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Abstract

Diagrammatic sketching is a natural modality of human-computer interaction that
can be used for a variety of tasks, for example, conceptual design. Sketch recognition
systems are currently being developed for many domains. However, they require
signal-processing expertise if they are to handle the intricacies of each domain, and
they are time-consuming to build.

Our goal is to enable user interface designers and domain experts who may not
have expertise in sketch recognition to be able to build these sketch systems. We
created and implemented a new framework (FLUID - facilitating user interface
development) in which developers can specify a domain description indicating how
domain shapes are to be recognized, displayed, and edited. This description is then
automatically transformed into a sketch recognition user interface for that domain.
LADDER, a language using a perceptual vocabulary based on Gestalt principles, was
developed to describe how to recognize, display, and edit domain shapes. A translator
and a customizable recognition system (GUILD - a generator of user interfaces using
ladder descriptions) are combined with a domain description to automatically create
a domain specific recognition system. With this new technology, by writing a domain
description, developers are able to create a new sketch interface for a domain, greatly
reducing the time and expertise for the task

Continuing in pursuit of our goal to facilitate UI development, we noted that 1)
human generated descriptions contained syntactic and conceptual errors, and that
2) it is more natural for a user to specify a shape by drawing it than by editing
text. However, computer generated descriptions from a single drawn example are
also flawed, as one cannot express all allowable variations in a single example.

In response, we created a modification of the traditional model of active learning
in which the system selectively generates its own near-miss examples and uses the
human teacher as a source of labels. System generated near-misses offer a number
of advantages. Human generated examples are tedious to create and may not expose
problems in the current concept. It seems most effective for the near-miss examples
to be generated by whichever learning participant (teacher or student) knows bet-
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ter where the deficiencies lie; this will allow the concepts to be more quickly and
effectively refined. When working in a closed domain such as this one, the computer
learner knows exactly which conceptual uncertainties remain, and which hypotheses
need to be tested and confirmed. The system uses these labeled examples to auto-
matically build a LADDER shape description, using a modification of the version
spaces algorithm that handles interrelated constraints, and which also has the ability
to learn negative and disjunctive constraints.

Thesis Supervisor: Randall Davis
Title: Professor of Computer Science and Engineering
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Chapter 1

Overview

1.1 Motivation

As computers become an integral part of our lives, it becomes increasingly important

to make working with them easier and more natural. Our vision is to make human-

computer interaction as easy and as natural as human-human interaction. As part of

this vision, it is imperative that computers understand forms of human-human inter-

action, such as sketching. Computers should be able to understand the information

encoded in diagrams drawn by and for scientists and engineers. A mechanical engi-

neer, for example, can use a hand-sketched diagram to depict his design to another

engineer. Sketching is a natural modality of human-computer interaction for a variety

of tasks, including for example, conceptual design [60] [135] [134].

Paper sketches offer users the freedom to draw as they would naturally; for in-

stance, users can draw objects with any number of strokes, and strokes may be drawn

in any order. However, because paper sketches are static and uninterpreted, they lack

computer editing features, requiring users to completely erase and redraw objects in

order to move them. In an attempt to combine the freedom provided by a paper

sketch with the powerful editing and processing capabilities of an interpreted dia-
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gram, sketch recognition systems have been developed for many domains, including

Java GUI creation [41], UML class diagrams [99] [143], and mechanical engineering

[6]. Sketch interfaces 1) interact more naturally than traditional mouse-and-palette

tools by allowing users to hand-sketch diagrams, 2) can connect to a back-end sys-

tem (such as a CAD tool) to offer real-time design advice, 3) recognize the shape

as a whole to allow for more powerful editing, 4) beautify diagrams, removing mess

and clutter, and thereby 5) notify the sketcher that the shapes have been recognized

correctly.

Sketch recognition interfaces provide a number of benefits, as described above, but

they can be quite time-consuming to build and require signal-processing expertise, if

they are to handle the intricacies of each domain. We want to enable domain user

interface designers, who need not be experts in sketch recognition at the signal level,

to be able to build a sketch recognition system for each of their domains. This thesis

describes a set of ideas and techniques to enable developers to build sketch recognition

systems.

1.2 Natural Sketch Recognition

Previous sketch systems required users to learn a particular stylized way of draw-

ing, and used a feature-based recognition algorithm, such as a Rubine [185] or a

GraffitiTM-type [192] algorithm. What these algorithms lose in natural interaction

by requiring the sketcher to draw in a particular style, they gain in speed and ac-

curacy. Rather than recognizing shapes, the algorithm recognizes sketched gestures,

where each gesture represents a single shape. These sketched gestures focus more on

how something was drawn than on how the drawn object looks. These recognition

algorithms require that each gesture be drawn in a single stroke in the same man-

ner (i.e., same underlying stylistic features–stroke direction, speed, etc.) each time.

Each gesture is recognized based on a number of features of that stroke, such as the

initial angle of the stroke, end angle, speed, number of crosses, etc. Because of these
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requirements, the gesture representing the shape may look different from the shape

itself. For example, it would be impossible to draw a cross with a single stroke, so it

may, instead, be represented by a ribbon-like gesture. Also, even if a sketcher draws

a shape that looks the same as the required gesture, it may not be recognized because

it does not have the same underlying stylistic features.

Our goal is to build sketch recognition systems that allow sketchers to draw as

they would naturally–that is, without having to learn a new set of stylized symbols.

As long as the shape looks like the final shape, the shape should be recognized,

independent of the number, direction, or order of the strokes drawn.

To allow for natural drawing in our sketch recognition systems, shapes are de-

scribed and recognized in terms of the subshapes that make up the shape and the

geometric relationships (constraints) between the subshapes. Strokes are first bro-

ken down into a collection of primitive shapes, including lines, ellipses, arcs, spirals,

points, and curves, using techniques from Sezgin [194]. A higher-level shape is then

recognized by searching for possible subshapes and testing that the appropriate ge-

ometric constraints hold. The geometric constraints confirm topology, orientation,

angles, relative size, and relative location.

To demonstrate that recognition could be performed using a shape-based model,

we built Tahuti [99], a system for recognizing UML class diagrams [37] using geo-

metric constraints. Tahuti recognizes a general class (represented by a rectangle), an

interface class (represented by an ellipse), an inheritance association (represented by

an arrow with a triangle-shaped head), an aggregation association (represented by

an arrow with a diamond-shaped head), a dependency association (represented by

an arrow or line), and an interface association (represented by a line that connects

a class to an interface). It also accept keyboard text as part of these objects. The

recognized sketches are sent to Rational RoseTM, a CASE (computer-automated soft-

ware engineering) tool that generates stub code. Figure 1-1 shows the hand-drawn

UML class diagram in Tahuti (Figure 1-1(a)), the recognized shapes in Tahuti (Fig-
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(a) Hand-drawn UML class diagram in Tahuti (b) Recognized UML class diagram in Tahuti

(c) Diagram sent to Rational RoseTM (d) Stub code generated by Rational RoseTM

Figure 1-1: A hand-drawn UML class diagram in Tahuti, the recognized shapes in
Tahuti, the recognized shapes sent to Rational RoseTM, and the generated stub code
produced by Rational RoseTM.

ure 1-1(b)), the recognized shapes sent to Rational RoseTM(Figure 1-1(c)), and the

generated stub code produced by Rational RoseTM(Figure 1-1(d)). Class names come

from typed input.

Sketch recognition systems often prove useful in many unexpected ways. Tahuti

was used to automatically index video documentation of software design meetings

[105]. Collaborative software design meetings often involve the creation of UML soft-

ware diagrams. What usually gets saved and recorded after those meetings are the

final designs and the explanations of the mechanisms. What gets omitted, however,
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Figure 1-2: The FLUID framework.

is the design rationale, or the reasons why those particular solutions were employed.

Software meetings can be videotaped so as to unobtrusively capture any design ra-

tionales provided at the meeting. However, the videotaped information is in a cum-

bersome un-indexed format. If a developer wanted to determine the nature of the

discussion in the room while a particular class was being developed in order to un-

derstand the design rationale behind its creation, he or she might have to watch

the entire video. To help to mitigate this problem, Tahuti time-stamps the drawing

and editing events, indexing the video, allowing easy access to the portion of the

videotaped software meeting during which a class was created.

1.3 The FLUID Framework:

Facil itating UI Development

Sketch recognition systems are useful, but they take a long time to build, and system

designers have to be experts in sketch recognition at the signal level. In order to build

a good sketch recognition system, a designer also needs to be an expert in the domain

itself. Rarely is the domain expert also an expert in sketch recognition. This research

aims not only to decrease the time necessary to build a new sketch recognition system,

but also to reduce the effort and the amount of signal processing knowledge that is

necessary in order to create a new system. We do this by abstracting away the signal

processing, pattern recognition, and algorithmic details of sketch recognition.
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Figure 1-3: The domain description is translated into recognizers, exhibitors, and
editors for each shape in the domain.

1.3.1 Framework

Rather than build a separate recognition system for each domain, it should be possible

to build a single, domain-independent recognition system that can be customized for

each domain. In this approach, building a sketch recognition system for a new domain

requires only writing a domain description, which describes how shapes are drawn,

displayed, and edited. This description is then transformed for use in the domain-

independent recognition system. The inspiration for such a framework stems from

work in speech recognition and compiler compilers, which have used this approach

with some success [217] [54] [211] [5].

The FLUID framework (facilitating user interface development) for automatic

sketch building is shown in Figure 1-2. To build a sketch interface for a new domain,

a developer writes 1) a LADDER domain description describing how each shape is

drawn, displayed, and edited in the domain and 2) a Java interface to an existing
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back-end system (such as a CAD tool). The GUILD recognition system translates

the domain description into shape recognizers, editors, and exhibitors, as shown in

Figure 1-3, and functions as a recognition system for that domain, connecting to the

back-end system.

1.4 LADDER, a Perceptual Language for Describ-

ing Shapes

In order to generate a sketch interface for a particular domain, the system needs

domain-specific information, indicating what shapes are in the domain and how each

shape in the domain is to be recognized, displayed, and edited. Domain information

should provide a high level of abstraction to reduce the effort and the amount of sketch

recognition knowledge that is needed by the developer. The domain information

should be accessible, understandable, intuitive, and easy for the developer to specify.

We argue that if domain information is more understandable, the developer is less

likely to introduce errors caused by confusion.

A shape description needs to be able to describe a generalized instance of the

shape, describing all acceptable variations, so that the recognition system can properly

recognize all allowable variations. A shape description should not include stylized

mannerisms (such as the number, order, direction, or speed of the strokes used) that

would not be present in other sketchers’ drawings of a shape, as it would require

all sketchers to draw in the same stylistic manner as the developer in order for their

sketches to be recognized. Thus, we have chosen to describe shapes according to their

user-independent visual properties.

We developed LADDER, a perceptual language for describing shapes, for use

by developers to specify the necessary domain information. The language consists

of predefined primitive shapes, constraints, editing behaviors, and display methods,

as well as a syntax for combining primitives to create more complex shapes in a
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domain specification. Shape descriptions primarily concern shape, but may include

information such as stroke order or stroke direction, if that information would prove

useful to the recognition process. The specification of editing behavior allows the

system to determine when a pen gesture is intended to indicate editing rather than

a stroke, and what to do in response. Display information indicates what to display

after strokes are recognized.

The difficulty in creating such a language involves ensuring that the language

is broad enough to support a wide range of domains, yet narrow enough to remain

comprehensible and intuitive in terms of vocabulary. To achieve sufficient broadness,

LADDER was used to describe several hundred shapes in a variety of domains. Fig-

ure 1-4 shows a sample of the shapes described. To achieve sufficient narrowness, we

chose to include only perceptually-important constraints. We argue that a language

with fewer constraints will be more comprehensible, as the developer can more easily

remember which constraints are available in the domain.

To ensure that the language is intuitive, we examined literature to determine

what shape constraints are perceptually-important. Literature on Gestalt principles

proved valuable, describing which visual constraints are most perceptually important

to people [210]. We confirmed that people are better at identifying horizontal or

vertical angles than diagonal angles. We also confirmed that these principles agreed

with how people naturally describe shapes by asking thirty-five users to describe

approximately thirty shapes each, both verbally and textually.

LADDER takes advantage of these human perceptual differences to make the

language more intuitive by including constraints that model the Gestalt principles.

By modeling the language after perceptually-important constraints, we can simplify it

by omitting constraints that describe differences that are perceptually unimportant.

This ensures that the number of constraints is kept small, making the language narrow

enough to remain comprehensible and, thus, easier to find the appropriate constraints

so as to describe the shapes in question.
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Figure 1-4: A wide variety of shapes have been described using the language.

The language also has a number of higher-level features that simplify the task of

creating a domain description. Shapes can be built hierarchically. Shapes can extend

abstract shapes, which describe shared shape properties, making it unnecessary for

the application designer to define these properties numerous times. As an example,

several shapes may share the same editing properties. Shapes with a variable number

of components, such as polylines or polygons (which have a variable number of lines),

can be described by specifying the minimum and maximum number of components

(e.g., lines) allowed. Contextual information from neighboring shapes also can be used
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to improve recognition by defining shape groups; for instance, contextual information

can distinguish a pin joint from a circular body in mechanical engineering. Shape

group information also can be used to perform chain reaction editing, such as having

the movement of one shape cause the movement of another.

1.5 Recognition System

This research also includes the creation of the GUILD (Generator of User Interfaces

from a LADDER Description) system that automatically creates a sketch recognition

system from a LADDER domain description. The internal customizable recognition

system of GUILD takes the translated recognizers, exhibitors, and editors, and acts

as a sketch recognition system for the described domain.

Because allowing sketchers to draw as they would naturally is important in creat-

ing a usable sketch recognition system, we built the customizable sketch recognition

system to do recognition based on geometric shape properties. Each shape description

specifies a number of constraints that must be true for that shape, and the system

performs recognition based on those constraints.

Recognition consists of two stages: stroke processing and shape recognition. Dur-

ing stroke processing, each stroke is broken down into a collection of primitive shapes,

including line, arc, circle, ellipse, curve, point, and spiral. During shape recognition,

more complicated shapes are recognized by the identifying subshapes that make up

these higher-level shapes, and then by confirming the relationships (constraints) be-

tween the subshapes. If a stroke or shape has multiple interpretations, all interpreta-

tions are added to the pool of recognized shapes, but a single interpretation is chosen

for display. The system chooses to display the interpretation that is composed of the

largest number of primitive shapes or the first found interpretation, in the case of

interpretations composed of the same number of primitive shapes.

This research also includes a new fast recognition algorithm based on indexing.
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Figure 1-5: A screenshot depicting the drawn and interpreted version of a mechanical
engineering diagram being drawn. This picture depicts a car on a hill. The motor,
just having been drawn, is about to be dragged so that it is placed over the front
wheel, to depict that the force should be applied to the front wheel (“front wheel
drive”).

This algorithm takes advantage of the perceptually-based constraints in LADDER

to allow shapes to be drawn in an interspersed manner, but still be recognized in

real-time.

