ingredients for a recipe, and the subspace is a set

of important ingredients that define that cluster, highlighted in red boxes. For instance,

BCM found a "chili" cluster defined by the subspace "beer," "chili powder," and "tomato."

A recipe called "Generic Chili Recipe" was chosen as the prototype for the cluster. (Note

that beer is indeed a typical ingredient in chili recipes.)

3.5 Conclusion

The Bayesian Case Model provides a generative framework for case-based reasoning and

prototype-based modeling. Its clusters come with natural explanations; namely, a pro-

96



totype (a quintessential exemplar for the cluster) and a set of defining features for that

cluster. I showed the quantitative advantages in prediction quality and interpretability

resulting from the use of BCM. Exemplar-based modeling (nearest-neighbors, case-based

reasoning) has historical roots dating back to the beginning of artificial intelligence; this

method offers a fresh perspective on this topic, and a new way of thinking about the

balance of accuracy and interpretability in predictive modeling.
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Chapter 4

iBCM: Interactive Bayesian Case

Model - Empowering Humans via

Intuitive Interaction

Building on BCM in Chapter 3, this chapter presents the interactive Bayesian Case Model

(iBCM), which enables the user to interact with the clustering model. Users provide

direct input to iBCM in order to achieve effective clustering results, and iBCM optimizes

the clustering by achieving a balance between what the data indicate and what the user

indicates as useful.

Clustering methods optimize the partitioning of data points with respect to an internal

metric, such as likelihood, in order to approximate the goodness of clustering. However,

this internal metric does not necessarily translate into effective clustering from the user's

perspective. This chapter presents the iBCM, a model that opens a communication

channel between the clustering model and the user. Users can provide direct input to

iBCM in order to achieve effective clustering results, and iBCM optimizes the clustering

by creating a balance between what the data indicate and what makes the most sense

to the user. This model provides feedback for users and does not assume any prior

knowledge of machine learning on their part. I provide quantitative evidence that users

are able to obtain more satisfactory clustering results through iBCM than without an

interactive model. I also demonstrate the use of this method in a real-world setting where
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computer language class teachers utilize iBCM to cluster students' coding assignments

for grading.

4.1 Introduction

The ultimate goal of any clustering method is to partition data points in the most effective

and useful way for the user. A number of existing methods [49] are able to group a large

number of data points according to certain internal metrics. Unlike classification methods

where prediction accuracy often serves as an evaluation metric, clustering metrics that

directly optimize for a particular application are difficult to articulate and can be domain-

specific. In clustering, there might be multiple ways to cluster data points that are equally

good according to the internal metric of the clustering method, but some of these methods

may better align with a user's knowledge or preference. For example, if a user in a retail

setting wants to cluster customer data in order to build a recommendation engine and pair

sales staff with appropriate customers using purchase records, clustering with respect to

item categories or region of residence could yield equally good results. However, clustering

with respect to region may offer a more cost-effective implementation of the engine by

matching the recommendation plans with the existing team structure of the company.

Hard-coding such information does not translate to other domains, and also requires in-

depth knowledge of machine learning.

The iBCM empowers users via direct, intuitive interaction with a clustering model, in

order to incorporate their expert domain knowledge and preference while simultaneously

optimizing the internal goodness of clustering metric. In this work, we define 'interaction'

to be humans being able to modify prototypes and subspaces. Moreover, the commu-

nication channel is bi-directional: iBCM communicates back to its users by providing

explanations in natural language, offering insight into potential conflicts between user

feedback and data point patterns and allowing for more fluent collaboration between the

user and machine learning models.

The communication channel does not assume that a user has prior knowledge of ma-

chine learning. Instead, users provide examples (i.e., data points) and features of these
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examples in order to articulate their feedback. For example, when building a recommen-

dation engine for films, users may think that the length of a specific movie is not an

important feature for clustering, even if its use would yield good performance. Instead,

the user may think that genre or the number of awards each film has received are more

important features. iBCM incorporates the user's feedback and propagates it to the infer-

ence engine in order to achieve better clustering. If user-suggested features conflict with

what the data indicates, iBCM then provides feedback using the examples.

Desiderata Ultimately, iBCM aims to enable efficient and intuitive use of clustering

models, without requiring in-depth knowledge about machine learning. However, estab-

lishing intuitive interactions with a complex machine learning system while assuming no

prior user knowledge introduces a number of challenges. Even if the interaction is simpli-

fied to the level of performance metrics (confusion matrix) [77], it still requires the user to

understand the confusion matrix. Some domains, such as computer vision, offer a readily

intuitive interaction medium [131]; however, this is not typically the case. iBCM combines

Case-Based Reasoning (CBR) approaches [2, 122] with a Bayesian generative model to

both generate effective clustering and provide an intuitive medium for interaction. Specifi-

cally, iBCM uses examples (data points provided by the user) for communication, enabling

interaction between the model and any user with some degree of familiarity with the data.

The use of examples as a medium for interaction is well-grounded in several cognitive

science studies that demonstrated that exemplar-based reasoning, involving various forms

of matching and prototyping, is fundamental to humans' most effective strategies for tac-

tical decision-making ([101, 35, 83]). In order to assist user decision-making by leveraging

large data sources, we desire machine learning algorithms that communicate in forms that

are easily incorporated into the human decision-making process.

Once intuitive interaction has been established, the next challenge is to determine

the correct way to incorporate user feedback in order to achieve a balance between the

user's input and solutions that optimize the internal metrics of the clustering method. If

there is a conflict between the suggestions made by the user and the output from the

clustering model, there must be a way for the model to both provide feedback to the user
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and intuitively explain its internal states. Communication with the user is essential to a

successful interactive system - it improves transparency, which has been identified as a

major factor in establishing user trust in adaptive agents [111, 58] and improving system

acceptance [68, 1271.

Contributions The key contribution of this thesis chapter is to introduce a unified

framework for clustering, user interaction and explanation generation. This unified frame-

work for clustering enables the output representation to use the same representation as

the parameters of the model without loss of information. The output that is presented to

users is thus directly interpretable in terms of the generative process of the model. iBCM

also offers for users to interact directly with a representation that maps to parameters of

the model (i.e., examples and features of data points) without loss of information. This

approach enables the model to incorporate user feedback and articulate its internal states

without a loss of information. While explanations using highly sophisticated language of

statistics may offer in-depth understanding for expert users [93], iBCM provides intuitive

explanations for non-expert users.

4.2 Related work

Types of prior art that are relevant to the described approach include interface designs

intended to aid user workflow [105], the interactive visualization of clustering results [89,

65, 8] and interactive machine learning systems [5, 14, 7]. Interfaces that improve user

workflow when modifying model settings are intended to reduce the burden of repeated

processes to achieve the desired clustering results [1051. Instead of modifying model

settings, some systems aim to improve the user's internalization of the current clustering

through visualization [89, 65, 81.

One of the most commonly used methods of improving clustering is to explore multiple

model parameter settings. To better support this iterative workflow, there are interfaces

that allow for the tracking of model changes or comparing different models of machine

learning [105]. There have also been works with the goal of designing a smart interface
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that can adjust to user behavior during highly dynamic tasks [8]. Although these systems

can improve the efficiency of users' iterative workflows, indirect interaction with models

is time-consuming. Also, this approach requires users to have in-depth knowledge of

machine learning or only offers domain-specific solutions.

Another way to help users better understand clustering results is through visualization,

rather than changing the clustering itself. Visualization techniques are often developed

for specific domains (e.g., topic model visualization [31] or geographical data visualiza-

tion [651). Some also introduce new metrics to help users internalize and conceptualize

clustering results [63]. Some of these combine their functionalities to change model pa-

rameters in the interface [651. However, this approach assumes that the current clustering

is somewhat aligned with effective clustering results from the user's perspective.

In order to overcome the limitations of indirect interaction with machine learning meth-

ods, there has been growing interest in the development of interactive machine learning

systems [5], ranging from studying the theoretical aspect of interactive clustering [14] to

building systems for use in specific domains [131, 89]. Some works simplified the medium

of interaction to the level of performance metrics. For example, in classification tasks,

[77] users specified their preferred confusion matrix for classifications. However, even this

simplified method of interaction requires the user to understand the performance metrics

and to know how to assign a numerical score between 0 and 1 to their input. For some

domains, such as computer vision, the medium for intuitive interaction is naturally avail-

able - users can directly manipulate decision boundaries in pictures [1311, for example.

However, this is not typically true for high-dimensional complex data points. In more com-

plex domains, such as clustering documents, interactive clustering systems are available

[18, 89]; however, the medium of interaction assumes an expert level of user knowledge,

such as n-grams for machine learning systems [18] or keyword weights for topic clus-

ters [89]. Some works had users communicate their feedback through data points [7, 6],

such as by providing positive and negative examples to train a classifier [6]. However, the

difference between machine representation (e.g., the averaged features of data points) and

representation of information obtained from human feedback (i.e., the examples) may lead

to inconsistencies in how user feedback is incorporated into the machine.
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iBCM's unified framework for interactive machine learning addresses the challenges

listed above by incorporating user feedback and articulating its internal states without the

loss of information [85].

4.3 Interactive Bayesian Case Models (iBCM)

iBCM is an interactive version of the Bayesian Case Model (BCM), which combines case-

based reasoning and a Bayesian generative model to perform clustering. I showed that

BCM yielded statistically significant improvements to objective measures of interpretability

in Chapter 3. The interpretability of BCM is one of the essential ingredients for building

an intuitive interactive machine learning system, especially with regard to a bi-directional

communication channel between the user and the model. This section reviews BCM and

presents the internal mechanisms that allow unified framework for interactive machine

learning.

4.3.1 Bayesian Case Model

BCM, as introduced in 3, begins with a standard discrete mixture model [69, 23] in order to

represent the underlying structure of the observations. It augments the standard mixture

model with prototypes and subspace feature indicators that characterize the clusters. A

graphical model of BCM is depicted in Figure 4-1a.

BCM begins with N observations, denoted by x = {X1, X2, - - XN}, with each xi

represented as a random mixture over clusters. There are S clusters, where S is assumed

to be known in advance. (This assumption can easily be relaxed through extension to

a non-parametric mixture model, such as [22].) Vector ri are the mixture weights over

these clusters for the ith observation xi, 7ri E R. Each observation has P features, and

I denote the ith feature of the ith observation as xij. Each feature j of the observation

xi comes from one of the clusters, the index of the cluster for xij is denoted by zij and

the full set of cluster assignments for observation-feature pairs is denoted by z. Each zij

takes on the value of a cluster index between 1 and S. Hyperparameters q, A, c, and a

are assumed to be fixed.
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(a) Bayesian Case Model (BCM)
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(b) interactive Bayesian Case Model (iBCM)

Figure 4-1: Graphical model depicting the BCM and iBCM. Double circle nodes represent

interacted latent variables.
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The explanatory power of BCM results from how the clusters are characterized. While

a standard mixture model assumes that each cluster takes the form of a predefined para-

metric distribution (e.g., normal), BCM characterizes each cluster by a prototype, ps, and

a subspace feature indicator, w,. Intuitively, the subspace feature indicator selects only a

few features that play an important role in identifying the cluster and prototype (hence,

BCM clusters are subspace clusters). BCM defines these latent variables as follows:

Prototype, p,: The prototype p. for cluster s is defined as one observation in x

that maximizes p(p,3 w, z, x), with the probability density and W, as defined below. The

notation for element j of p, is psj. Since p, is a prototype, it is equal to one of the

observations, such that psj = xij for some i.

Subspace feature indicator w,: Intuitively, w. 'turns on' the features that are important

for characterizing cluster s and selecting the prototype, ps. Here, w. E {0, 1} is an

indicator variable that is 1 on the subset of features that maximizes p(wslps, z, x), with

the probability for w, as defined below. Here, w, is a binary vector of size P, where each

element is an indicator of whether or not feature j belongs to subspace s.

I showed in Chapter 3 that BCM produces prediction accuracy comparable to or better

than prior art for standard datasets. They also verify through human subject experiments

that the prototypes and subspaces present as meaningful feedback for the characterization

of important aspects of a dataset. In these experiments, the exemplar-based output of

BCM resulted in statistically significant improvements to participants' performance of a

task that required an understanding of clusters within a dataset, as compared to outputs

produced by prior art.

4.3.2 Interactive Bayesian Case Model (iBCM)

The main difference between iBCM and BCM is that iBCM introduces interacted latent

variables that represent a variable inferred through both user feedback and the data - p, w

and q (Figure 4-1b). Here, I introduce a new notation (double-circled nodes) for graphical

models in order to represent human-interacted latent variables. Interacted latent variables

are learned through user feedback and information obtained from data points. These
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variables differ from observed variables (shaded nodes) because they may change their

value dynamically through interaction. I also distinguish them from pure latent variables

(unfilled nodes) because I may want to incorporate high-confidence user feedback, even

if it conflicts with inference results obtained without user interaction. Figure 4-1 shows

the graphical models of BCM and the iBCM side-by-side. In addition to interacted latent

variables, q in iBCM is a matrix, where, as in BCM, q is a scalar hyperparameter. The

benefit of this augmentation is explained in Section 4.3.2.