1.5.1 Connecting to Existing Systems

To allow developers of a sketch system to connect to an existing knowledge sys-

tem, such as a CAD or CASE tool, a connection API was created. With this API,

the domain-specific recognition system can connect to a back-end system, provid-

ing additional functionality, e.g., checking the diagram for inconsistencies, running

the diagram to see whether it works as the sketcher intended, etc. So far, we have

created systems that connect to Rational RoseTM(for UML class diagrams as in Fig-

ure 1-1(c)), Working Model (mechanical engineering simulations), Spice (for electrical

circuit analysis), as well as our own systems (such as when video-taping and indexing

software meetings).
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Figure 1-6: A drawn and interpreted flow chart diagram.

Figure 1-7: The drawn and interpreted diagram of a finite state machine.

1.6 Results: Automatically-Generated Sketch Sys-

tems

Several domains have been described using LADDER, and recognition systems have

been generated for them. Figure 1-5 shows a drawn and interpreted mechanical

engineering diagram. Figure 1-6 shows a drawn and interpreted flow chart diagram.

Figure 1-7 shows the drawn and interpreted diagrams of a finite state machine.
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1.7 Generating Shapes

Given a LADDER description, the system can generate a shape that agrees with

that description. The system uses MATLAB to solve all of the constraints in the

description. This is helpful when users want to beautify their shapes and display the

ideal versions of their shapes in the recognition system. The system also uses this

technique to automatically generate near-miss example shapes.

1.8 System Generated Description from Single Hand-

drawn Example

Modeling LADDER after Gestalt principles has made the language more intuitive.

However, human-generated descriptions contain conceptual and syntactical errors. To

help the developer fix syntax errors, we built a GUI to constrain input and to notify

the user of syntactical faults. Figure 1-8 shows a screen shot.

While this GUI prevents syntactic errors, conceptual errors, such as a missing

constraint, still remain. Developers need to be very logical in order to create correct

shape descriptions. In addition, developers may find it much more natural to draw

shapes than to describe them textually.

To solve these problems, this research includes the developement a system to

automatically generate a best-guess shape description from a single drawn example,

based on ideas from Veselova [210]. The system takes a single hand-drawn positive

example of the shape and creates a list of all LADDER constraints true for that

example shape. We know that the correct description of the shape is a generalization

of this list. The difficulty is choosing the appropriate generalization of this list. If we

were to keep all of these constraints in our best-guess shape description, we would

recognize only our very specific example of the shape, producing false negatives. If

we make our description too general, it will allow too many variations, creating false
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Figure 1-8: A GUI for hand entry of shape descriptions.

positives.

1.9 Active Learning with System Generated Near-

miss Examples to Refine Concepts

This best-guess approximation is a plausible one, but, even with the perceptual rules,

it is sometimes impossible for the computer to know exactly what variations are possi-

ble in a shape. Thus, the generated description, while syntactically correct, may still

have conceptual errors: System-generated descriptions may be over-constrained, and

human-generated descriptions may be both over- and under-constrained (although in
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Figure 1-9: Lines 1 and 2 are identical in the square and in the arrow. However, the
constraint perpendicular line1 line2 should be included in a square description,
but not in an arrow description.

practice, they tend to be more under-constrained). Figure 1-9 shows the difficulty

of automatically generating a perfect description; the components line1 and line2

look the same in both the square and the arrow. The constraint perpendicular

line1 line2 is true for both shapes, and any algorithm that would include the con-

straint for one shape would include it for the other. However, if the constraint is

missing from the square definition, the square definition will be incorrect, as it is

under-constrained, but, if the constraint is included in the arrow definition, it will be

over-constrained and incorrect.

1.9.1 User-generated Near-miss Examples

Thus, we need a way to test and refine the initial shape description. One way to do

this is to build a system that allows users to draw several near-miss examples of the

shape, and then modifies the description, based on these examples [214]. We built a

system to do that; a screen shot is shown in Figure 1-10.

This system did learn descriptions from user-generated examples. Unfortunately,

users proved to be poor at generating sufficiently informative examples. And, there

is no guarantee that the user will ever draw the shape in a way that exposes the bugs
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Figure 1-10: A screenshot of a system built to learn descriptions from user-generated
near-miss examples.

in the description.

1.9.2 System-generated Near-miss Examples

To solve this problem, this research included the development an algorithm using a

novel form of active learning [51] that automatically generates its own suspected near-

miss examples, which are then classified as positive or negative by the developer. The

algorithm is a modification of the traditional model of machine learning of concepts,

in which a teacher supplies labeled examples (and non-examples) of the concept (e.g.,

“This is an arrow” “This is not an arrow”), and the system constantly updates its

evolving version of the concept. Instead, in our model the system selectively generates

its own (near-miss) examples and uses the human teacher as a source of labels. The

system generates these examples to test whether components of its current concept

description are necessary to the concept, or merely happened to be true of the initial

example. (For example, is it necessary for both lines in the head of an arrow to be
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Figure 1-11: User-generated arrows.

the same length, or was this accidental in the original example?)

System-generated near-misses offer a number of advantages. They work even

when the teacher does not know the complete concept description in advance; e.g.,

the teacher might not previously have thought about whether an arrow-like figure

with unequal head lines is still an arrow. Also, the system can be an efficient learner

simply by virtue of its ability to keep careful track of which parts of the concept

description have been verified as necessary and which are yet to be tested, thereby

generating only informative examples.

The result is a system that behaves somewhat like a persistent, literal-minded, but

intelligent student who wants to get all of the details right and does so by asking, “And

would this be an example? How about this one? And this one...?” When learning a

concept, while working within a fixed vocabulary and rule-set, the computer learner

knows exactly where its uncertainties lie in terms of the concept, and which hypotheses

need to be tested and confirmed.

Active learning is a dialogue between a teacher and a student. The goal of the

dialogue is to teach the student a concept that is known by the teacher. Examples are
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selected (by either the teacher or the student), and the teacher labels these examples.

Our learning model is based on the principle that the learning participant (either the

teacher or the student) who knows better which information is lacking in the student’s

formation of the concept should generate the near-miss examples.

In human-human (teacher-student) learning, humans are poor at knowing what

they do not know; initially, the human teacher knows better what information the

student is missing in his concept and provides the near-miss examples. However, as

the student begins to learn the concept, at some point there is a transfer of knowledge

to the student, and, as the student begins to understand the concept, he knows what

information still needs to be confirmed. At this point, the student begins to generate

his own near-miss examples, confirming and removing uncertainties, and saying such

things as, “Oh, I think I get it. So, is this an example? What about this one? Yes,

that makes sense; now, I understand.”

In our task of learning structural shape descriptions, the human developer is

the teacher, and the computer is the student. Our situation is different from the

human-human learning environment in that this task involves learning structural

shape descriptions in a fixed domain with a fixed vocabulary and syntax with a

limited number of options. Because the vocabulary is limited, the computer student

can easily keep track of all existing possibilities and know exactly what information

is still necessary to confirm the current shape concept. Conversely, a human teacher

is not good at keeping all possible uncertainties in her mind at one time. In this

case, the computer-student is better able to provide informative near-miss examples,

allowing the computer-student to more quickly and effectively refine its concept.

1.10 Concept Learning Algorithm

The system uses these labeled examples to automatically learn a shape concept (in

the form of a LADDER shape description) using a modification of the version spaces
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(a) Initial positive example of an arrow. (b) Arrow concept after initial positive exam-
ple.

Figure 1-12: Initial example shape and shape concept.
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Figure 1-13: Negative arrow example

algorithm [163]. Our modification, which is based on mutually-exclusive perceptually-

important constraints, better suits our domain in that it can learn shape descriptions

with negative and disjunctive constraints.

Figure 1-12 shows a hand-drawn example of a shape and the initial concept gener-

ated for it. As more positive and negative examples are labeled, the system continues

to update its concept space using the algorithm. Because constraints are often in-

terrelated in our domain of structural shape descriptions, it may be difficult to tell

which constraint causes a negative example. For example, the user may state that

the arrow-like example in Figure 1-13 is not an arrow. But if the system does not

yet know yet if the two head lines of the arrow must be the same size, the system

does not know if the shaft of the arrow must not be shorter than head1, head2,

or both.

If all shape permutations are generated, it is possible to eventually converge to a

single concept using this algorithm. However, we do not want to produce all of the

permutations because that would mean the user would have to label several hundred

examples. Ideally, we would like to prevent negative examples from causing branching

(which may require many more examples to prune down again to a single concept).

However, this is difficult to do, as many of the constraints are interrelated in our

domain. Thus, we have developed a heuristic called the purple cow heuristic to prune

62



the space of possibilities.

The purple cow heuristic works as follows: “I have never seen a purple cow, so

I am going to assume one does not exist.” This heuristic, applied to the structural

shape domain, is reworded as “I have never seen this constraint exist in a positive

example shape, thus, I am going to assume it will never exist in a positive example

shape.”

This heuristic works particularly well in the structural shape description domain,

as many of the constraints are interrelated, and the system may not have produced an

example which changed only a single constraint to confirm that it caused the negative

example.

1.11 Lessons Learned from Near-miss Use

Ten users employed the near-miss generation system to produce shape descriptions.

On many occasions, the system worked well so as to combine the near-miss generation

and the concept learning algorithm to determine the final shape, needing only 20

shapes to be able to fully reduce the space of 4773 shapes. However, in other cases,

the system did not work as well due to the lack of certainty about the possibility of

existence of a shape with a particular set of constraints and due to the slowness of

the shape generation algorithm.

1.12 Future Work

This research has several future implications in research. In particular, by simpli-

fying the creation of sketch interfaces, teachers may be able create their own sketch

interfaces for use in their classroom with hopes to improve classroom learning and ped-

agogy. Also, by combining this research with multiple forms of context and feature-
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based recognition techniques, a larger class of shapes may be identifiable.

1.13 Principle Themes of this Document

Some of the general principles explored in this thesis are the following:

1. Abstracting away the signal processing details in a user interface will enable

user interface and domain experts to create more sketch systems.

2. A perception-based UI development language modeled on how humans react is

natural and easy for humans to understand.

3. A recognition system based on human perception will align itself to how humans

recognize something, and, thus, be accurate according to humans.

4. If a UI language is easy to use, better UI systems will be developed.

5. A UI development language should abstract all details except those that are

domain specific.

6. In this thesis, domain-specific information includes what shapes can be observed

in a domain, how those shapes are to be recognized, what should happen once

those shapes are recognized, and how those shapes can be modified.

7. By including only perceptually-important elements in the domain, the language

can be simplified, making it easy to use.

8. Users make syntactical and conceptual mistakes when generating shape descrip-

tions. Conceptual mistakes include over- and under-constrained descriptions.

9. Users are poor at coming up with informative positive and negative examples

for the same reason that they forget constraints in typed shape descriptions and

that they are bad at generating good test cases.
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10. The learning participant that generates the near-miss examples should be the

learning participant that knows where the uncertainties in a concept lie.
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Chapter 2

Previous Work

2.1 Motivation for Sketch-based User Interfaces

Sketching is a natural interface for many domains. For instance, software design

diagrams (UML, flow charts), course of action diagrams, finite state machines, music

notation, and mechanical engineering diagrams are often drawn by hand on paper.

Currently, input of these diagrams into a computer is done using CAD or CASE

software that can be clumsy and nonintuitive; thus, these designs are input into the

computer only when necessary. The ideal or most natural input of these diagrams

would be as they were first completed, through hand-drawn sketching. Recognizing

these sketches can be difficult and proves to be an interesting AI problem.

Sketch recognition systems, in which users draw directly on a Tablet PC (as

opposed to off-line sketches that are later interpreted [169]), have been developed for

domains such as mechanical engineering [6] [141] [200] [10] [11] [166] [131], UML class

diagrams [99], [56] [118] [143], [105], webpage design [147], 3D drawings [108] [181]

[120] [149] [216], calendar notation [138], architecture [91] [59], GUI design [41] [145],

powerpoint slides [117], virtual reality [58], animation [72], stick figures [156] [155],

course of action diagrams [179] [71] [80], mathematical expressions [159] [111], music
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notation [81] [32], and even dance notation [90].

Sketch interfaces provide a number of benefits, including their ability to 1) interact

more naturally than a traditional mouse-and-palette tool by allowing users to hand

sketch the diagram, 2) connect to a back-end system (such as a CAD tool) to offer

real-time design advice, 3) recognize the shape as a whole to provide powerful editing

capabilities, 4) beautify diagrams, removing mess and clutter, and thereby 5) notify

the sketcher that the shapes have been recognized correctly.

However, sketch recognition systems can be quite time-consuming to build and

require signal-processing expertise if they are to handle the intricacies of each domain.

This researcher wants to enable user interface designers and experts in the domain

itself, who need not be experts in sketch recognition at the signal level, to be able

to build a sketch recognition system for their domain. This thesis describes a set of

ideas and techniques to enable developers to build sketch recognition systems.

The focus of the sketch-based systems described in this document is to recognize

domains that consist of a set of iconic shapes that can be described geometrically

and compositionally from lines, ellipses, arcs, curves, points, and spirals. The system

does not handle artistic freeform sketches.

2.2 History of Sketch Interfaces

2.2.1 The Birth and Death of Sketching Interfaces

Sketching interfaces have been around for a long time. Ivan Sutherland created the

Sketchpad system in 1963 on the TX-2 computer at MIT [206]. (See Figure 2-1.)

His system has been called the first computer graphics application. The system,

created before the invention of the computer mouse, provided the user with a light

pen as an input device. A user could create a complicated two-dimensional graphi-

cal scene through a series of editing commands and primitive graphical commands.

68



The light pen was used in conjunction with keyboard input to allow users to create

simple graphical primitives, such as lines and circles, and editing commands, such as

“Copy”. The keyboard could be used to place additional constraints on the geometry

and shapes in the scene. By defining appropriate constraints, users could develop

structures such as complicated mechanical linkages and then move them about in

real-time.

The Sketchpad system was based on vector graphics. Raster graphics, despite

its inability to produce the smooth continuous lines available with vector graphics,

proved to have many advantages over vector graphics [74]. Computers based on raster

graphics had a much lower cost. Raster graphics also provided the ability to display

an area filled with solid colors or patterns. Most importantly, the refresh process for

raster graphics is independent of the complexity of the scene (where complexity is

based on the number of objects in the scene) and, thus, because of the high refresh

rates available, any scene can be refreshed flicker free.

Vector graphics and its light pen were quickly superseded by raster graphics and

the ubiquitous mouse. Pen-based interfaces disappeared from mainstream computer

interfaces for many years, with the mouse being the most common input device for

graphical applications. Despite the many advantages of a mouse, a mouse is very

difficult to use for sketching. It does not have the natural feel of a pen, nor does it

Figure 2-1: Ivan Sutherland and the Sketchpad system.
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provide a pen’s accuracy. Because the mouse was found to be difficult to sketch with,

computer automated design (CAD) systems were based on a mouse-and-palette user

interface, rather than a sketching interface.

2.2.2 The Rebirth of Sketching Interfaces

In the last decade, pen-based interfaces have regained popularity. PDAs (Personal

Digital Assistants) [192] such as the Palm Pilot [177] [69] and the iPAQ Pocket PC

[199] entered the market. PDAs come with a stylus and a screen that can be sketched

on. With the influx of PDAs, there has been a growth of GraffitiTM-type interfaces.

Companies such as Wacom [191] have created sketching tablets that use a stylus as if

it were a mouse for a desktop computer. Companies such as Mimio [52] have created

electronic whiteboards, which consist of a regular whiteboard, a projector projecting

the drawn contents, and special markers acting as cordless mice. Tablet PCs [160]

now allow users to sketch directly onto their laptop screens using a Wacom pen [191]

[161].

Sketch-based interfaces are useful for a number of reasons. PDAs use a GraffitiTM-

type interface to allow users to hand write their notes. PDAs are built to fit easily in

a pants pocket, but still provide the computer power and ease of use of a computer-

based organizer. Because of the small size of PDAs, a traditional keyboard is not

practical. Handwriting recognition allows the pen to be used in place of a keyboard.

Many things are much more naturally input with a pen or sketch-based interface

than with a keyboard or mouse. The clunky-feeling of the mouse lacks the precision

of a pen-based stylus. For many people, drawing architectural sketches or mechanical

engineering designs would be very difficult without a pen, and many of the CAD

systems lack the natural feel and spontaneity of freehand sketching. Because of the

lack of free drawing available in a CAD system, many designers first sketch a freehand

diagram of their design before entering it into a CAD program.
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Most importantly, sketch-based interfaces are useful because many people prefer

to sketch. When given the option between sketching a design or using a mouse-

and-palette tool, users will generally choose to sketch the design [116]. Hse et. al.

performed a Wizard of Oz [55] experiment comparing the two design methods. During

the experiment, not only did users say they preferred a sketch-based interface, they

also requested more sketching flexibility, such as the ability to draw with multiple

strokes.

2.2.3 Sketch-based Applications

A myriad of applications with sketch-based user interfaces have been created for use

with pen-based input devices. Many sketching applications are based on a list of

domain symbols or icons; the user interacts with the system by drawing symbols in

the domain.

Originally, the objects in these sketches were recognized using trained gesture re-

cognition. Rubine [185] was one of the first to implement trained gesture recognition.

The Rubine recognition engine recognizes objects statistically with the use of a linear

discriminator, which processes a single stroke and determines certain features of it.

The Rubine system does not break down the stroke into line segments or curves,

requiring the sketcher to draw each object with a single stroke. Sketchers must learn

a particular stylized way of drawing. GraffitiTM[192], a language for hand writing

text used on Palm Pilots and other PDAs, uses a recognition algorithm similar to the

Rubine algorithm.

Labanotation, a system for recording and analyzing human movement, was first

published by Rudolf Laban in 1928 [38]. His analysis of movement is based on spatial,

anatomical, and dynamic principles. The LabanPad contains a handwriting recogni-

tion algorithm that is based on Labanotation. As the user writes down Labanotation

symbols using a pen, they are analyzed, tokenized, and redisplayed [90].
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Landay [141] [142] created SILK (Sketching Interfaces Like Krazy), a tool that

allows users to sketch interactive user interfaces. SILK was one of the first systems

that recognized a sketch and allowed interactive use of the sketch without replacing

the strokes with cleaned-up strokes, allowing the user to view and modify her original

strokes. SILK and many other systems were based on the Rubine recognition engine.

Denim, also by Landay [147] [168], recognizes boxes and two link types to allow

users to sketch and design web pages. In Denim, the link types are differentiated

not by the geometrical properties of the drawn links, but by what the links connect.

Other informal sketching tools to encourage brainstorming, but that do not recognize

drawn objects, have been developed [110] [79] [113] [140].

Ligature [75], also based on link connections, is a sketch-based system that con-

nects to Metaglue [48], the multi-agent software system for the Intelligent Room, to

configure hardware connections in the MIT AI Lab Intelligent Room.

Several other sketch recognition systems in other domains have also been devel-

oped. Early systems attempted to recognize draft drawings of mechanical engineering

diagrams [85]. SketchIt [201] is a sketch-based user interface for mechanical engineer-

ing designs, recognizing hand-drawn (as opposed to drafted) diagrams.

JavaSketchIt [41] is a sketch-based tool for GUI design in Java. Kullberg [138]

presents a way of annotating one’s daily calendar by using hand-drawn sketching.

SketchVR is a tool to recognize virtual reality architecture sketches [58] [59].

Course of Action Diagrams are used by the military to plan and depict battles,

depicting unit movements and tasks in a given region [171]. COA diagrams are usually

hand-drawn by the military, and these sketches have been successfully recognized by

Quickset and other sketch-based tools that enable multiple users to create and control

military simulations [179] [71] [70].

Edward Lank et al. built a UML recognition system that uses a distance metric

[143] for recognition. Each glyph (square, circle, or line) is classified based on the
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total stroke length compared to the perimeter of its bounding box (e.g., if the stroke

length is approximately equal to the perimeter of the bounding box, it is classified as

a square). Similar to other feature-based algorithms, this algorithm can cause many

false positives. (For example, the letter M can be detected as a box.) Although

the system does allow users to draw somewhat naturally, it does not allow them to

edit naturally; they do not sketch edits to their diagrams, but have to use correction

dialogue boxes.

Ideogramic UML TM[118] has developed a gesture-based diagramming tool to rec-

ognize UML diagrams. The tool is based on a GraffitiTM-like implementation and

requires users to draw each gesture in a single stroke, and in the direction and style

specified by the user manual. As a consequence, some of the gestures to be drawn

only loosely resemble the output glyph. For example, ϕ is used to indicate an actor,

drawn by the system as a stick figure.

Eric Lecolinet [145] has created a system to design GUIs that is based on modal

interaction, in which the user is required to select an appropriate drawing tool. His

system is quite different from ours in that it does not allow free-hand drawing and,

thus, does not perform sketch recognition; rather, it uses gestures for diagram ma-

nipulation.

The systems above require that the user draw shapes similar to the developer, but

are not intended to be retrained for every user, and simply suffer lower recognition

rates when a user does not draw the shape as intended. Other systems try to capture

individual user styles by having every user intricately train the system [112].
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2.3 Natural Sketch Recognition Based on Geomet-

ric Properties

Sketch systems using a feature-based algorithm for recognition, such as a Rubine[185]

or GraffitiTM-type[192] algorithms require users to learn a particular stylized way of

drawing. What these algorithms lose in natural interaction by requiring the sketcher

to draw in a particular style, they gain in speed and accuracy, as these algorithms are

fast and effective. Rather than recognizing shapes, the algorithm recognizes sketched

gestures, in which each gesture stands for a single shape. These sketched gestures

focus more on how something was drawn than on what it looks like. The recognition

algorithm requires that each gesture be drawn in a single stroke in the same manner

(stroke direction, speed, etc.) each time. Each gesture is recognized based on a

number of features of that stroke such as the initial angle, the end angle, the speed,

number of crosses, etc. Because of these requirements, the gesture representing the

shape may look different from the shape itself (e.g., it would be impossible to draw a

cross with a single stroke, so it may, instead, be represented by a ribbon-like gesture).

Also, even if a sketcher draws a shape that looks the same as the required gesture, it

may not be recognized because it does not have the same underlying features of the

stroke (stroke direction, speed, or number of strokes).

Our goal is to build sketch recognition systems that allow sketchers to draw as

they would naturally, i.e., without having to learn a new set of stylized symbols.

As long as the shape looks like the final shape, the shape should be recognized,

independent of the number, direction, or order of the drawn strokes. Apte was one

of the first researchers to recognize multi-stroke shapes using geometry. [17]. Two

previous systems in our group – Assist [6] and Assistance [174] – took a step in this

direction – providing a sketch-based user interface for mechanical engineering design

that allowed users to draw shapes with multiple strokes and performed recognition

based on shape. Other systems use geometric constraints to recognize shapes in sketch

recognition [62] [86] [125].
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To allow for natural drawing in our sketch recognition systems, shapes are de-

scribed (and recognized) in terms of the subshapes that make up the shape and the

geometric relationships (constraints) between the subshapes. Strokes are first broken

into a collection of primitive shapes, including lines, ellipses, arcs, spirals, points,

and curves, using techniques from Sezgin [195] [194]. (Current improvements have

also integrated techniques from Yu [215] to recognize a larger class of shapes. Future

plans include the possible integration of techniques from Cates and Hse [45] [115].)

A higher-level shape is then recognized by searching for possible subshapes and test-

ing whether the appropriate geometric constraints hold. The geometric constraints

confirm topology, angles between lines, relative sizes, and the like. Recent work of

this researcher has created a recognizer that also distinguishes helixes, spirals, and

overtraced ellipses. That work is not described in this document.

2.3.1 Tahuti

To demonstrate that recognition could be done using a shape-based model, this re-

searcher built Tahuti1 [99] [105] [99], a system for recognizing UML class diagrams

[37] [1] using geometric constraints. To test the usability of Tahuti, this researcher

performed a field experiment in which subjects compared Tahuti to a paint program

and to Rational RoseTM. Subjects created and edited a UML class diagram, using

each method and quantifying the ease of drawing and editing of each method.

Sketching is a natural and integral part of software design, as software developers

use sketching to aid in the brainstorming of ideas, visualizing programming organiza-

tion, and understanding of requirements. UML diagrams are a de facto standard for

depicting software applications. Unfortunately, when it comes to coding the system,

the drawings are left behind, and the sketched information has to be re-input into

the computer using a CASE tool. Traditional CASE (Computer Automated Software

Engineering) tools, such as Rational RoseTM, give users powerful editing features and

1Tahuti, also known as Thoth, is the Egyptian god of wisdom. He always carried a pen and
scrolls upon which he recorded all things.
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(a) Hand-drawn UML class diagram in
Tahuti

(b) Recognized UML class diagram in
Tahuti of Figure 2-2(a)

(c) Diagram in Figure 2-2(a) with classes
moved

(d) Interpreted diagram of Figure 2-2(c)

(e) Diagram in Figure 2-2(a) sent to Ra-
tional RoseTM

(f) Stub code generated by Rational
RoseTMFigure 2-2(e)

Figure 2-2: A hand-drawn UML class diagram in Tahuti, the recognized shapes in
Tahuti, the recognized shapes passed off to Rational RoseTM, and the generated stub
code produced by Rational RoseTM.
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even allow users to automatically generate skeleton user code. However, these CASE

tools give the users very little, if any, flexibility to create a diagram. Users do not

have the freedom to sketch their designs and are required to learn a large number of

commands before they can use the system with ease.

Thus, this researcher felt that a multi-stroke sketch recognition system for UML

Class diagrams would be a way to bridge that gap, allowing users to sketch the

diagrams on a tablet or whiteboard in the same way they would on paper. The

sketches are then interpreted by the computer, allowing the sketch itself to take an

active role in the coding process. This researcher chose to build a sketch system for

UML class diagrams because of their central role in describing program structure.

And, many of the symbols used in class diagrams are quite similar, and, hence, offer

an interesting challenge for sketch recognition.

Domain Knowledge

Class diagrams describe the static structure of an object-oriented software system,

rather than how it behaves. Class diagrams consist of (i) general classes, (ii) interface

classes, and (iii) associations between two classes. UML uses a rectangle to indicate a

general class, while an interface class is represented by a circle or rounded rectangle.

There are three types of associations: (i) A dependency association exists if one class

calls a method from another class, including the constructor. The dependency rela-

tionship is represented by an arrow with an open head. In Figure 2-2, the Game class

is dependent on the Graphics class. (ii) A generalization or inheritance association

exists if one class is a kind of or extension of another class. The inheritance relation-

ship is represented by an arrow with a triangular head. In Figure 2-2, the Hand class

is inherited from the CardDeck class. (iii) An aggregation association exists if one

class is part of another. The aggregation relationship is represented by an arrow with

a diamond head. In Figure 2-2, the Card class is part of the CardDeck class.
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Recognition

Our system differs from graffiti-based approaches in that it allows users to draw an

object as they would with pen and paper. The system recognizes objects based on

their geometrical properties by examining the line segments’ angles, slopes, and other

properties, rather than requiring the user to draw the objects in a predefined manner.

Recognizing the objects by their geometric properties allows users the freedom to

sketch and edit diagrams as they would naturally, while still making it possible to

maintain a high level of recognition accuracy.

Tahuti recognizes five shapes: a general class (represented by a rectangle), an

interface class (represented by an ellipse), an inheritance association (represented by

an arrow with a triangle-shaped head), an aggregation association (represented by

an arrow with a diamond-shaped head), a dependency association (represented by an

arrow or line), and an interface association (represented by a line, but connecting a

class to an interface). If a collection of strokes is not recognized as one of these shapes,

the collection is left unrecognized. The system also accepts text input through the

keyboard.

In order to recognize the objects created from multiple strokes by their geometrical

properties, this researcher created a multi-layer framework of recognition in which

strokes are preprocessed, selected, recognized, and then identified.

After each stroke is drawn, rudimentary processing is performed on the stroke,

classifying it as an ellipse or a series of line and curve segments. A collection of

spatially and temporally close strokes is chosen, and the line segments contained

in the collection of strokes are then recognized as either an editing command or a

viewable object.

Figure 2-3 shows the stages of the multi-layer recognition framework applied to a

drawn UML aggregation association.

Stage 1: Preprocessing – At the most basic level, strokes drawn by the user are
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Figure 2-3: Multi-layer framework of recognition used in Tahuti: A UML aggregation
association is identified using the multi-layer recognition framework. a) The associa-
tion was originally drawn using two strokes. b) During the preprocessing stage, the
original strokes are processed into line segments. c) The two strokes of the arrow
are then selected for recognition. d) Recognition occurs on the two strokes, at which
point a UML aggregation association is deemed to be a possible interpretation. e)
The collection of strokes is identified as a UML aggregation association.

processed using algorithms for stroke processing developed in our group [194]. The

preprocessing stage uses stroke timing data to find possible corners, as users tend to

slow down when drawing a corner. A stroke is processed only once, immediately after

having been drawn. The stroke is fit to each of the following: 1) an ellipse, 2) a line,

3) a polyline, which is a collection of line segments, and 4) a complex shape, which is

a collection of line segments and bezier curves. Along with the original data points,

the stroke data structure contains each possible interpretation and its probability of

correctness.

Figure 2-3a shows the originally drawn strokes of a UML aggregation association.

The diamond-headed arrow was drawn using two strokes. The stroke is processed

immediately after it is drawn. The data structure of the strokes will contain a fit for

a best fit ellipse, line, polyline, and complex shape. Figure 2-3b shows the polyline

interpretation of the strokes.
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Stage 2: Selection – After the recently drawn stroke has been preprocessed,

the stroke is combined with zero or more unrecognized strokes to form a collection of

strokes. This collection of strokes is then sent to the recognizer, where it determines

whether the combined strokes form a recognizable object or an editing command.

Ideally, all possible stroke combinations would be tested for possible recognition

of a recognizable object or editing command. However, if we allow the system to

test for all possible stroke combinations, it would take exponential time, based on the

number of strokes to identify an object. While this may be OK for small diagrams,

this would be unacceptable for large diagrams, making the system unusable. To

reduce the number of stroke collections for recognition, we use spatial and temporal

rules to prune off stroke collections.