One of the challenges of incorporating user feedback into a machine leaning system

is balancing this feedback with information obtained from the data. For example, there

may be a way to cluster data points that is not ideal according to the model's internal

metric, but is more useful to a user. However, incorporating user feedback must be done

cautiously - I must inform users when their feedback conflicts with information obtained

from the data, while still maintaining a positive user experience.

This section presents two mechanisms of iBCM designed to address these challenges:

confidence-based user feedback and the explanation given to users by the machine upon

receiving this feedback.

Intuitive interaction medium

The interaction in this unified framework allows direct use of the internal representation

of the model as the medium for interaction. Users interact with iBCM using a set of

data points that they have provided: representative data points from each cluster (i.e.,

prototypes) and a set of their important features (i.e., subspaces). The only assumption

this interaction makes on users is some degree of familiarity with the data points that they

provide. This type of medium mimics the way that humans develop effective strategies

for tactical decision-making ([101, 35, 83]).

Using data points and their features as a medium for interaction is particularly ben-

eficial when operating within a domain with high-dimensional complex data points; for

example, patent documentation, where investigating a single data point can become a

daunting, time-consuming task. The iBCM interaction medium makes this simple. For

example, if a user is more familiar with a particular data point or considers it to be espe-
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cially important (such as a milestone patent), they can incorporate their domain knowledge

by suggesting that data point as a prototype, thereby anchoring clustering with this point.

The user can then suggest which features are important within that prototypical docu-

ment. The ability to control prototypes and subspaces together allows for a simple yet

atomic level of user control.

Communication from iBCM to users also benefits from this intuitive interaction medium

(i.e., prototypes and subspaces). iBCM uses the same representation for its communica-

tion with users upon receiving feedback (Section 4.3.2).

Incorporating user feedback into iBCM

The inference pipeline for incorporating user feedback involves the following three steps:

1) listening to users - updating cluster information variables W or q according to user

feedback; 2) propagating user feedback - rearranging cluster label variables z; and 3)

listening to data - resampling cluster labels z and/or w.

iBCM uses a simple mechanism to incorporate user feedback: asking the user about

the degree of confidence they have in their feedback. This extra information is simple

enough to not burden the interaction, yet provides additional granularity for user control.

Internally, the confidence-specific inference pipeline enables iBCM to adjust the impact of

the feedback on the clustering results.

A. Listen to users: update interacted latent variables This section describes the

different inference pipelines that iBCM applies depending on the user's confidence in

their feedback. For each feedback they provide, users have a choice of selecting 'very

confident' (i.e., high confidence) or 'somewhat confident' (i.e., low confidence). The Low

confident feedback influences the interacted latent variable, q, which then impacts its child

interacted latent variables (i.e., prototypes, p and subspaces w) when they are resampled.

Higher-confidence feedback directly influences the child interacted latent variables.

When a user provides feedback with low confidence, iBCM propagates this information
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to the prior level of interacted latent variable, q, as follows:

min(1, Hqo) if low-confidence feedback on Ws,f

qO otherwise,

where H is a constant greater than 1, representing higher probability for qs,f, and qO

represents a constant hyperparameter (set to 0.8 in this work). Note that for BCM, this

q variable is a scalar hyperparameter that governs the sparsity of the subspaces (e.g., the

proportion of important features of a prototype). In the iBCM, q is a matrix and represents

the sparsity of the subspaces of each prototype within a cluster. In the generative story,

q,,f represents user feedback about how likely it is for feature f of cluster s to be important

- and, therefore, contained within subspaces. During the inference step, variables qs,f,

once updated by user feedback, become the pseudo counts when updating the multinomial

distribution, which then makes w.,j more likely to be part of subspaces.

In the case of high-confidence user feedback (i.e., a user reports that he/she is 'very

confident' about their feedback), iBCM honors feedback completely by updating the W

interacted latent variable in Figure 4-1b as follows:

user specified value if high-confidence feedback on w,,
Wjs,f=

Ws,f else.

In BCM, Ws,f is 1 if feature f is an important feature for cluster s, and 0 otherwise. In

iBCM, ws,f is updated to be identical to high-confidence feedback submitted by the user.

Doing so updates the characteristics of cluster s, and therefore the clustering labels, z,

in the inference pipeline. In combination with re-inferring the z variable (as described in

Section C), this enables iBCM to learn a new clustering based on features that have been

identified as important by the user.

Note that if a user provides careless feedback with overconfidence or has different

understanding of the domain, a hard reset of the interacted latent variable W may result

poor clustering. For example, if a user selects the length of a specific movie to be

an important feature for clustering movies, but there is no good way to cluster data
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points based on the length of movies, the clustering results may be different from what

a user expects. In this case, iBCM provides an explanation as to why the re-inferred

clustering labels, z, is different from what users expected (described in Section 4.3.2).

This explanation is intended to offer insight for users and to improve future interaction.

B. Propagate user feedback to accelerate inference One way to propagate user

feedback is to update the interacted latent variables and re-infer all other variables in the

model. However, unless the inference technique guarantees a globally optimal solution,

doing so only offers locally minimal solutions that may not reflect the user's feedback. In

order to make sure that the new solution reflects the feedback, I require a way to quickly

move the current solution to a solution space closer to the local minimum that reflects

the user's feedback.

In order to move to a solution space closer to the user's feedback, iBCM propagates

the feedback to the cluster labels, z. In sampling-based inference, doing so effectively

moves solutions for all latent and interacted latent variables to a more 'favorable' solution

space for the user (i.e., closer to a solution space that matches user's feedback). The

rationale behind this procedure is that, unlike with an inference procedure with a random

start, we are not hoping for a random walk through the solution space - we know where

in the solution space we want to be. Therefore, I can simulate the process of restarting

Gibbs sampling multiple times with random initialization and choosing the most favorable

instance with regard to the user's feedback.

To do this, iBCM updates cluster labels, z, as follows:

s if xi,f = ps,f for interacted Wsf

zij { Uniform(1, S) otherwise,

where ps,f is the value of feature f of the prototype of cluster s. For example, if user

feedback indicates that feature 1 of cluster A is important (i.e., w ,f is interacted), then

iBCM propagates this information by setting zi,f to be s for all Xi,f that has the same

value of p,. All other zi,f are sampled uniformly over all possible cluster labels, 1,.. . , S.
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Note that this step serves to create a balance between user feedback and patterns

within the data. When re-inferring variables (as described in Section C), iBCM starts

from a solution space that is closer to what the user wants, but moves toward a solution

that also reflects the data patterns.

C. Listen to data: re-infer all other variables When a user provides low-confidence

feedback, iBCM re-infers subspaces, w, and clustering labels, z, by performing Gibbs sam-

pling for only these variables. When the re-inferred interacted variable, w, is different from

what users indicated in a low-confidence case, iBCM points out where the inconsistency

comes from. For example, the model might display: "You suggested that feature 1 is not

important, but I think it is important. If you feel strongly about this feedback, please

provide the same feedback with high confidence".