To ensure that all interactions take polynomial time based on the number of

strokes, we limit the number of strokes in a collection to a threshold. Experimentally,

we have found that 9 strokes is an acceptable threshold. Since users tend to draw an

entire object at one time, completing the drawing of one object before drawing the

next, it is generally safe to form stroke collections consisting only of strokes drawn

recently. Thus, only the last nine unrecognized strokes can possibly be included in a

stroke collection.

All recognizable objects within the UML class diagram domain are connected

objects. Thus, we require all strokes within a collection to be within close proximity

of other strokes in the collection. Let C be the collection of all of the strokes. Let

S be a subset of the strokes. For every subset S, where S is nonempty and C − S

is nonempty, we require that the smallest distance between the subsets be less than

a threshold, τ . (SubsetDistance(S, C − S) < τ) Experimentally, τ was chosen to be

10 pixels.

SubsetDistance(X, Y ) = Min(
⋃

i=1..n

j=1..m⋃
D(Xi, Yj)) (2.1)

In the above equation, n and m are the number of line segments in X and Y respec-

tively and Xi represents the ith line segment. D is the distance function computing
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the distance between two points.

Figure 2-3c shows the two strokes of the UML aggregation association selected.

Note that this is not the only collection that would have been created. Assuming that

the arrow shaft was drawn first, after the arrow shaft was drawn, a stroke collection

would have been formed with only that stroke. Another stroke collection would have

been formed with only the stroke of the arrow head. If other unrecognized strokes

are present in the diagram, several more stroke collections that include these strokes

would be created for recognition testing. After all stroke collections have been created,

the recognition stage attempts to identify the stroke collections as possible viewable

objects or editing commands.

Stage 3: Recognition – During the recognition stage, all stroke collections

are examined to see whether a particular stroke collection could be interpreted as a

viewable object or an editing command. An editing command is a collection of strokes

indicating deletion or movement of a viewable object. The system currently recognizes

eight viewable objects: a general class, an interface class, an inheritance association,

an aggregation association, a dependency association, an interface association, and

text. The system may also choose to leave strokes unrecognized. The algorithms used

in the recognition stage will be described in more detail in the next section.

If more than one interpretation is possible for any stroke collection, the final

interpretation is deferred until the identification stage. Figure 2-3e shows the UML

aggregation association interpretation chosen by the recognition system. Other stroke

collections presented to the recognition stage also have interpretations. For example,

the collection of strokes consisting only of the arrow head stroke is recognizable as a

general class since it forms a square-like shape. The decision between choosing the

general class interpretation and the UML aggregation association is deferred until the

identification stage.

Stage 4: Identification – During the identification stage, a final interpretation

is chosen, and a collection of strokes is identified as a viewable object or an editing
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command. All possible interpretations found in the recognition stage from the stroke

collections are presented to the identification stage. The identification stage selects

the final interpretation, based on the following rules:

Object Movement: An interpretation of object movement has priority over any

other possible interpretation. Object movement recognition is interesting in

that it is the only interpretation that can be determined while the stroke is

still being drawn. If object movement is recognized, the multi-layer recognition

framework will be short-circuited, preventing the stroke from being recognized

by other algorithms. Immediate recognition is necessary for movement to allow

the user to visually move the objects in real-time, rather than having the object

move only after the stroke is completed.

Any Interpretation: Any interpretation is preferred to no interpretation, where no

interpretation leaves the stroke collection as a collection of unrecognized strokes.

Many Strokes: We prefer to recognize collections with a larger number of strokes,

rather than fewer, since our goal is to recognize as much of what the user draws

as possible.

Correctness Probability: Each algorithm has a ranking, based on its probability

of correctness. The probability of correctness is a combination of both prior

and predicted probability. Certain recognizers have a higher level of accuracy

than others, creating a prior correctness probability. Predicted probability is

calculated during recognition: for example, the ellipse fit predicted probability

of correctness is much higher for a perfectly drawn ellipse than for a crooked

ellipse. If more than one interpretation is still possible, the interpretation with

the highest ranking is then chosen.

After the final interpretation is chosen, the associations are examined to see

whether any unconnected associations can be connected to a class. This is done
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by checking whether an association endpoint lies on or near a general or interface

class.

During the recognition stage of the multi-layer recognition framework, stroke col-

lections are tested for possible interpretations. In particular, we present here the

recognition algorithms for rectangle, ellipse, arrow, and editing action recognition.

Each algorithm is hand-constructed to recognize a particular shape using geometric

principles. These shape-based algorithms are not the same as used by the LAD-

DER/GUILD system, but rather form a model and inspired the LADDER-based

automatically generated algorithms described later in this document.

Rectangle Recognition: General classes are represented as rectangles in UML

class diagrams. To recognize rectangles, we constructed an algorithm that is based

on a rectangle’s geometrical properties. The algorithm does not require that the class

be parallel to the horizontal plane or that it be created from a single stroke or even

one stroke per side. The algorithm’s inputs are the line segments of the polyline fit

of the preprocessed strokes. (See Figure 2-4a-b.) The six steps are:

Figure 2-4: Rectangle Recognition Process. a) The stroke is fit to a polyline, and
the line segments of the fit are shown here. b) The endpoints of the line segments
from a) are specified. c) The endpoints of one line segment have been labeled. d)
The endpoints of two line segments have been labeled. e) All line segments have been
labeled. f) The new line segments after the joining.
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1. Confirm that the preprocessed collection of strokes consists of at least 4 line

segments of non-trivial size (> 10 pixels).

2. Order the lines into a circular path by numbering the endpoints one by one:

(a) Select a line segment to start. Label its first endpoint 0. Label its other

endpoint 1. (See Figure 2-4c.)

(b) Find the closest unlabeled endpoint to the last labeled endpoint n. Label

it n + 1, and label the other endpoint of the segment n + 2. (See Figure 2-

4d-e.)

(c) Repeat above until all endpoints are labeled.

3. Confirm that first endpoint labeled is relatively close to the last endpoint labeled

(i.e., that the distance is < 1/4 of the distance between the two points furthest

apart).

4. Join lines that have adjacent endpoints with similar slopes. (See Figure 2-4f.)

5. Confirm that there are four lines left.

6. Confirm that every other line is parallel and that adjacent lines are perpendic-

ular.

The above algorithm recognizes rectangles containing any number of strokes. The

strokes can be drawn in any order, and the strokes can stop or start anywhere on the

side of the rectangle. The algorithm emphasizes that the rectangle be recognized by

its geometrical properties rather than the method in which it was drawn. This method

allows users to draw as they would naturally, without sacrificing the recognition

accuracy.

Ellipse Recognition: Interface classes are represented as ellipses in UML class

diagrams. After a stroke has been preprocessed, if the ellipse fit has the highest

probability compared to the complex shape, polyline, or line fit, the interface class

recognition algorithm accepts the stroke as an interface. An ellipse must be drawn
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with a single stroke, as we use Sezgin’s toolkit for recognition [194]. To recognize

multi-stroke ellipses, we could assemble two curves together in a process similar to

the rectangle recognizer, but, in practice, this has not been necessary. The single-

stroke requirement for the interface class is not a hindrance to the user since circles

are almost always drawn with a single stroke.

Arrow Recognition: Here, we present two methods for arrow recognition, ge-

ometrical and contextual. The geometrical method is used if the user has drawn an

arrow, complete with an arrow head, to specify the association type. The contextual

method is employed if the user has drawn only the arrow shaft connecting two classes,

letting the application assume the dependency association.

Geometrical Method for Arrow Recognition: Associations are represented by ar-

rows in UML, of which there exist three types: aggregation association with a diamond

arrow head, inheritance association with a triangular arrow head, and dependency

association with an open arrow head (Figure 2-5). The recognition algorithm uses the

polyline fit of the preprocessed strokes. To facilitate recognition of all three types, we

identified five feature points (A, B, C, D, E), as labeled in Figure 2-3d and Figure 2-5.

1. Locate the arrow shaft by locating the two points farthest from each other

(points A and B).

2. Locate the arrow head ends by locating points farthest from the arrow shaft on

either side (points C and D).

3. Let point E be the point on line AB that is twice the distance from B as the

intersection point of lines CD and AB.

4. Classify each of the line segments as a part of the arrow shaft, an arrow head

section, or unclassified (AB, BC, BD, CD, CE, DE, or unclassified), based on

the line’s bounding box, slope, and y-intercept.

5. Compute the total length of each of the line segments in each section (AB, BC,

BD, CD, CE, DE, or unclassified). A section is said to be filled if the total
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length of each of the line segments in each section is greater than half the ideal

length of the segment.

6. Confirm that sections AB, BC, and BD are filled.

7. Confirm that the unclassified section accounts for less than 1/4 of the sum total

of the length of all of the strokes.

8. Based on the results of the line-segment classification, classify the arrow type,

as follows:

(a) open head: CD, CE, and DE not filled

(b) diamond head: CE and DE filled

(c) diamond head: CD not filled and either CE or DE filled

(d) triangular head: Either CE or DE not filled and CD filled

(The first three steps of the algorithm serve to reduce the search space so the

system does not have to try all possible permutations. In GUILD we have built an

indexing algorithm to solve a similar problem. The following steps attempt to fill

the missing segments; a more discrete approach is currently used in GUILD : GUILD

first attempts to merge overlapping lines into a single line, and then attempts to

find a single line which will fill the missing segment. The algorithm described above,

however, is slightly more flexible in template filling, and it would be interesting to

investigate integrating this alternate template-filling method into GUILD as future

work.)

Figure 2-5: Points A, B, C, D, and E, as determined in the arrow recognition algorithm
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Contextual Method for Arrow Recognition: Contextual information can be used

to recognize arrows. If a stroke without a specified arrow head starts in one class

and ends in another, the stroke is interpreted as an arrow. The stroke is assumed to

be a dependency association, with the first class being dependent on the second, if

both classes are general classes. In this case, the dependency arrow head is added

to the interpreted diagram. If one class is an interface class, the interpreted dia-

gram replaces the stroke with a straight line connecting the two classes, creating an

interface association. The association is attached to the classes and, if an attached

class is moved, the association will move in accordance with the moving class. This

recognition algorithm is modeled in a LADDER description by the use of contextual

shapes as part of the LADDER shape description.

Text: Text can be handwritten directly onto the class. In Figure 2-2(a), the

ObjectRendered class contains the text desciption ”graphics.” Note that the text is

not recognized, but merely identified as text. It is identified using a combination of

properties such as size and location. The text must be small in comparison to the class

size. The text must lie inside of or near a class. Figure 2-2(c) shows how the identified

text describing the ObjectRendered class remains attached to the correct class when

the class is moved. In future work, we intend to perform character recognition on the

text.

Although we currently do not recognize text, class, property, and method names

can be named using a form. Text can be input into the form using the panel keyboard

and a mouse or by typing directly with the keyboard. Figure 2-6 shows a picture of

the form inputting information for the Game class. Notice that the information on

the form is also updated on the diagram.

Editing

The system is non-modal: users can edit or draw without having to give any explicit

advance notification. One editing action is moving classes and associations on the
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Figure 2-6: Class names, property names, and method names can be input into the
form using the panel keyboard and a mouse or by typing directly with the keyboard.

screen. The system understands a gesture as a move command rather than as a

drawing command based on the user’s sketching behavior: Users tend to click and

hover over a class when moving it. For example, the system interprets a hover longer

than .5 seconds as a move command. The move command is signified to the user by

a cursor changing to a gripping hand with which the user can move the class.

The user can delete a class or association by scribbling over the shape. We define

class deletion lines as being the horizontal, vertical, and diagonal lines passing through

the body of a class. Deletion of an interface or a general class is recognized by checking

whether the stroke collection crosses a deletion line of the class more than four times.

Deletion of a relationship is recognized by checking whether the collection of strokes

crosses the arrow more than four times. More than one object can be deleted with a

single deletion command.

A stroke is recognized as a movement action if the user has clicked and held

the cursor over the body of a class or the endpoint of an association with relatively

little movement for a period of time greater than a half second. After the stroke

is identified as a movement action, the cursor changes to a gripping hand, and any

further movement of the cursor will move the object appropriately. Recognition of a

stroke as movement of an object must occur during the stroke, rather than after the
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stroke is completed. In this case, the recognition process is short-circuited, and no

other interpretations are attempted.

If an interface or general class is moved, any relationships attached to the class

will remain attached, moving in rubber-band format. If a relationship is moved, the

endpoint that has been moved will detach from any class that it is currently attached

to. Once the relationship is moved and the mouse has been released, the relationship

endpoint is examined to see whether it should be reattached to a class or remain

unattached. It is possible for a relationship type to change from an aggregation,

inheritance, or dependency relationship to an interface relationship, if the arrow is

moved from a general class to an interface class, or vice versa.

Multi-View System

While sketching, the user can seamlessly switch between two views: the drawn view

(Figure 2-7(a)), which displays the users original strokes, or the interpreted view

(Figure 2-7(b)), which displays the identified objects. Users can draw and edit in

either view. Editing commands operate identically in the two views, with the drawn

view allowing users to view and edit their original strokes. When a class is dragged,

the strokes of an attached association must be stretched, translated, and rotated in

order for it to remain attached and for the strokes to remain faithful to those originally

drawn. Figure 2-7(d) shows the results after moving classes in Figure 2-7(b). The

drawn view is shown in Figure 2-7(c). Some sketchers become distracted by the

sketch recognition process when it replaces their strokes with the interpreted version.

The alternate views allow the users to sketch in the manner in which they are more

comfortable, thus engendering user-autonomy in sketching.

The strokes shown in the drawn view are not the same as those shown in the

interpreted view. Several complications arise from this. One complication is that

the system now has to keep track of three different sets of stroke data for each stroke

drawn. Thus, for each viewable object, the data structure must contain 1) the original
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(a) Hand-drawn UML class diagram in
Tahuti

(b) Recognized UML class diagram in
Tahuti of Figure 2-2(a)

(c) Diagram in Figure 2-2(a) with classes
moved

(d) Interpreted diagram of Figure 2-2(c)

(e) Diagram in Figure 2-2(a) sent to Ra-
tional RoseTM

(f) Stub code generated by Rational
RoseTMFigure 2-2(e)

Figure 2-7: A hand-drawn UML class diagram in Tahuti, the recognized shapes in
Tahuti, the recognized shapes passed off to Rational RoseTM, and the generated stub
code produced by Rational RoseTM.
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strokes, 2) the uninterpreted strokes (the strokes viewable in the drawn view), and 3)

the interpreted strokes (the strokes viewable in the interpreted view). The uninter-

preted strokes are not the same as the originally drawn strokes since the object may

have been moved, causing the viewable strokes to have been stretched, translated,

or rotated. After movement of an object, the uninterpreted strokes are recalculated

based on the original strokes, rather than the current uninterpreted strokes to ensure

that there is no loss of accuracy.

Since the originally drawn strokes and the viewable strokes in the interpreted view

are different, the recognition algorithms must take into account the current view. For

example, when deleting an association in the interpreted view, the line or arrow

shaft representing the relationship must be crossed. However, in the drawn view, the

stretched, scaled, or rotated original strokes representing the relationship must be

crossed.