For high-confidence user feedback, iBCM only re-infers the clustering labels and com-

pletely honors the subspaces specified by users.

Note that the above approach is one of many possible ways to update interacted latent

variables and re-infer other variables, and the approach can be customized. In Section 4.4,

we show that this approach successfully incorporates user feedback.

Delivering feedback from the iBCM to users

The goal of providing explanations is to allow iBCM to give feedback to users when the

information from patterns in the data conflicts with user-submitted feedback. Deliver-

ing these explanations opens up a communication channel between iBCM and the user,

allowing for more fluent collaboration.

iBCM generates explanations using information from two sources: 1) cluster labels, z,

and 2) the likelihood of prototypes and subspaces. Both types of explanation are triggered

by the same condition: inconsistency between user feedback and the resulting subspaces

and cluster memberships. For example, the likelihood of prototypes and subspaces are

calculated to select the most likely prototypes and subspaces, then are compared to the

user feedback. If they are different, iBCM describes the discrepancy.
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Explanations using cluster labels One way to generate explanations is to base them

on the cluster assignments, z, where zif represents the cluster assignment of feature f of

i-th data point. Note that in a mixture model, one data point may have multiple cluster

assignments for each feature. .This distribution of assignments is represented by 7ri, a

vector of length S.

Explanations are generated by analyzing data points with the same maximum element

of Ti, as well as commonly shared or not shared features among those points. For example,

if all assessed data points have the same value for feature B, but different values for

feature A, then the explanation generated could read as follows: "101 items in group 1

have different feature A values. However, most of the items in this group have the same

feature B value". This type of explanation provides common characteristics of each cluster

using data points within that cluster in a "feed-forward" fashion, and represents how user

input has propagated to clustering labels. However, this method does not directly offer

"feedback" from iBCM - representations of internal states of the model indicating why

certain data points are assigned to certain clusters.

Explanations using examples and important features In order to provide deeper

insight into the internal state of iBCM, explanations can also be provided using interacted

latent variables (i.e., prototypes and subspaces). Utilizing variables from the model to

generate explanations offers more sophisticated information about the internal states of

the model and the clustering results. These interacted variables have been shown to be

effective when communicating clustering results to humans, as shown in Chapter 3. To

generate explanations in this fashion, likelihoods are used as "scores" to indicate how likely

each feature is to belong to the subspace. For example: "In group 1, important features

are currently marked as feature A and feature B. However, feature C seems to be more
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where g,~,,A(v) =A(1+ Cl[w,,1 and p,,=e.]), e, is a particular feature value and B is

the Beta function. n(s,.,j,v) is the number of times that the Jth feature of an observation

takes feature value v and that observation is assigned to subspace cluster s (i.e., (t,.,v)

fe 1(zbo s, x 3 = v)). Hyperparameter A, c and a are assumed to be fixed. These

definitions follow BCM.

Note that providing this type of explanation is only possible with this unified framework,

in which internal clustering, user interaction and explanations are all done in the same

representation without loss of information. This enables iBCM to articulate its internal

states to users in the same intuitive and consistent way.
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Question 1 2 3 4 5 6 7 8

# of features 2 2 2 2 3 3 3 3
is balanced True False True False True False True False

# of clusters 2 2 3 3 4 4 5 5

Table 4.1: Experiment design. Participants were randomly assigned to one of four groups,

with four participants per group. "Is balanced" means that there were an equal number of

data points with each feature. (e.g., equal number of red squares and yellow squares).

4.4 Evaluation

I performed human experiments to validate my approach. The first experiment was de-

signed to measure quantifiable improvements in how well final clustering performed with

iBCM matches the intent of the subject compared with clustering with BCM by using

dataset with ground truth. Then in the second experiment, I implemented to validate the

approach in a real-world setting (online computer science education).

4.4.1 Human subject experiment for a domain with ground truth

I designed an experiment to evaluate the quality of clustering obtained through interaction

while controlling for data characteristics that can affect clustering results. In order to do

this, I constructed datasets that could be clustered in multiple ways, all of which were

equal in terms of likelihoods, with the optimal ways to cluster according to internal metrics

also known a priori.

There were eight conditions in the experiment (shown in Table 4.1), each of which had

three variables: the number of features, number of clusters and balance. The number of

features reflects the complexity of the domain which is fairly modest in this experiment.

The data points in the first four conditions had two features (shape and pattern, shown

on the top of Figure 4-2), while points in the remaining four conditions each had three

features (shape, pattern and color, depicted on the bottom of Figure 4-2). Each feature

had two possible values; for example, the color could be either red or yellow. The number

of clusters reflects the complexity of interaction between iBCM and the user. When the

number of clusters is even, clustering can be performed such that the number of data
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points falling into each cluster is exactly the same. If the number of clusters is odd,

some clusters must contain fewer data points than others. The phrase "is balanced" was

defined as the presence of an equal number of data points with the same feature values.

For example, if there are an equal number of red circles, yellow circles, red triangles and

yellow triangles, then "is balanced" is true. This factor was intended to test how subjects'

interaction with iBCM is influenced by the complexity of a dataset. Note that a balanced

dataset can have a different number of data points that fall into an individual cluster due

to the number of clusters.

The experiment was designed using a Latin square to assign the conditions to the 24

participants in a balanced manner. Each subject answered nine questions, with the first

considered a practice question that was not included in the analysis.

The subjects performed the following steps for each question: First, subjects were

asked how they wanted to cluster the data; for example, according to shape or color.

Randomly ordered data points were shown to the subjects at this point. This step collected

the ground truth for subjects' desired clustering, which would later be compared with the

clustering results following interaction with iBCM. The user was then showed the clustering

results of BCM, which selects one of the several optimal ways to cluster the data points,

as the dataset was designed to have multiple, equally likely optimal solutions. At the

third step, subjects rated how well the clustering they had been shown matched their

preferred clustering on a five-point Likert scale, with 1 indicating they strongly disagreed

and 5 that they strongly agreed that the two clustering attempts matched. Next, subjects

interacted with iBCM to provide their feedback and customize the clustering. Finally,

when subjects indicated that they were done, they were asked to rate how well the final

clustering matched with their preferred clustering on the same five-point Likert scale. All

participants took mandatory breaks after every other question in order to manage fatigue.

The goal of iBCM is to achieve stronger subject agreement that their clustering results

matched their preference following interaction with the model. Note that according to

the model's internal metric, the quality of clustering at step 2 is likely to be equal to that

of the final clustering.