Rational RoseTM Diagrams and Code Generation

The recognized sketches are then automatically sent to Rational RoseTM, a CASE

(computer-automated software engineering) tool which generates stub code. Fig-

ure 2-7 shows a hand-drawn UML class diagram in Tahuti (Figure 2-7(a)), the rec-

ognized shapes in Tahuti (Figure 2-7(b)), the recognized shapes passed off to Ra-

tional RoseTM(Figure 2-7(e)), and the generated stub code produced by Rational

RoseTM(Figure 2-7(f)). Notice that the Hand class extends the Deck class, and that

the Deck class implements the Dealable interface, as specified in the original sketch.

This enables the user to take full advantage of the benefits of a CASE tool, such as

the ability to auto-generate code stubs, while still retaining the natural feeling of a

sketch tool.
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Figure 2-8: Results of user study for ease of drawing. Note that users preferred
drawing in the interpreted view of Tahuti.

Experiment

In a preliminary study, six subjects were asked to draw and edit a UML diagram in

four different ways: A) using a paint program, B) using Rational RoseTM C) using

Tahuti in the interpreted view D) using Tahuti in the drawn view. Subjects were aided

in the use of Rational RoseTM if they were unfamiliar with it, but little instruction

was given otherwise.

The subjects were asked to rank the four methods on a continuous scale from

zero to five (with zero being the hardest, and five being the easiest) both for ease of

drawing and for ease of editing. Figure 2-8 displays the results for ease of drawing.

Figure 2-9 displays the results for ease of editing. The results reveal that subjects

greatly preferred the interpreted sketch interface of Tahuti as compared to the other

choices.

At the end of the study, each subject was briefly interviewed. During this time,

the subjects stated that they appreciated having the freedom to draw as they would

on paper, assisted by the editing intelligence of a computer application. Subjects

said that editing was difficult in the paint program because of the large amount of

re-sketching required for class movement. Subjects complained that Rational RoseTM

was extremely nonintuitive, and that they had difficulty performing the commands

that they wished to perform.
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Figure 2-9: Results of user study for ease of editing. Note that users preferred editing
in the interpreted view of Tahuti.

Most subjects preferred to work in the interpreted view, rather than the drawn

view. The subjects contrasted the domain of UML class diagrams with domains such

as Mechanical Engineering and Architecture where a cleaned-up drawing may imply

a finished design. They stated that the domain of UML class diagrams is one in

which cleaned-up drawings are appreciated since they are created in the design stage,

and cleaned-up drawings do not imply solidified ideas. The subjects said that they

would prefer to work in the drawn view in a domain such as Mechanical Engineering

or Architecture. The subjects predicted that the drawn view would be a valuable

feature in any domain, because it would allow them to examine their original strokes,

when necessary.

Our experiment suggests that future system enhancements should consider incor-

porating an ability to recognize multiplicity relationships and modification of recog-

nized objects (e.g., changing a dependency association into an inheritance association

by adding a stroke). Further field evidence is, however, necessary before any cate-

gorical recommendations can be made in this area. Toward this end, future research

should test Tahuti, using larger samples, tighter controls, and varied experimental

settings.

Tahuti has been used at Columbia University to teach Object Oriented Program-

ming to a group of 65 students The system was well-received, and it appeared to

aid both in the initial program design and in progressive program design, although a
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formal study was not done. Even simply having a graphical picture of the program

seemed to allow the students the ability to maintain a clear picture of the program

structure throughout the coding process.

2.3.2 Indexed Software Meetings to Aid in Design Rationale

Capture

These sketch recognition systems often prove themselves useful in many unexpected

ways. Tahuti was used to automatically index video documentation of software design

meetings [105] in an attempt to provide easy access to design rationale.

Defining Design Rationale

Design rationale has been defined in a variety of ways, but all definitions agree that

it attempts to determine the why behind the design [153] [164] [165]. Design ratio-

nale is the externalization and documentation of the reasons behind design decisions,

including the design’s artifact features. We have chosen the following definition that

has been borrowed from Moran and Carroll: Documentation of (a) the reasons for the

design of an artifact, (b) the stages or steps of the design process, (c) the history of

the design and its context. Louridas and Loucopoulos claim that the design rationale

research field includes all research pertaining to the capture, recording, documenta-

tion, and effective use of rationale in the development processes. The researchers state

that a complete record, which they define to be a video of the entire development

process, combined with any materials used and produced, could, in theory, be used

to determine the rationale behind the decisions that have been taken. However, they

claim that this unformatted data would be unwieldy to search through. Thus, design

rationale research has generally encouraged the structuring of design to provide a pro-

posed formalism, using a small set of concepts that are appropriate for representing

the deliberations taking place.
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A considerable body of effort has been devoted to capturing and indexing de-

sign rationale. One part of design rationale is documentation of the design history

[153] [164] [165]. While videotaping a design session can capture the design history,

retrieval may require watching the entire video. Retrieval can be made simpler by

structuring the design process, but this can hold back fast-flowing design meetings

[198]. There is an apparent tension between the simplicity of design rationale capture

and effectiveness of design rationale retrieval [197]. We hope to bridge this gap by

allowing designers to design as they would naturally, and, at the same time, supply

them with the tools that understand those designs and allow the designer to use this

understanding to help in retrieving appropriate moments of a design meeting.

Collaborative software design meetings often involve the creation of UML software

diagrams to design object-oriented software tools by sketching UML-type designs on

a white-board. At MIT, this includes building new agent-based technologies for the

Intelligent Room. Figure 2-10 shows people designing agents in the Intelligent Room.

Traditionally, when new components need to be added to the Intelligent Room’s

software, a small number of designers gather in the Room and sketch the new design

on the whiteboards, while discussing their decisions. What gets recorded after those

sessions is the final design and the explanation of the mechanisms employed. What

gets omitted are the reasons why those particular solutions got employed.

In response, we have created a system that allows software designers to design

agents naturally, using sketch information gained from Tahuti while interpreting soft-

ware diagrams. The designers can draw UML-type free-hand sketches on a white-

board, using an electronic marker whose “strokes” are digital ink marks that are

projected onto the board, rather than drawn on it. These sketches are recorded and

interpreted in real-time to aid in the later retrieval of design history. The system

allows the users to design as they would naturally, requiring only that they learn the

UML syntax. Information extracted from the diagrams can be used by the system to

generate stub code, reducing some of the routine parts of the programming process.

The recognition also allows us to flag, label, and timestamp events as they occur,
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Figure 2-10: People designing agent software in the MIT Intelligent Room.

facilitating retrieval of particular moments of the design history.

Research has been done on indexing audio-visual material [39]. Researchers have

attempted to label the video with salient features within the video itself, focusing on

the recognition and description of color, texture, shape, spatial location, regions of

interest, facial characteristics, and, specifically for motion materials, video segmen-

tation, extraction of representative key frames, scene change detection, extraction of

specific objects, and audio keywords. While not much research has been done using

sketch recognition to label and index a particular moment in video, a considerable

body of work has been done using sketch recognition to find a particular moment in

a pre-indexed video [133] [47] [123]. Research has also been used to use sketches to

search for static images [31] [14] [47] [133] [61].
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Figure 2-11: A software sketch of a fan agent.

Implementation

UML diagrams have been found to lack simple ways to describe agent-based technolo-

gies [170]. We added several symbols for agent-design since many of the applications

created in the Intelligent Room [109] of the MIT AI Lab are agent-based. Figure 2-11

shows a software sketch of a fan agent. The recognizable shapes in Tahuti include the

components of UML class diagrams, as well as agents (indicated by a double-edged

rectangle) and speech grammars (indicated by a triangle) [105]. Bergenti and Poggi

[28] have created a CAD system to input UML diagrams for agent-based systems;

however, their system requires designers to enter their diagrams using a rigid CAD

interface rather than allowing designers to sketch as they would naturally.

We implemented the software meeting indexer as a Metaglue agent since the

Metaglue agent architecture provides support for multi-modal interactions through

speech, gesture, and graphical user interfaces[48] in the MIT AI Lab’s Intelligent

Room [109]. The Metaglue agent architecture also provides mechanisms for resource
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Figure 2-12: The interpretation of Figure 2-11

discovery and management, which allows us to use available video agents or screen

capture agents in a Metaglue supported room [84]. The Design Meeting Agent ex-

tends the Meeting Management System [172] for capture of non-design information

such as the structure of the design meeting [178]. It initializes the Tahuti Agent,

which controls the sketch recognition and the timestamping of significant events. It

also controls the video and screen capturing agents.

To capture the design meeting history, the Design Meeting Agent requests avail-

able audio, video, and screen capture services from the environment and uses them

to capture the entire design meeting. However, finding a particular moment of the

design history video and audio records can be cumbersome without a proper indexing

scheme. To detect, index, and timestamp significant events in the design process,

the Tahuti Agent, also started by the Design Meeting Agent, records, recognizes, and

understands the UML-type sketches drawn during the meeting. These timestamps

can be mapped to particular moments in the captured video and audio, aiding in the

retrieval of the captured information. Metaglue, a multi-agent system, provides the
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computational glue necessary to bind the distributed components of the system to-

gether. It also provides necessary tools for seamless multi-modal interaction between

the varied agents and the users.

Design Meeting Manager: The Design Meeting Manager extends our earlier

Meeting Manager [172]. At startup, it is responsible for obtaining resources necessary

for running a basic meeting (a display for keeping track of the agenda, issues, com-

mitments, etc.) and for starting Tahuti, the sketch recognition part of the system.

It is also responsible for negotiating with the environment the use of available audio,

video, and screen-capture devices. During the meeting, the Design Meeting Manager

will keep track of the organizational aspects of the meeting, such as moving through

and augmenting the meeting agenda. It also provides a means for querying previous

meetings.

Speech Interfaces: Both the meeting manager and the Tahuti Agent can inter-

act with users through speech. The grammar of the Design Meeting Manager contains

vocabulary for controlling the flow of the meeting and for querying previous meet-

ings. Tahuti’s speech interface allows users to interact with the sketch (e.g. provide

feedback in case of misrecognition of drawn shapes) and to query earlier designs (e.g.

“What where we talking about when we added this class?”).

Meeting Capture Services: There are a number of agents deployed in Metaglue-

enabled spaces that can, depending on the availability of hardware and software re-

sources, provide capture services to the Design Meeting Manager. All or some of

the following may be present: the video capture agent, audio capture agent, and/or

screen display capture agent (using CamtasiaTM). Ideally, all of those capabilities

would be present.

Tahuti Agent: The Tahuti Agent recognizes UML class diagrams and time-

stamps events as they occur; these timestamps are used to index the video of the

design meeting. Figure 2-12 shows the interpretation of the diagram in Figure 2-11.

The symbols include those described above and two additional symbols: a double-

99



Figure 2-13: Each agent implements an interface with a corresponding name. If an
agent inherits from another agent, so do the interfaces of the agents (left figure). In
these sketches, the interfaces are assumed and not drawn (right figure).

edged rectangle to denote agents and a triangle (shown in the interpreted view as a

triangle with an extended bottom, or a pentagon, to fit more text) to denote grammars

for speech-enabled agents. These symbols simplify our diagrams by providing certain

syntactic shortcuts. In reality, an agent’s implementation is always accompanied by

an interface, and the inheritance structure of interfaces usually parallels that of agents

(Figure 2-13). In our sketches, we omit the interfaces. The interactions among agents

involve a complex pattern of proxy objects and helper classes, which we also omit in

our sketches (Figure 2-14). Finally, reliance on a grammar always implies use of a

special proxy agent and interaction with Metaglue’s speech facilities (Figure 2-15).

Timestamping of Significant Events: All events in the design process are

recorded, labeled, and time stamped. A significant event is defined as the addition

or deletion of a general class, interface class, agent, grammar, or relationship. Less

significant events include the movement of a class, agent, grammar, or association, or

the addition, deletion, or editing of text, such as class, method, or property names.

During the development process, the designer may also mark a particular event as

particularly significant. The designer can then later ask questions such as, “What was

the discussion when this class was created?” and the system can show the appropriate
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Figure 2-14: The figure on the left displays the actual interaction between the two
classes. The figure on the right displays the abstraction for “relies on.”

section of video and screen shots.

Design History: Designers may also want to ask the more general question

“How did we design this system?” We would like to present to the designer a visual

description of how the scene evolved. We do not want to show the designer all of

the significant events. Rather, we want to select a small number of snapshots that,

when combined together, can best display the evolution of the design. We want to

select the most significant events to show to the user and show the most revealing

snapshot related to those significant events. Significant events are each given a rank,

represented as a floating-point number. The number before the decimal place is set

according to the type of event. For instance, creation of an Agent is given the highest

rank of all sketched objects, with a rank of 10. The table below lists the initial rank

of each of the possible events. While the numbers themselves are slightly arbitrary,

what is important is the relative ordering of the events.

• Final Design: 12

• User Marked Significant Event: 11

• Creation of an Existing Agent: 10
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Figure 2-15: Left: the speech grammar along with connected classes. Right: the
simpler version with the grammar symbol implying the relationships and agents on
the left.

• Creation of an Existing General or Interface Class: 9

• Creation of an Existing Speech Grammar: 8

• Creation of an Existing Association: 7

• Creation of an Existing Unrecognized Stroke: 6

• Text Update: 5

• Movement: 4

• Creation of a Deleted Object: 3

• Deletion of an Object: 2

• Undo/Redo: 1

The logic behind the initial ranking is as follows: The final event is always ranked

the highest. The designer selected significant events outrank computer selected sig-

nificant events. Creation of viewable objects is considered a more significant event
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than the updating or movement of that object. Creations of objects that no longer

exist in the final version are considered to be much less significant than those that

remained throughout the entire process.

Within a particular category (e.g., looking only at the Creation of Agent Events),

events are again ranked as more or less significant. Events that affect more objects

have a higher ranking. The fraction part of the floating-point number is used to assign

further ranking. Events specifying the creation of agents, classes, and grammars are

further differentiated by the number of associations attached to them. For instance,

an agent connected by an association to 4 classes would have a rank of 10.04 (since

the number of associations is divided by 100).

A designer may want to see screenshots of the five most significant events to

review a brief history of the design process. When the most significant events are

chosen, the screenshot associated with the event is not the snapshot of the time of

the occurrence of that significant event, but, rather, the snapshot of the moment

before the next significant event. The next significant event is defined as the next

event greater than or equal to the lowest ranking in the listing of the most significant

event. This allows any smaller additions, such as text or movement, to be included in

the snapshot. Figure 2-16 shows the ranking of each of the significant events of the

diagram. Figure 2-17, Figure 2-18, and Figure 2-19 show the three most significant

events of a diagram.

2.4 General Recognition Systems

The work in this document proposes building a general purpose sketch recognition

that makes building a sketch system for a particular domain easy and fast [8] [107].