Figure 4-3 shows the interface used for this experiment. In this interface, each row
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Example Other items in the group

Group represented
by item 68by item 12 13 20 21 28 29

68

Group represented

by item 79

byie 42 3 10 11 18 19 26 27
74

Group represented

79

Group representedAtA&A A A A
by item 89 0 1 8 9 16 17 24 2S

Figure 4-3: Graphical user interface for interaction. Each row represents a cluster. Pro-
totypes of each cluster are shown on the left. The numbers below them are data ID.
Subspaces are marked as stars. Each data point has three features: shape, color and
pattern.

represents a cluster, where the example that best represents the cluster (i.e., prototype)

is shown on the left of each row. The name of each data point is simply a number

depicted below each point. Features (denoted with a check mark) and important features

(denoted with a check mark and star) are depicted to the right of each prototype. For

example, on the second row, the data number 74 has the 'round pattern', 'triangle' and

'yellow' features, but the important features for characterizing this cluster are 'yellow' and

'triangle.'

Subjects were able to provide feedback using this interface in two ways: by clicking

a check mark to designate a feature and the value as important (when clicked, a check

mark changed to a check mark with a star) or unimportant, and by clicking one of the

items marked as "other items in the group" in order to promote it to become a prototype

of a cluster. When an item was clicked, subjects were prompted with options to designate

it as a prototype of any of the clusters.

When subjects provided either type of feedback, the interface asked them to indicate
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their degree of confidence in that feedback (i.e., 'somewhat confident' or 'very confident').

All feedback was cached in iBCM, which incorporated and recomputed clustering data

points only when subjects clicked the 'rerun' button. Subjects were allowed to provide as

much feedback as they wanted before hitting 'rerun.' They were able to click the 'rerun'

button a maximum of 50 times; however, all subjects were satisfied with their clustering

results before reaching this number of interactions (maximum number of clicks are 31).

Question 1 z = 6.10,p < .001
Question 2 z = 6.09, p < .001
Question 3 z = 6.13,p < .001
Question 4 z = 6.08,p < .001
Question 5 z = 6.09, p < .001
Question 6 z = 6.08, p < .001
Question 7 z = 6 .11, p < .001
Question 8 z 6.11,p < .001

Table 4.2: Human subject experiment results

For all conditions, regardless of the number of features, number of clusters or whether

the dataset was identified as balanced or not, iBCM achieved significantly better agree-

ment with the users' desired clusterings, as shown in Table 4.2. The complexity of the

domain, the interaction with iBCM or of the dataset did not influence the effectiveness

of the model. I used the two-sided Wilcoxon signed rank test for paired observations to

assess the statistical significance of the observed differences in agreement before and after

interaction with iBCM. Unlike a t-test, the Wilcoxon signed rank test does not assume

normal data distribution. This experiment validates that the subjects achieved signifi-

cantly more satisfying results using iBCM compared with BCM, even though the results

from BCM provided equally good solutions according to the model's internal metric. In

the next section, I present a real-world implementation of a system utilizing iBCM for

further validation.
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4.4.2 Implementing and validating iBCM system for online edu-

cation

In this section, I present an implementation and validation of iBCM for a real-world ap-

plication: introductory programming education. Twelve teachers who previously taught

introductory Python computer language classes (i.e., domain experts) were invited to in-

teract with the iBCM system. Based on a Likert questionnaire, teachers strongly agreed

(with statistical significance) that iBCM better supported them in exploring the variations

in hundreds of student submissions, to prepare homework review sessions. In this exper-

iment, twelve teachers explored 554 solutions from 48 homework assignments collected

over the course of years at my institute.

Many colleges offer several courses that teach basic programming to hundreds of

students simultaneously. It can take hours for teachers to grade exams for courses of

this size and many teachers generate grading rubrics for each problem based on a small

random sample of student solutions. Rather than depend on such a sample, I implemented

a system for introductory Python programming teachers that uses iBCM as the main

computational engine for grouping. The system utilizes iBCM to help teachers group

their students' assignments provide helpful comments for the students.

Education is a particularly appropriate domain for iBCM, because the clustering results

must reflect both patterns within the data and the knowledge of domain experts. Experts

(i.e., teachers in this experiment) have accumulated years of knowledge that the clustering

algorithm can leverage to make the clustering results more effective for their tasks. For

example, each teacher may have a different style of grading and providing feedback -

some may focus on the key concepts presented in the class while others may focus on

students' coding practices (e.g., the use of good variable names and comments) as much

as understanding the key concepts. Systems that can simplify the grouping of assignments

are particularly useful for massive open online courses (MOOCs). Reviewing thousands of

student assignments is a very time-consuming task, especially when also trying to provide

constructive feedback on an individual level. iBCM allows teachers to incorporate their

domain knowledge to achieve the grouping of assignments that is most effective for their
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def dotProduct(listA, listB):

listA: a list of numbers
listS: a list of numbers of the same length as listA

res 0
for j in range(len(listA)):

res = res + listA[j) * tistBfjl
return res

def dotProduct(listA, listS):

listA: a list of numbers
listB: a list of numbers of the same length as listA

combo-list = [I
for number in range(len(listA)):

combo_list.append(listA[number] * listB5numberl)
return sum(combo list)

def dotProduct(listA, listB):

listA: a list of numbers
list8: a list of numbers of the same length as listA

dotproduct = sum(listAlil * listbfi) for i in range(len(listA)))
return dotproduct

Figure 4-4: The raw data

task.

However, building a complete system for use in engineering education introduces an

additional challenge into the interactive machine learning system: processing raw data.

I use a method called OverCode [59] to extract relevant features for iBCM. OverCode

uses both static and dynamic analysis to combine similar solutions that perform the same

computations, but may use different variable names or statement orders. OverCode was

developed to help MOOC instructors explore variations among student solutions and pro-

vide appropriate feedback to a large number of students. It has been shown to allow

teachers to more quickly develop a high-level view of students' understanding and mis-

conceptions as well as provide feedback that is relevant for more students [59]. Note

that the output from OverCode is both human-readable and executable (the student's

raw submission is shown in Figure 4-4 and snippets of OverCode are shown in Figure 4-5

). OverCode renames variables to reflect their behavior. It finds common variables that

behave the same way in many solutions run on the same test case, and then renames

those common variables to most popular name.

Inputs to iBCM are binary vectors indicating the existence of the features, including

renamed variables and language-specific keywords, such as listA, assert, while.
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Tool A

dot product

GUusea Prototypes and Subspaces

def dotProduct(listA.listo):
total=e

1I ilelen(listA):
product=listA[iB*list8[iB
total+aproduct

return total

def dotProduct (listA, listS):
total-0
Iorl(a,b)[3 zip(listA~listB):

product=a*b
total+=product

return total

def dotProduct(listA, listB):ED lentlistA)!=len(listB):
print 'length of A and S need to be the same'
return None

Show afl Stacks
Promote to Prototype

def dotProduct(listA,listB):
length=len(listA)
iB~s
total--
while iBslength:

total=total+listA[iBI*list iOI
iB+=l

return total

Promote to Prototype

def dotProduct(listA,listB):

iB=e
total=O
while iBulen(listA):

product=listAjiS]*listB[iB1
total=total+product
in=iB+l

return total

(a) The first group is highlighted in blue, and the submissions in the group are shown on the

right.