Quill [150] [152] [151] is a tool for designing gestures and gesture sets for pen-

based user interfaces that allows designers of a gesture recognition system to sketch

the gestures to be recognized. It exposes some information about the recognizer,
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Figure 2-16: Each class, agent, association, and grammar is marked with a number
specifying its order drawn, followed by its ranking. Note that the two with the highest
rankings are marked with stars.

and provides active advice about how well the gestures will be recognized by the

computer, and how well they will be learned and remembered by people. Quill uses

a feature-based GraffitiTM-type recognition that focus on the way the shape is drawn

(e.g., the number of strokes, as well as stroke speed, curvature, order, and direction,

etc.). In order for their strokes to be recognized, users of this system must sketch each

gesture in the same way as that of the designer who trained the system, including

stroke direction, order, and speed, rather than recognizing the drawn object by its

geometrical shape. Our focus is on removing as many sketching restrictions as possible

so as to provide a more natural sketching medium in which sketchers are able to draw

shapes by using their own individual natural style. We want users’ sketches to be

recognized, no matter how many strokes they used or in what direction or order they

were drawn. Thus, our framework includes a symbolic language for describing the

geometry of shapes from which to base recognition.

The Electronic Cocktail Napkin project [95] [93] [92] created a domain-independent
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Figure 2-17: Significant Design Event 1, the screen shot significant event 4 (which
includes significant event 5)

sketch recognition system that allowed users to define shapes by drawing them. The

shape is then described by the shapes from which it is composed and the constraints

between them. The ECNP does not handle ambiguity, nor can it describe non-shape

information, such as editing behavior. The low level recognizers have stroke order and

direction requirements and need to be trained a multitude of times, rather than rec-

ognizing based on shape. The project does not appear to have been pursued beyond

its initial stage. For instance, the system built did not allow users to do anything be-

yond defining new shapes. It did not provide any mechanism for defining how a shape

was to be displayed or edited once recognized. Neither did it provide any method for

altering the shape definitions by hand if the description it generated was too specific

or too general. Our system improves on this system in that we allow users to specify

all parts of a sketch domain, including how shapes are displayed and edited in the

domain.

Jacob [122] has created a software model and language for describing and pro-

gramming fine-grained aspects of interaction in a non-WIMP user interface, such as
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Figure 2-18: Significant Design Event 2, after significant event 8 (which includes
significant event 15)

a virtual environment. The language is still close to the signal-processing level and

requires users to do a significant amount of coding to define new interactions, and, in

the domain of sketching, it does not provide a significant improvement to coding the

domain-dependent recognition system from scratch.

Lank [144] has created a framework for developing new sketch systems. The

system simplifies application development, but the user still has to write and 5, 500

lines of code to produce a UML sketch recognition system, and have an expertise in

sketch recognition.

Systems have been built to automatically build vision recognition system. Ikeuchi

and Kanade have worked on systems to automatically compile object and sensor

models in to a visual recognition strategy for recognizing and locating and object

in three-dimensional space from visual data [121]. Their object model is (similar to

the one described in this document) is also based on geometric properties. As light

and sensor characteristics also play a role in vision, they also model photometric and

sensor properties.
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Figure 2-19: Significant Design Event 3, the final diagram

Several frameworks have been developed for simplifying the development of multi-

modal user interfaces [73].

2.5 Handling Ambiguity in Recognition

GUILD handles ambiguity by sending all possible interpretations to the recognition

system. Other systems handle ambiguities in other ways. SketchRead [12] handles

ambiguity by asking the system for another interpretation when the first interpreta-

tion does not work. Mankoff et. al. [158] have developed a user-interface framework

that handles ambiguity through the use of mediators.

2.6 Previous Shape Languages

Shape definition languages, such as shape grammars, have been around for a long

time [204]. Shape grammars are studied widely within the field of architecture, and

many systems are continuing to be built using shape grammars [87]. However, shape

grammars have been used largely for shape generation rather than recognition, and do

not provide for non-graphical information, such as stroke order, that may be helpful
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in recognition. They also lack ways for specifying shape editing.

More recent shape definition languages have been created for use in diagram pars-

ing [83]. These shape definition languages are not intended for use with an on-line

system and do not provide ways to specify how to display or edit a shape. Since

they are not created with sketching in mind, they do not provide ways for describing

non-graphical information, such as stroke order or direction.

GUILD is based on template filling of a shape’s structural description. These

structural descriptions are often represented in relational graphs. Lee performed

recognition using attribute relational graphs [146]. Lee’s attribute language differs

from ours in that ours is more topological or geometrical, whereas theirs is more

quantitative, requiring specific details of the shape’s position. Keating and Mason

also performed recognition by matching a graph representation of a shape; the main

difference between their limited graphical language and ours is that their language is

statistical and specifies the probable location of each subpart, whereas our language

is categorical and describes the ideal location of the shape [136]. Calhoun also uses a

semantic network representing the shape in recognition, but, as far as we can tell, the

language is limited, specifying only relative angles and the location of intersections

[43].

Within the field of sketch recognition, there have been other attempts to create

languages for sketch recognition. Mahoney [157] uses a language to model and rec-

ognize stick figures.The language currently is not hierarchical, making large objects

cumbersome to describe. Saund developed a symbolic method for constructing higher

level primitive geometric shapes, such as curved contours, corners, and bars. Bimber,

Encarnacao, and Stork created a multi-layer architecture for sketch recognition [30]

of three-dimensional sketches. Their system recognizes objects created by multiple

strokes with the use of a simple BNF-grammar to define the sketch language. How-

ever, due to the nature of their domain, the system requires users to learn drawing

commands before using the system, rather than giving users the freedom to draw
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as they would naturally. This language allows a programmer to specify only shape

information, and it lacks the ability to specify other helpful domain information such

as stroke order or direction and editing behavior, display, or shape interaction infor-

mation.

Caetano et al. [42] use Fuzzy Relational Grammars to describe shape recognition.

This allows them to combine fuzzy logic and spacial relation syntax in a single unified

formalism [129] [76] [77]. In their grammar, they assign attributes to objects, such as

“VERY THIN”, which are quantified using fuzzy grammar. An example production

rule for lines is: “IF Stroke IS VERY THIN THEN Shape IS Line”. These languages

lack the ability to describe editing, display, or shape group information.

Myers et. al. [167] designed a large system and language for designing user

interfaces. The language allows the user to define graphical objects, interactions,

editing operations, and gestures to be recognized. The system, however, uses the

Rubine engine to define and recognize gestures, thus each shape must be drawn in a

single stroke and style.

Shilman has developed a statistical language model for ink parsing, with a similar

intent of facilitating development of sketch recognizers. The language consists of seven

constraints: distance, delta X, delta Y, angle, width ratio, height ratio, and overlap,

and allows the user to specify concrete values, using either a range or a gaussian [196].

We find it difficult to describe some shapes using this technique as the language re-

quires the provision of quantitative discrete values about a shape’s probable location.

We feel it is more intuitive to say (contains shape1 shape2), rather than having

to specify two deltaX and two deltaY constraints, using discrete constraints, each of

the form deltaX (shape1.WEST < shape2.WEST).range(0, 100)) Shilman’s

work also lacks the ability to describe editing and display.

Egenhofer [61] has used a geometric-based recognition system similar to our to

search for images on the web. The user’s sketch is processed geometrically, and each

item in the drawing is compared to the other items in the drawing, comparing the
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relative cardinal directions (NW, N, NE, W, 0, E, SW, S, SE), topology (disjoint,

meet, overlap, contains, covers, inside, coveredBy, equal), and a metric refinement

to determine the amount of area or border intersection. The system then retrieves

the pictures in the image library (which are all preprocessed in a similar way) that

best match the drawn sketch according to those measures. They have implemented

a constraint relaxation technique to find imperfect matches.

2.7 Human Perception

The LADDER constraints are based on geometric perceptual principles. Veselova has

made a significant research progress in this area by automatically generating shape

descriptions using perceptual rules [208] [209] [210]. David has developed a method

for recognizing deformable shapes based on perception [57]. Sarkar develops metrics

for quantifying Gestalt properties of similarity between arcs and lines [186].

Saund et. al. has made significant progress in using perception to aid in recogni-

tion, editing, and object grouping [190] [189] [187] [188].

This research attempts to use some of the ground work done using perception in

sketch recognition to automatically generate recognizers based on similar principles.

2.8 Sketch Beautification

Sketch beautification and display is an important part of the sketch recognition user

interface. Not only does it clean up the diagram, it also acts to notify the user that

an object has been identified [119]. It may also be used to supply additional helpful

information to the user during the design process (as in the UML sketch system

described in Sections 6.2 and B.2). Arvo and Novin discuss integrating beautification

into the drawing process, by morphing the drawn shape into the beautified shape

110



while the user is drawing it [19] [20].

2.9 Recognition Using Indexing

Part of this document describes a recognition algorithm that uses indexing to speed-

up recognition search and retrieval. Indexing has been used in this form in many

other fields. For example, it has been used in the closely related field of vision

object recognition [203] [202] [16] [139] [26] [44] [53] [173] [180]. Indexing sketches has

also been done to search for images [31] [133]. This researcher has previously used

recognized sketches to index software design meetings as described above [105].

The recognition algorithm described in this thesis appears to be the first use of the

idea in support of unconstrained sketch recognition. By breaking the strokes down to

line, curve, and ellipse segments, we were able to define shapes in geometric terms,

then perform indexing on these terms, a luxury not afforded when indexing photo

images or non-geometric sketches (such as an artist’s sketch).

2.10 Geometric Constraint Solvers

Much work has been done on constraint solvers, in general. The University of Wash-

ington created the Cassowary linear geometric constraint solver [21]. The LADDER

vocabulary includes many nonlinear constraints, such as equalLength. Thus, this

research includes the building of a nonlinear constraint solver.

Stahovich used a constraint solver on mechanical engineering constraints to gen-

erate geometries from constraints [200]. Rather than acting as a shape generation

system given constraints (as the system described in this thesis does), the SketchIt

sketch recognition system interprets what the user meant to draw and cleans up the

diagram to ensure that the mechanical engineering simulations works as intended.
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2.11 Learning Shape Descriptions

Long has created a multi-domain recognition system in which the developer is able to

specify the shapes to be recognized in a domain by drawing them [150]. The system

helps the developer to debug shapes by specifying which shapes are similar and may

be confused with other shapes, thus, causing recognition problems. Long is solving a

different problem from that discussed here in that Quill considers ambiguity to be a

bug, and requires the developer to change the way things are drawn.

Gross et. al. [94] have created a multi-domain recognition system, but they have

no methods for debugging the shapes specified within them.

Lu et. al. [154] have developed a system for learning shape concepts by recognizing

shapes based on training data. Several attributes can be used to describe a shape,

and the thresholds for these attributes for each shape concept are computed based on

the teacher-provided training data. Sezgin has developed a technique to use training

data to predict user-dependent temporal sequences to aid in recognition [193].

2.12 Active Learning and Near-miss Generation

Machine learning is a subfield of artificial intelligence concerned with the creation

of techniques that help a computer to learn, usually from a set of input examples

[162]. While there are some exceptions (such as reinforcement learning), on a whole,

these input examples are either labeled (as in supervised learning), unlabeled (as

in unsupervised learning), or some combination (semi-supervised learning) [128] [33]

[46].

In many domains, including sketch recognition, there are not huge amounts of

labeled training data sets available to the developer for each domain. Thus, since

labeling examples is costly, near-miss examples can be skillfully chosen to have quick

and effective learning of a shape concept. Winston argues that in concept learning,
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the learner usually holds only one hypothesis at a time and that the learner can learn

the correct model most effectively if the example differs from the current hypothesis

in only on aspect to that the learner cannot make the wrong choice and can slowly

be guided to the correct model of the concept [214].

Traditionally, examples in supervised learning are generated and labeled by the

teacher, although the examples can also be generated by learner and labeled by the

teacher. Active learning describes the process of instruction through learner generated

examples [15] [22]. This corresponds to the a type of classroom instruction of the same

name where instructors encourage students to actively engage in the learning process,

with the expectation that these students will be more able to recall information later

[36] [40].

If the computer is better able to determine which examples are necessary to aid

learning, active learning can help the learner more effectively or quickly learn a con-

cept by skillful selection of near-miss examples. This thesis discusses a supervised

learning technique in which shape concepts are learned from labeled positive and

negative examples generated either by the teacher or the learner.

Effective active learning using near-miss examples requires the ability to alter

only one aspect of an example at a time [51] [15] [130]. Mitchell has invented version

spaces, a concept learning algorithm that can keep track of the possible hypotheses

given a set of labeled examples [163]. However, the version spaces algorithm does

not handle disjunction nor interrelated constraints, which are prevalent in sketch

recognition shape concepts, thus this thesis discusses a modification of his algorithm

developed by the researcher.

113



114



Chapter 3

FLUID: FaciLitating UI

Development

3.1 Motivation

Sketch interfaces are valuable additions to natural human-computer interactions, but

developing sketch interfaces requires substantial effort. They can be quite time-

consuming to build if they are to handle the intricacies of each domain. Moreover,

the sketch interface developer has to be an expert in sketch recognition at the signal

level.

This research argues that to make a user-friendly system, the designer of the

system should be an expert in building user interfaces, and/or an expert in the domain

itself. This person does not necessarily have to be an expert in sketch recognition at

the signal processing level.

This research aims at enabling the user interface or domain expert to be able to

design and develop a sketch interface without needing to understand and code the

signal processing details. To this end, this research includes the development of a

framework that gives the sketch interface developer the power to implement recogni-
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tion changes, herself, without having recognition expertise. By abstracting away the

sketch recognition task from building sketch recognition systems, the developer no

longer needs to address sketch recognition when building new sketch interfaces. As a

result, we been able to build several sketch interfaces in less time than it has taken

previously.

3.2 Solution

To date, most sketch recognition systems have been domain-specific, with the recog-

nition details of the domain hard-coded into the system, making the development

of a new sketch system a long and difficult process. Rather than build a separate

recognition system for each domain, this researcher proposes the FLUID framework,

consisting of a single multi-domain recognition system that can be customized for

each domain.

To build a sketch system, a user interface developer would only need to describe

the domain-specific information. The programmer would not have to write sketch

recognition code, and could, instead, focus on other details of the user interface.

3.3 Domain-specific Information

When constructing a user interface, the domain-specific information is able to be

obtained by asking the following questions:

• What are the observable states to be recognized?

• How are these states to be recognized?

• What should happen when these states are recognized?

• How can we modify these states?
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In sketch recognition user interfaces, the domain-specific information is obtained

by asking these questions:

• What shapes are in the domain?

• How is each shape recognized?

• What should happen after each shape is recognized?

• How can the shapes be edited?

Many domain-specific events can occur after a shape is recognized, but what is

common in most domains is a change in display. Sketchers often prefer to have a

change in display to confirm that their object was recognized correctly, as a form of

positive feedback. Changes in display may also function as a way to remove clutter

from the diagram. For example, the system may replace several messy hand-drawn

strokes with a small representative image. A change in display may vary from a

simple change in color, a moderate change of cleaning up the drawn strokes (e.g.,

straightening lines, joining edges), to a more drastic change of replacing the strokes

with an entirely different image. Because display changes are so popular and so

common to most domains, we have included them in the language, as described

in Chapter 4. But, because other recognition effects may be desired, we have also

included an API, which is described in Chapter 5.