Tool A

dot product

Cuszer Prototypes and Subspaces

def dotProduct(listA,listB):
total='

M-ai.o (listA):
product=liStA(iB]*listBSiB]
total+=product

return total

def dotProduct(listA,listB):
total=@
E (a,b) R zip(listAjlists):

product=a*b
total+=product

return total

def dotProduct(listA, listB):
If len(listA)!=len(listB):

print 'length of A and B need to be the same'
return None

01"stelrnmnmbers

Show al stacks

Proxnt to Prototype

def dotProduct(listA,listB):
length=lentlistA)

total=S
while iA-length:

total-total+listA[iB]*listBliB]
iB+-I

return total

Promote to Prototype

def dotProduct(listAlistS):
imeN
total=e
while iB<len(listA):

product=listA[iB]*listB[iB]
totalttotal+product
iB=iB+l

return total

(b) When a user hovers their cursor over a keyword (len), it is highlighted
indicating that it can be interacted with (i.e., clicked).

Figure 4-5: Experiment interface for iBCM
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Tool B

dot product

Ckck heme to got

def dotProducttlistA,tist8):
total-4
oq(a~b)a zip(IistA,list8):

product-a*b
total+=product

return total

def dotProduct(listA.listB):
total-0

il iB<len(listA):
product-tistA iBJ*listB[iB
total+=product

return total

def dotProduct(listA,listB):
if len(istA)!=len(IistS):

print 'length of A and B need to be the same

Show all stacks

def dotProduct(listA, tistB):
total=@
for i in xrange(8,len(listA),1):

total-IistAfl*listBRii+total
return total

def dotProduct(listA,listB):
for x in range(len(listA)):

return sum(listA[xl*tistB[x]for x in range(
,1en(listA)))

def dotProduct(listA,listB):
total-S
for i in range(O,len(listA)):

total+=listA[iJ*list8[i)
return total

(a) The first group is highlighted in blue and the submissions in the group are shown on the
right.

Tool B

dot product

c aa Pr* to Sat

COustv, Prototypes andl Subspaces Ciuster miembers

def dotProduct(listA,listB):
f en(listA) !=Ien (lis tB) :
print 'length of A and B need to be the same

return None
else:

total-S
fo i in range(len(listA)):

total+listA i]*listS[i]
return total

def dotProduct(listA,listB):
listCB=[a*b for(a,b)in tlaistA,Iist)t
ans=sum(listCO)
return ans

def dotProduct(listA,listB):
return sum([ listAlil*listB[i]E] i E range(len

(listA)))

Show all Stacks

def dotProduct (listA, listB):
total=e
for(a,b)in zip(listA,listB):

product=a*b
total+=product

return total

def dotProduct(listA,listB):
total=9
for i in xrange(8,len(listA),l):

total=listAi] *listB[iI+totaI
return total

def dotProduct(listA,listS):
for x in range(len(listA)):

return sum(listA~xJ*listBx)for x in range(S
,len(listA)))

(b) When 'Click here to get new groupings' button is clicked, a new grouping is shown.

Figure 4-6: Experiment interface for BCM with random restarts
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Figure 4-5 depicts the interface that subjects used to interact with iBCM. On the

left column, it shows prototypical examples (one of the students' submissions) for each

cluster. The parts surrounded by red rectangles indicate subspaces (important features).

When a prototype is selected - highlighted in blue, as in the first row in Figure4-5 -

assignments that fall into that cluster are depicted on the right.

Conditions

In this experiment, subjects were given two conditions: iBCM (Figure 4-5) and BCM with

an option to regroup the submissions (referred below as BCM with re-grouping, shown

in Figure 4-6). In the iBCM condition, subjects were instructed to modify subspaces and

prototypes (Figure 4-5b) in any way that is helpful for their tasks. The BCM with re-

grouping condition offered a pre-selected grouping with an option to click a button to see

a new grouping. These new groupings were prepared prior to the experiment by restarting

Gibbs sampling inference from different initializations. Having an option to see a new

grouping may engage users more by allowing interaction with the system as compared to

a static system that provides a single grouping option to the users. When compared to

iBCM, BCM with regrouping is a stronger basis of comparison than static BCM without

an option to see new groupings.

Tasks and procedure

Subjects were told that they are preparing a homework review session of an introductory

Python class and were asked to write their list of "discoveries". The list of discoveries is

an exhaustive list of approaches that students took. Subjects were told that their goal is

to explore the full spectrum of approaches. The stated purpose of the homework review

sessions was to give feedback to students about their homework assignments to improve

students' coding abilities. Emphasis was placed on the fact that subjects were not to

group or grade student submissions.

Each subject performed this task for five homework assignments (the first problem was

used to train the subjects and was not included in the analysis). Prior to the exploration

task of each problem, each subject was given the problem descriptions (i.e., homework
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assignment that students are given) and two minutes to brainstorm solutions of their own

before exploring student submissions. They were then given ten minutes to write down

their list of discoveries using either iBCM or BCM with re-grouping. After a pair of iBCM

and BCM with re-grouping conditions, subjects filled out a survey. Each subject filled out

two surveys over the course of the experiment.

The experiment was designed using a Latin square to assign the homework assign-

ments to the twelve participants in a balanced manner. The order in which participants

were assigned to conditions was randomly selected, but the total number of times both

conditions were shown was balanced.

In iBCM condition, subjects could click words from the programming assignment to

place a red square around them - this denoted they were to be included in the subspace of

the cluster. Similarly subjects clicked words in red rectangles to remove the red rectangle

to denote that the words were to be excluded from the subspaces. In order to modify

prototypes, subjects could click the "Promote to Prototype" button above each student's

submission. The "Demote from prototype" buttons then appeared above all the current

prototypes on the left column. Subjects could replace one of the current prototypes

with the new choice of prototype using the "Promote to Prototype" and "Demote from

Prototype" buttons. During this interaction, a visual indication of the computation process

was provided to subjects on the left top corner. The left top banner changed to "Please

hold. Thinking..." while iBCM was performing computation. When iBCM completed

computation, the interface was automatically refreshed to reflect changes in groupings

made upon the subject's feedback.

In the BCM with re-groupings condition, subjects could click the "Click here to get new

grouping" button to view a new grouping. These new groupings were prepared prior to

the experiment by restarting Gibbs sampling inference from different initializations. Pilot

studies suggested that thirty different groups was a sufficient number of different groups

to provide users with ample groupings given the limited experiment time. This button

was clicked a maximum of 12 times.

Participants were asked 15 survey questions comparing the two conditions (questions

shown in Table 4.3). Participants responded to the questions using a 5-point Likert scale
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p value Questions
p < 0.01 Comparing A to B, I like tool A - than tool B.
p < 0.01 Comparing A to B, when using tool A, I was satisfied by the overall performance of myself than tool B.
p = 0.09 Comparing A to B, The tool A increased the productivity of the task - than tool B.
p < 0.04 Comparing A to B, The tool A contributed for the completion the task than tool B.
p < 0.001 Comparing A to B, The tool A helped me than tool B to explore the full spectrum of students' submissions.
p < 0.004 Comparing A to B, The tool A helped me than tool B to discover different types of students' submissions.
p = 0.085 Comparing A to B, I relied on the tool A - than tool B to complete the task.
p < 0.008 Tool A was - useful than B in identifying important features to expand my list of discoveries.
p = 0.35 Comparing A to B, when using tool A, I saw - different types of submissions students made than using tool B.
p < 0.001 Being able to modify important features (i.e., red rectangles) was helpful to explore students submissions.
p < 0.008 Being able to modify prototypes was helpful to explore students submissions.

Table 4.3: Survey questions (tool A: iBCM, tool B: BCM with re-groupings).

ranging from "much less" to "much more" for the first eight questions, from "much fewer"

to "much more" for the ninth question, and from "strongly disagree" to "strongly agree" for

the last two questions.

Results

p-values and corresponding questions are shown in Table 4.3. Questions were designed

to evaluate users? satisfaction with the tools, users' perception of the usefulness of tools

in achieving the goal (i.e., exploring the full spectrum of student submissions) and in

completing the task (i.e., expanding discovery list). Twelve out of fifteen questions asked

in the survey yielded statistically significant results, showing that participants preferred

and were satisfied with iBCM in exploring student submissions. Participants also agreed

that being able to modify features and prototypes was useful for their task (statistically

significant). I used a Wilcoxon signed-rank test and tested the null hypothesis that the

distribution of the one sampled case (i.e., collected Likert-scale values) is symmetric about

3 (i.e., 'neutral' in Likert-scale).

The survey also included open-ended comments about the situations in which each

tool was useful. A number of participants pointed out that interacting with iBCM allowed

them to select keywords and prototypes in the way that is interesting and helpful for their

tasks. Related comments included: "I was able to pull out examples that were really

representative of a lot of the solutions and then skim through each solution set to find

the minor differences." One also mentioned that iBCM allowed them to explore "in depth

as to how students could do." A few also noted that "[iBCM] is useful with large datasets
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where brute-force would not be practical". On the other hand, participants noted that

BCM with re-groupings was useful "with small data sets and when they can brute-force

through the submissions". One noted "It [BCM] really forced me to look through all the

different solution groups and really read the code as opposed to skim it." Another noted

that "with Tool B [BCM with re-grouping] I had fewer insights (but I was more sure of

them)," and "I didn't find Tool B [BCM with re-grouping] more useful than Tool A in any

situation. I didn't use the automatic reordering because I didn't like having no control over

the groupings." The experiment shows the potential benefit of using iBCM for a real-world

setting.

4.5 Conclusion

In this work, I introduced an interactive clustering model that can provide effective results

for the user. iBCM communicates with users to incorporate their feedback into the cluster-

ing model and share its internal states. I showed that users were statistically significantly

agreed that the final clustering matched their preferred way to cluster data points when

using iBCM during human experiments. I also showed iBCM's potential for real-world use

by implementing and validating a system to help computer science teachers to explore

student homework submissions. Based on a Likert questionnaire, teachers strongly agreed

(with statistical significance) that iBCM better supported them in exploring the varia-

tions in hundreds of student submissions, for the purpose of preparing homework review

sessions.
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Chapter 5

Conclusion and Future Work

In this thesis, I developed models and built a system to demonstrate how to enable humans

to interact effectively with machine learning models to leverage the relative strengths

of humans and machine learning models. The challenge addressed in this thesis is that

traditional machine learning systems are not designed to extract domain expert knowledge

from their natural workflow or to provide pathways for the human domain expert to

directly interact with the algorithm to inject their knowledge or to better understand

system output. I bridge this gap by building human-in-the-loop machine learning models

and systems that compute and communicate machine learning results in ways that are

compatible with human decision-making processes and that can readily incorporate human

domain expert knowledge. In Chapter 2, I developed and validated a model that can infer

human teams' planning decisions from the structured form of natural language of team

meetings. In Chapter 3, I designed and validated an interpretable ML model that "makes

sense to humans" by exploring and communicating patterns and structures in data to

support human decision-making. Finally, in Chapter 4, I designed a machine learning

model that supports transparent interaction with humans without requiring that a user

has expert knowledge of machine learning techniques. I built a human-in-the-loop machine

learning system that incorporates human feedback and communicates its internal states

to humans using an intuitive medium for interaction with the ML model.
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BCM extensions - hierarchical, multiple prototypes per cluster

and non-parametric

For datasets that are better clustered and explained using a larger number of clusters,

extending BCM to be hierarchical may offer better interpretability. Hierarchical BCM can

learn sets of a prototype and corresponding subspaces for meta-clusters, then learn sets of

prototypes and subspaces for the subsequent clusters. We can also apply non-parametric

Bayesian techniques to BCM in order to infer the number of meta-clusters and sub-

clusters. Another extension for BCM is learning multiple prototypes per cluster. Multiple

prototypes would be useful if they can explain different aspects of the cluster. To learn

multiple prototypes, BCM can include an additional criteria that encourages prototypes

in the same cluster to be diverse, for example, using determinantal point process [87].

Learning a diverse set of prototypes may further improve humans' understanding of the

cluster.

Potentially more scalable inference techniques for BCM

I apply Gibbs sampling inference technique to perform inference on BCM. However, there

are other techniques that may scale better for larger datasets (e.g., variational infer-

ence [130], tensor decomposition methods [9]). Since not all distributions used in BCM

are within the exponential families, the current BCM model does not offer closed-form up-

dates when using variational inference. Modification or approximation of the BCM model

may ease the derivation of variational inference.

Varying number of clusters and caching user's feedback in iBCM

The decomposition of Gibbs sampling steps used in iBCM could be further extended to

vary the number of clusters in the model. For example, when a user suggests adding a

cluster with a particular prototype, BCM can be updated to add the new cluster with

the suggested prototype. Then, the cluster labels of data points that resemble the new

prototype could be assigned to this new cluster while others remain unchanged. One of the

challenges is to add the new cluster efficiently, especially when datasets are large. In this
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case, subsampling the data points (i.e., randomly sample half of data points to investigate

and rearrange their cluster labels) at the start may help to speed up the process.