This framework not only defines which shapes are in the domain and how they

are to be recognized in the domain, it also recognizes the importance of editing and

display in creating an effective user interface. Developers of different domains may

want the same shape to be displayed differently: Compare a brainstorming sketch

interface that develops a web page layout such as DENIM [147][148], in which shapes

may be left unrecognized, to a UML class diagram sketch interface, where sketchers

may want to replace box-shaped classes with an index card-like image such as in

Tahuti [99][96]. Developers of different domains may want the same shape edited in
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different ways: Compare a cross in a mechanical engineering sketch interface, such as

Assist [6], which represents a drawn symbol for an anchor, to a cross in UML class

diagrams, which represents a symbol for deletion and acts as an editing gesture to

delete whatever shape it was drawn on top of, as occurs in Tahuti [99].

3.4 Framework

To build a sketch interface for a new domain, a user interface developer writes a

domain description defining the shapes in the domain and how they are recognized,

displayed, and edited. This domain description is then automatically translated into

shape recognizers, editing recognizers, and shape exhibitors. These are used with

the customizable, domain-independent recognition system to create a domain-specific

sketch interface that recognizes the shapes in the domain, displaying them and al-

lowing them to be edited as specified in the description. The inspiration for such

a framework stems from work in speech recognition, which has been using this ap-

proach with some success [217] [54] [211]. We analogize sketching with speech, where

interfaces are developed by writing a speech grammar, which is then used with a

domain-independent speech recognition system.

In our framework, we transform a domain description into a recognizer of hand-

drawn shapes [107] [101] [98] [103]. This is analogous to work done on compiler-

compilers, in particular, visual language compiler-compilers [54]. A visual language

compiler-compiler allows a user to specify a grammar for a visual language, then

compiles it into a recognizer which can indicate whether an arrangement of icons is

syntactically valid. One main difference between that work and ours is that the visual

language compiler-compiler deals with the arrangement of completed icons, where our

work includes three additional levels of reasoning: first dealing with how strokes form

primitive shapes (such as lines and ellipses), then how these primitive shapes form

higher-level shapes or icons, and finally, how the higher-level shapes interact to form

more complicated shapes or less formal shape groups.
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Figure 3-1: The FLUID framework.

Figure 3-1 shows the FLUID framework. To build a new sketch interface:

1. A developer writes a LADDER domain description describing information spe-

cific to each domain, including: what shapes are included in the domain, and

how each shape is to be recognized, displayed (providing feedback to the user),

and edited.

2. The developer will write a Java file that functions as an interface between the

existing back-end knowledge system (e.g., a CAD tool) and the recognition

system, based on a supplied API.

3. The GUILD (see Chapter 5) customizable recognition system translates the

LADDER domain description into shape recognizers, editors, and exhibitors

(see Figure 3-2).

4. The GUILD customizable recognition system now functions as a domain-specific

sketch interface that recognizes, displays, and allows editing of the shapes in the

domain, as specified in the domain description. It also connects via the Java

interface (listed in Step 2) to an existing back-end system.

3.5 Implementation

We have implemented the FLUID framework by building 1) LADDER [100], a sym-

bolic language to describe domain-specific information, including how shapes are
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Figure 3-2: GUILD: The domain description is translated into recognizers, exhibitors,
and editors for each shape in the domain.

drawn, displayed, and edited in a domain; and 2) GUILD a customizable, multi-

domain recognition system that transforms a LADDER domain description into rec-

ognizers, editors, and exhibitors to produce a domain-specific user interface [101].

3.5.1 LADDER Domain Description

The LADDER domain description lists the shapes in a domain and how each shape

is recognized, displayed, and edited. Recognition of the shape is described primarily

in terms of the shape’s geometry, allowing shapes to be recognized no matter the

number, order, or direction of the strokes used. In our system, descriptions should

account for all of the allowable conceptual variations, but should not include signal

noise, which is handled by the recognizer. (See Section 5.1.1, which defines signal

error and conceptual error, and describes how they are handled by the recognition

system.)
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LADDER supplies a number of predefined shapes, constraints, display meth-

ods, and editing behaviors. These predefined elements are hand-coded into the

domain-independent system, allowing it to recognize, display, and edit these pre-

defined shapes.

The left box of Figure 3-2 gives an example of an Arrow shape definition. The

shape recognition part of a shape description can be created by hand or generated

automatically using techniques listed later in this thesis. (See Chapters 7-11.) The

components and the constraints define what the shape looks like and are transformed

into shape recognizers. The display section, which specifies how a shape is to be

displayed when recognized, is transformed into shape exhibitors. The editing section,

which specifies the editing behaviors that can be performed on the recognized shape,

is transformed into editing recognizers.

3.5.2 Recognition

The third box of Figure 3-2 shows the generated domain-specific sketch recognition

system. GUILD contains shape recognizers, editing recognizers, and shape exhibitors

for the primitive shapes (line, ellipse, curve, arc, and point). The arrows show how the

shape recognizers, editors, and exhibitors are generated from the LADDER domain

description.

Recognition is carried out as a series of bottom-up opportunistic data-driven trig-

gers in response to pen strokes. As each stroke is drawn, the system determines

whether the stroke is an editing trigger. If not, it is taken to be a drawing gesture,

and the stroke is analyzed as a collection of primitive shapes, using the primitive rec-

ognizers. The resulting primitive shapes are added to the shape database. Domain-

specific recognizers then search for domain shapes. The display module then displays

the result as defined by the domain description. Chapter 5 explains the recognition

process in more detail.
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Chapter 4

LADDER, a Language for

Describing Drawing, Display, and

Editing in Recognition

4.1 Overview

The previous chapter described our framework for automatically generating a sketch

recognition user interface from a domain description.

As explained there, the domain description includes the following:

• What shapes are in the domain?

• How is each shape recognized?

• What should be displayed after each shape is recognized?

• How can the shapes be edited?

A domain description, thus, consists of: 1) a listing of all of the shapes in the
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domain and 2) a shape description for each shape that describes how it is recognized,

displayed, and edited.

4.1.1 Goals for Shape Description Language

First and foremost, we need a language that can describe the necessary domain-

specific information described above. We want the language to abstract as much

information as possible in order to make a description easy to specify. Meanwhile, we

also have to ensure that the language does not abstract too much and that a developer

can still specify the information needed to enable the recognizer to effectively recognize

shapes using these abstractions.

Domain information should be easy to specify, and it should provide a high level

of abstraction to reduce the effort of and sketch recognition knowledge needed by

the developer. The domain information should be accessible, understandable, and

intuitive to the developer to ensure that it is easy to read, understand, and debug.

The difficulty in creating such a language involves ensuring that the language is

broad enough to support a wide range of domains, yet narrow enough to remain

comprehensible and intuitive in vocabulary. We argue that the more understandable

the domain information is, the more likely it is that its errors will be apparent.

Figure 4-1: A bit raster representation of an arrow.
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The language needs to be capable of describing all acceptable variations in a shape

description. For instance, we cannot use a bit raster representation of the shape, as

a bit raster describes only one specific instance and does not indicate permissible

variations. Figure 4-1 shows an example bit raster of an arrow. Notice that the

image has no way to indicate that the shaft of the arrow can be of any length, as long

as it is longer than the head of the arrow.

A shape description also should not place unnecessary drawing requirements on

the user; it should allow the user to draw a shape using any number of strokes,

with the strokes drawn in any order or direction. Since we want to recognize based

on what the object looks like, rather than how it was drawn, we should model our

language similarly. The language should allow shapes to be described primarily by

user-independent geometric properties, rather than user-dependent stylistic tenden-

cies.

While LADDER descriptions primarily concern shape, we still want the ability

to encode information such as stroke order or direction that may be helpful in the

recognition process. We also want the language to describe contextual information

that could help the recognition process.

The language should encourage the reuse of shape definitions by allowing hierarchically-

defined shapes. Similarly, abstract shape definitions can obviate the need to rewrite

identical attributes for a class of similar shapes.

We enumerate the goals mentioned above here:

1. Able to describe domain information

2. Broad enough to support a wide range of domains

3. High level of abstraction

4. Narrow enough to remain comprehensible

5. Easy to read, understand, and debug, intuitive
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6. Able to describe a generalized version of a shape

7. Can recognize description based on what the shape looks like, rather than how

it was drawn

8. Able to describe how it was drawn

9. Able to describe context for recognition

10. Supports hierarchical descriptions and abstract descriptions

4.1.2 Symbolic Language Based on Shape

To achieve the goals above, we created LADDER [100] [103] [97]. Figure 4-3 shows a

LADDER shape description of the open arrow drawn in Figure 4-2.

Figure 4-2: An arrow with an open head
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define shape OpenArrow

description "An arrow with an open head"

components

Line shaft

Line head1

Line head2

constraints

coincident shaft.p1 head1.p1

coincident shaft.p1 head2.p1

coincident head1.p1 head2.p1

equalLength head1 head2

acuteMeet head1 shaft

acuteMeet shaft head2

aliases

Point head shaft.p1

Point tail shaft.p2

editing

trigger holdDrag shaft

action

translate this

setCursor DRAG

showHandle MOVE tail head

trigger holdDrag head

action

rubberBand this head tail

showHandle MOVE head

setCursor DRAG

trigger holdDrag tail

action

rubberBand this tail head

showHandle MOVE tail

setCursor DRAG

display original-strokes

Figure 4-3: The description for an arrow with an open head
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A symbolic language based on shape would be easier to read and debug than a

feature-based language focusing on how a shape is drawn or on non-perceptually-

important geometric properties, which have been the basis of sketch recognition sys-

tems such as GraffitiTM[177]. Features that have been used in such systems include

the total drawing time, the size of the bounding box, stroke speed, and start/end

angle. A listing of these features makes it difficult for the developer to envision the

shape, making debugging difficult. These features do not ensure correlation between

the drawn shape and the interpreted shape. Also, these features tend to describe

user-independent stylistic tendencies, which may not be constant from person to per-

son, but because recognition is based on these features, a sketcher must draw a shape

in the same manner as the developer in order for it to be recognized (e.g., in one

stroke, same speed, etc.). By defining shapes based on how they look, recognition

can be performed without placing single-stroke requirements on the users, allowing

users to draw the shapes as they would naturally.

While a LADDER shape definition is structural and includes primarily geometric

information, the language also can include other drawing information, such as stroke

order or stroke direction.1 We can specify that a constraint or component is not

required, using the keyword optional.

The language also has a number of higher-level features that simplify the task of

creating a domain description. Shapes can be built hierarchically. Shapes can extend

abstract shapes, which describe shared shape properties, preventing the application

designer from having to redefine these properties several times; for instance, several

shapes may share the same editing properties. Shapes with a variable number of com-

ponents, such as a polyline or a polygon, can be described by listing the minimum

and the maximum number for each component (e.g. Line[2,n] segment would be

used to define that a polyline consists of 2 or more lines called segment[i]). Con-

textual information from neighboring shapes also can be used to improve recognition

1This enables us also to describe the bulk of the characters in sketching languages, such as the
GraffitiTMlanguage for the Palm Pilot [177].
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by defining shape groups; for instance, contextual information can distinguish a pin

joint from a circular body in mechanical engineering. Shape group information also

can be used to perform chain reaction editing, such as having the movement of one

shape cause the movement of another.

4.2 Intuitive Perceptual Language

In 1890, Christian von Ehrenfels said that Gestalt principles describe “experiences

that require more than the basic sensory capabilities to comprehend”[212]. The brain

is programmed to perceive certain visual features as more perceptually-important

than others. To create an intuitive language, we looked at research in shape per-

ception and modeled our language on these Gestalt principles. Veselova [209] lists

several valuable Gestalt principles relating to shape recognition, including the group-

ing rules provided by Werthermeier in 1959 and the notion of singularities provided

by Goldmeier in 1972 [213] [89].

Grouping rules explain how people perceptually group objects using concepts such

as connectedness, nearness, and other principles. Singularities describe which geomet-

ric shape properties are most noticeable. We chose the following constraints, based

on Gestalt principles for the language:

• coincident (grouping)

• connected (grouping)

• meet (grouping)

• touches (grouping)

• near (grouping)

• far (anti-grouping)
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• intersects (grouping)

• contains (grouping)

• horizontal (singularity)

• vertical (singularity)

• diagonal (anti-singularity)

• parallel (singularity)

• perpendicular (singularity)

• slanted (anti-singularity)

• equalLength/equalSize (singularity)

• longer/larger (anti-singularity)

• sameX (singularity)

• leftOf (anti-singularity)

• sameY (singularity)

• above (anti-singularity)

• acuteMeet (grouping combined with anti-singularity)

• obtuseMeet (grouping combined with anti-singularity)

• bisects (grouping and singularity)

The language also includes many other constraints that function as syntactic

sugar, being already representable by a combination of constraints in the language,

such as smaller or centeredAbove.

The constraints in LADDER are modeled after these Gestalt principles, describ-

ing the perceptual importance of grouping rules and singularities. By including
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perceptually-important constraints, we make the language easy for humans to use.

We argue that the resulting descriptions are likely to be more accurate and likely to

produce better descriptions because the descriptions focus on only those details that

are perceptually important.

By focusing on perceptually-important constraints, we simplify the language. As

a result, we have no need for constraints that specify angles at a granularity finer than

horizontal, vertical, positive slope, or negative slope. We argue that this narrowing of

the language makes it more comprehensible and makes it easy to find the appropriate

constraints to describe a shape.

4.2.1 Calibrating Thresholds

Gestalt singularities include horizontal and vertical lines, of which humans are par-

ticularly sensitive to. Because of this sensitivity, humans can quickly label a line as

horizontal or not horizontal, as well as identify whether a line deviates from horizon-

tal or vertical by as few as five degrees. Humans have considerably more difficulty

identifying lines at other orientations, such as 35 degrees, and would have a much

more difficult time determining whether a particular line were 30, 35, or 40 degrees.

Humans tend to group together the angles between 15 and 75 degrees as positively-

sloped lines [89].

This research attempts to calibrate how sensitive people are to these singularities

in a user study. The goal of this calibration is to determine if 1) human sensitivities

for horizontal and vertical lines to exist, 2) if there is a difference between vertical

and horizontal sensitivities, 3) if other such sensitivities exists (i.e., are there other

angles which users are more attuned to, 4) are humans more sensitive to positive or

negatively sloped lines, and most importantly 5) to determine where is a good dividing

point between the two locations. This calibration study just begins to answer some

of these questions, and further studies are suggested in future work.
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In a user study, we showed nine people a total of 116 lines in a random orientation

between 0 and 180 degrees. Users were asked to report the orientations of the shown

lines with as much accuracy as possible. (Any orientations in the wrong quadrant

were disregarded as addition mistakes; only two lines fell in this category.) Figure 4-4

shows a graph of the actual angle of the line shown in degrees on the x axis versus the

error of the guess on the y axis. Note that the errors in general seem quite high, but

at 0, 90, and 180 (horizontal and vertical), the errors reduce to practically nothing.