The current iBCM framework updates the current solution to reflect user feedback.

However, a user may want their feedback to be preserved for a longer period of time,

not only for the current solution. This may be the case when a user wants to tailor

iBCM's behavior through interaction for a specific application and repeatedly use iBCM.

This can be done by either partially fixing a part of interacted latent variables to maintain

the preference (e.g., if users indicated a particular feature to be a permanent part of a

subspace, honor this by fixing the feature as such), or having an additional interacted

latent variable that records the user's preference.

Make other models to make sense to humans

One future direction for research is to extend the insights learned from designing Bayesian

methods that "makes sense to humans" to non-Bayesian methods and/or other widely used

machine learning methods to make them more interpretable and interactable. Insights from

the methods presented here that are inspired by the way humans think could applied to

make an analogous module for other machine learning models. For example, a module can

be added to existing models to learn explanations, by explaining the relationships between

input data points and outputs (e.g., clustering results). This mirrors one of many possible

ways humans try to understand highly complicated systems. Focusing on the relationships

between inputs and outputs may offer a way to bypass the non-linearity of models (e.g.,

non-linear decision boundaries).

An extra component that learns explanations can be also added for existing models.

For example, in addition to maximizing the margins around the decision boundary in

support vector machines, an additional component could be added to its cost function

that learns explanations such as prototypes and/or subspaces. One can also optimize in

finding prototypes and subspaces that can minimize human confusion. For example, the

model can find prototypes that could be explained using linear functions (i.e., the decision

boundary is non-linear, but a linear function can be used to explain learned prototypes).
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Build structure to models using previously developed techniques

The idea of guiding inference by combining traditionally different methods (using a logic-

based approach in Chapter 2 and case-based reasoning in Chapter 3) shown in this thesis

could be extended to other methods. Combining different methods is not only useful for

harnessing the relative strength of different algorithms, but is also especially important for

building "structures" for difficult inference problems (i.e., problems where solution space

is big). For example, one can incorporate ontologies that are studied in classical artificial

intelligence for knowledge representation into probabilistic models. Ontologies may offer a

way to reflect relationships between variables (e.g., causal effect), building more structure

in the model to aid inference while leveraging accumulated domain knowledge. This struc-

ture helps inference steps to potentially provide more informed decisions and potentially

be more efficient. Utilizing tools previously developed by researchers in different field also

enables us to build on each other's work.

Interaction for debugging machine learning models

The experiments with iBCM suggest that there is subjective benefit in eliciting and utilizing

user input to guide the solutions produced by machine learning models. This interaction

could be extended to guide a machine learning model's behavior to achieve desired perfor-

mance. Currently, this is manually done by humans by adjusting the parameter settings of

models and rerunning the machine learning model. An iBCM-like method could be used to

help users explore the model's behavior, for example, by investigating and interacting with

examples of each class, or misclassified data points. Then a subspace-like interpretable

medium could be used by users to modify the classifier's behavior, ultimately to achieve

the desired performance (e.g., low false positives). As more opportunities in data mining

arise, more people may soon work with machine learning models regularly. Just as software

debuggers are essential for boosting the productivity of software engineers, I believe that

debugging tools for machine learning models will be developed and used widely in the

future. Debuggers for machine learning models must overcome a number of challenges,

such as stochasticity, model complexity, and the scale of the data. Enabling intuitive and
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Figure 5-1: A portion of the analysis report using the data representation studied in this

work. Each data point is compressed using topic-based feature compression. Zoomed in

(top left), where a pie chart inside of a red square indicates incorrectly classified data

points. The document ID number and true labels are also shown as texts. The top 10
words within each color-coded topic are shown at the top right. The bottom shows reports

in a bird's-eye view.

informative interaction with machine learning models will be one of the key components

for developing successful debugging tools.

Data visualization and representation

When working with real-world applications, a good medium of interaction is crucial and

cannot be dlecoupled when working with interactive systems. In work related to this thesis,

I have investigated data representations that aids users to interpret, evaluate and debug

machine learning models. The work is part of an effort to provide analysis reports for

those who use ML as a problem-solving tool and require an efficient way to interpret,

evaluate and debug ML problems. The report provides information about individual data
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points and their relationships with one another and with class labels. The information is

presented in a way that allows for quick investigation of the status of classification tasks.

Figure 5-1 presents an example report, where each pie chart represents one document (i.e.

one datapoint). The bottom portion of Figure 5-1 shows reports in a bird's-eye view. A

detailed view of a subset of points is shown in the top-left of the report, where misclassified

data points are indicated by a red box. The compressed feature space representation allows

users to more easily diagnose problems such as incorrect ground truth labels in cases when

the misclassified point really resembles other points that belong to the predicted class. In

order for such a report to be practical in a real-world setting, the data representation in

question should not only be interpretable and scale with the number of data points, but

also be capable of working with high-dimensional features. In this work ([81]), I showed

that I can quantitatively and qualitatively verify an efficient, accurate and scalable feature-

compression method using latent Dirichlet allocation that effectively communicates the

characteristics of high-dimensional, complex data points. As shown in this work, the choice

of data representation influences how accurately and efficiently humans can perceive the

information in data. Developing an efficient and interactive data representation that is

optimized for interactive setting is an important direction to pursue.

User's workflow and interface designs

Another important part of interactive systems is designing user workflow and the interfaces

that aid interaction. Investigating how to optimize user workflow when using interactive

machine learning systems may also be an important factor in determining the success of

the system adaptation. Rigorous user testing would not only require carefully designing

the interface, but also optimizing for the most informative degree of granularity and the

form of data representation that is informative to the user.
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Appendix A

The visualization of Gibbs Sampling

Convergence: Trace Plot

It is known that there is no conclusive way to determine whether the Markov chain of

the Gibbs sampling has reached its stationary, or the desired posterior, distribution [40].

Many available diagnostic tools are designed to test for necessary but insufficient conditions

for convergence, such as Gelman-Rubin [541, Geweke [57], Heidelberger-Welch [67] and

Raftery-Lewis [1141, to mention a few. In this work we utilize a much simpler yet still

informative approach, which is to visually check whether convergence has been reached

using the trace plot.

A trace plot is simply a scatter plot of the statistics of successive parameter estimates

(e.g., the estimated values) with respect to the iteration steps. These statistics can be

means, variances or covariance. A trace plot is most informative when the scalar variables

are plotted. Figure A-1 shows examples trace plots for the # and wp variables.
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Figure A-1: Trace Plots (only showing a subset of the data set)
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