When the data is re-graphed to show on the x-axis the deviation from horizontal

or vertical (as in Figure 4-5), we can clearly see the increase in error as the angle

approaches 45 degrees. If we fit a line to the data in Figure 4-5, the slope of the

line is .259, the y-intercept is 0, and the standard error is .016571, displaying a clear

increase in the difficulty of correctly labeling the line angle as the line deviates from

horizontal or vertical.

Figure 4-4: Error of the guessed angles from 0 to 180.

For the purposes of performing a t-test, we grouped the lines into two groups: 1)

angles with orientations within 10 degrees of horizontal or vertical (0-10, 80-100, and

170-180 degrees) and 2) angles with orientations not within 10 degrees of horizontal
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Figure 4-5: Error of the guessed angles from 0 to 45 degrees.

or vertical (10-80, 100-170). When labeling lines from group 1 (near horizontal or

vertical), users had a mean error (absolute value of the reported angle minus the

actual angle) of 2.8 degrees and a variance of 4.95. When labeling lines from group 2

(far from horizontal or vertical), the users had a mean error of 7.64 and a variance of

25.77. As shown by the variance, large errors between the actual orientation and the

correct orientation were common: 24 lines had an error greater than 10; 8 lines had

an error greater than 15; and 2 lines had an error greater than 20. The two groups

were significantly different, with a p value of less than .001. The error values for

positively-sloped lines is not significantly different for the error values for negatively-

sloped lines, nor are the error values for horizontal lines significantly different from

vertical lines. The future work section of this document proposes future studies that

can more effectively select the perceptual division between horizontal/vertical lines

and positive/negative-sloped lines.

4.2.2 User Study

To determine how people naturally describe shapes, we performed a user study in

which 35 users described approximately 30 shapes each, both verbally and through

text input. These users also had to draw shapes based on others’ descriptions to test
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which constraints were most easily understood, as well as the validity of the original

descriptions.

The experimental procedure involved four stages:

Part 1: Novice Descriptions A user is shown a shape description at the top of

the screen, with the following text and a text box below it: “We want you to

describe the shape you see above. Imagine you are describing this shape to

a computer that understands only simple geometric shapes and relationships

between them.” The user was asked first to verbally describe the shape, and

then to textually describe it.

Part 2: Interpreting Descriptions The user is shown another user’s description

from part 1 or 3 and asked to “Draw the shape above.”

Part 3: Experienced Descriptions Same as in Part 1.

Part 4: Structured Descriptions Users are shown a shape and asked to label the

shape, using two separate text boxes. The first text box instructs, “List all

of the simple geometric shapes in the shape shown. Create names for each of

them of the form line1, line2, circle1, arc1.” The second text box instructs,

“Using the names you just created above, describe the relationships between

the components.”

Users were asked to speak the shape description before typing it because we were

concerned that users would simply read their typed description, if asked to type and

then speak. In the Novice task, users were unaffected by others’ descriptions, and,

thus, more likely to use more natural language. However, the drawing task gives

the users a better idea of the precision necessary in the description, so others can

reproduce the drawing based on a description.

Although we expect that users of our language (a.k.a., developers of a sketch

interface) will include experts in graphics-based fields in computer science, we do not
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want this to be a requirement for use. We expect the developers to be competent in

the domain for which they are generating a sketch recognition system, and we expect

them to be power computer users, but not necessarily computer programmers. In

this study, we included computer programmers and non-computer programmers to

mimic the intended user population.

Vocabulary

In determining how people naturally described shapes, we wanted to answer the ques-

tions: 1) Does people’s shape description vocabulary align with Gestalt perceptual

principles? 2) What other principles are prevalent in the common shape description

vocabulary?

The subjects used 1,203 distinct words in their 520 descriptions, comprised of 209

spoken and 311 typed descriptions. The descriptions came to 19,345 total word in-

stances, of which 766 words, totaling 18,906 instances, were used more than once. We

labeled each of the words used in terms of how they were used within the description.

The possible labels were: stop word (e.g., “the,” “a,” “those”), non-meaningful vari-

able label (e.g., “a1,” “s1”), language concept (instances of words, or their synonyms,

of concepts in the Gestalt-based language vocabulary, including shapes, constraints,

key-words, and other concepts describable within the capabilities of the language), ev-

eryday non-geometrical objects (e.g., golden arches, shield, coffin, bridge), and other

concepts (concepts not describable in the language, such as “like” or “about”).

Users tended to describe shapes using the concepts from the Gestalt principles

discussed above; of these 18,906 instances, 8,992 were language concepts, 8,375 were

instances of stop words or non-meaningful variable labels, 541 instances were non-

geometrical objects and 998 instances (of 75 distinct words) were other concepts not

included in the vocabulary. Table 4.1 lists the 14 most commonly used concepts not

found in the LADDER vocabulary (totaling 718 out of the 998 instances) used more

than 15 times.
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Word Frequency Word Frequency
about 77 slightly 28

as 66 inch 24
like 53 looks 24
but 45 both 22

other 36 towards 20
rotated 35 upside 18

way 32 along 18

Table 4.1: Word frequency for concepts not in the language.

The 998 instances of the 75 missing concepts were mostly concepts for describing

how one shape was similar to another, followed by descriptions of how it was different.

(Examples of how these missing concepts were used include: “this looks like X, except

for...” or “this is about the same Y as X, but rotated...”).2 Similarities seemed to be

a natural way for humans to describe shapes. This method of description agrees with

the perception rule that people like to group similar things.

It would seem that the ability to refer to and extend upon other shapes is an

important feature of a language, as users, several times, referred to previous shapes

that they had described, despite a specific instruction not to (because descriptions

were shown in a random order in Part 23).

When examining the shape primitives that people used, we noticed that people

made extensive use of orientation-dependent terms such as “horizontal” and “verti-

cal,” using such phrases as “horizontal rectangle” or “horizontal equilateral triangle.”

Users also used orientation when referring to subcomponents of a shape, e.g., “lower-

right corner.”

We found it interesting that users were consistent and used the same word re-

peatedly to describe a concept, both within their own descriptions and with others’

2Note that rotated in this list was used not to say that a shape is rotatable, a concept that does
exist in the language, but, rather, to describe an alteration: “this looks like X, but rotated on its
side.” This example emphasizes that we feel that how the word was used is at least as important
as, if not more than, the choice of the word itself.

3In cases in which users did refer to previous shapes, we included the descriptions of those shapes
during the drawing task to allow other users to still be able to reproduce the shapes.
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descriptions, showing the existence of a shared shape vocabulary. The extensive use

of orientation-dependent descriptions showed the value of orientation-dependent con-

straints, including: above, below, right, left, horizontal, vertical. Also,

some shapes had an implied orientation, and users would comment on the orientation

only when it was different from expected, e.g., “a sideways e.”

Users were instructed not to use non-geometrical words (such as everyday objects

from their lives) and to limit themselves to a graphical vocabulary. Despite this

instruction, 541 instances of non-geometrical words still occurred (e.g., golden arches,

shield, coffin, bridge). They used non-geometrical words more frequently when the

diagram was more cluttered, seemingly using them to simplify the description (similar

to the idea of using hierarchical descriptions). Curiously, they sometimes would use

non-geometrical words even if there were no clear way to draw the object from the

word (e.g., the word “bridge” for the shape “][”).

Typing Versus Speaking

In determining how people naturally describe shapes, we wanted to see whether people

used a different vocabulary when describing shape orally as compared to describing

shapes textually. Thus, we had users do both.

We found that users’ oral language is not markedly differently from their type-

written langauge. All but four users tended to type what they spoke, even when the

description was quite long and difficult to remember. Of the words that were used

only in speech or only in typing, none were used more than seven times each. Of those

used more than four times, all were labels (e.g., “s”), typed misspellings (e.g., “diag-

nol”), typed shorthand (e.g., “1/3” versus “one-third”), or stop words (e.g., “what,”

“guess”) that were not present in a typed description. The four users who did not

type and speak the description similarly were computer science researchers. They

tended to type descriptions similar to those they learned in other graphical languages

(e.g., “box w 2 h 1”).
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We also wanted to test whether context was more prevalent in spoken descriptions

in which the user was interacting with a human as compared to interacting with a

computer. We found that this was not the case; subjects used the same number

of context words in both the spoken and the typed sections. In fact, the number

was smaller for spoken descriptions (2.93% for spoken and 3.02% for typed), but not

significantly so.

Experience

We wanted to see whether experience changed people’s vocabulary. We found that,

while mostly the same words were used in both the Novice and the Experienced

section, the number of instances did change for those words. Of the words that were

only used in one section, only one word was used more than 9 times: “some” was

used 14 times in the Novice section, but never in the Experienced section.

Users definitely seemed to improve their descriptions in the second section. In the

Novice section, users often would falter with how to describe something, pausing for a

long time before beginning. The descriptions in the Novice section were often convo-

luted. Between the Novice and Experienced section, users would read other people’s

descriptions and attempt to draw their shapes; after seeing others’ descriptions, they

often would pick a simpler way to describe something, and their descriptions would

be much easier to understand. A common example was the “horizontal rectangle,”

which was described in the Novice section in such convoluted ways as “It’s a quadri-

lateral with two pairs of lengths, two different pairs of lengths. Each pair is congruent

in length.” In the Experienced section, however, it would almost always be described

as a “horizontal rectangle” or “a rectangle wider than it is tall.”

If we compare the number of occurrences of a word in the Novice section versus

the Experienced section, we can observe the changes in word choice. If we take the

absolute difference of the number of occurrences in each section, there are 8 words

that have an absolute difference of 40 instances or more. Of these 8 words, all of
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them were much more frequent in the Experienced section, displaying a convergence

to a single shared vocabulary. It suggests that, at the beginning, various words were

used to describe a concept until the appropriate word was found, and then that word

was used repeatedly. To give an example, “horizontal” was used 68 more times in the

Experienced section than in the Novice section, which was a three-fold increase from

31 occurrences in the Novice section to 99 occurrences in the Experienced section.

This was the largest factor of increase in those 8 words.

Since users were able to find the appropriate word choice more quickly, we ex-

pected that the Experienced descriptions would contain fewer words. However, the

Experienced descriptions were longer, containing 7 more words per description on

average (28.46 versus 35.4). Although users described concepts more concisely, they

often added words to describe other parts of the shape more precisely.

Language Faults Exhibited

The language implementation allows developers to describe similarities at a primitive

level (e.g., equalSize, parallel). It also allows for comparison to a previous shape

only when the difference with the existing shape is an addition; this is made possible

by the ability to describe shapes hierarchically (e.g., “similar to the shape before,

but with an extra line”). It also allows developers to describe geometrical context

(geometric relations based on other shapes on the screen, e.g., this shape is bigger

than that shape), but not cultural context.

However, the importance of allowing descriptions to include similarities to other

shapes as well as non-geometrical cultural contextual clues was obvious given the

results of this research. For the class of shapes that we have handled, so far, this

has not been a problem, but it certainly could be, given how prevalent it was in the

user study conducted. Both techniques could prove to be valuable additions to the

language and an interesting research problem. In order to allow developers to describe

shapes in terms of everyday cultural objects, we would have to 1) define each of the
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Figure 4-6: A wide variety of shapes have been described using the language.

objects that may be used in a description and 2) come up with a similarity metric

for comparing them. Given the number of objects in our everyday lives, this is a

difficult task. We suggest that a common-sense database, such as OpenMind[205],

for accessing everyday objects, might help in implementing this technique.
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4.2.3 Broad Language

To ensure that the language was broad enough to support a wide range of domains,

we described a variety of shapes in many different domains, including:

• UML class diagrams

• UML sequence diagrams

• mechanical engineering

• circuit diagrams

• Tic Tac Toe

• Banesh dance notation

• sheet music notation

• block letters

• flow charts

• finite state machines

• graphical models

• an abbreviated version of course of action diagrams

Figure 4-6 shows a sampling of some of the shapes described in the language.

4.3 LADDER Building Blocks

The language contains predefined shapes, constraints, editing behaviors, and a syntax

for combining them. A domain description is specified by a list of the shapes and shape

descriptions for each shape in the domain. Figure 4-8 shows an example description
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for the OpenArrow drawn in Figure 4-7. The description of a shape contains a list

of components (the elements from which the shape is built), geometric constraints on

those components, a set of aliases (names that can be used to simplify other elements

in the description), editing behaviors (how the object should react to editing gestures),

and display methods indicating what to display when the object is recognized.

The power of the language is derived, in part, from carefully-chosen predefined

building blocks, including the predefined shapes, constraints, display mechanisms,

and editing behaviors.

Figure 4-7: An arrow with an open head.
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define shape OpenArrow

description "An arrow with an open head"

components

Line shaft

Line head1

Line head2

constraints

coincident shaft.p1 head1.p1

coincident shaft.p1 head2.p1

coincident head1.p1 head2.p1

equalLength head1 head2

acuteMeet head1 shaft

acuteMeet shaft head2

aliases

Point head shaft.p1

Point tail shaft.p2

editing

trigger holdDrag shaft

action

translate this

setCursor DRAG

showHandle MOVE tail head

trigger holdDrag head

action

rubberBand this head tail

showHandle MOVE head

setCursor DRAG

trigger holdDrag tail

action

rubberBand this tail head

showHandle MOVE tail

setCursor DRAG

display original-strokes

Figure 4-8: The description for an arrow with an open head
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4.3.1 Predefined Shapes

The language includes the primitive shapes Shape, Point, Path, Line, Curve,

Arc, Ellipse, Spiral, and Text,4 as well as a library of predefined shapes built

from these primitives, including Rectangle, Diamond, and Triangle. (For ex-

ample, the shape definition OpenArrow in Figure 4-3 is built from three lines.) We

chose these primitive shapes, as they were sufficient to describe all of the shapes we

came across in the wide variety of domains examined.

The language uses an inheritance hierarchy; Shape (a language keyword) is an ab-

stract shape which all other shapes extend. Shape provides a number of components

and properties for all shapes, including boundingBox, centerpoint, width, height, minx,

maxx, miny, maxy, x, y, size, and time. Each predefined shape may have additional

components and properties; a Line, for example, also has p1, p2 (the endpoints),

midpoint, length (used instead of size for lines). Components and properties for a

shape can be used hierarchically in shape descriptions. When defining a new shape,

the components and properties are those defined by Shape, and those defined by the

components and aliases section. The accessible properties of the primitive shapes are

predefined in the language’s syntax.

Because LADDER is hierarchical, any defined shape can be used as a component of

other shape descriptions. Thus, as we define more shapes, we form a library of shapes

to be shared across domains. The predefined shapes and their accessible properties

are listed in Appendix A.1.

4.3.2 Predefined Constraints

New shapes are defined in terms of previously-defined shapes and the constraints

between them. For instance, the OpenArrow shape description in Figure 4-3 con-

4Text is entered through the keyboard or through the handwriting recognizer input pad built
into the Windows Tablet PC operating system.
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tains the constraint (acuteMeet head1 shaft), which indicates that head1 and

shaft meet at a point and form an acute angle in a counter-clockwise direction from

head1 to shaft. (Angles are measured in a counter-clockwise direction.) The other

constraints ensure that all of the lines meet at one point, and that the lines forming

the heads of the arrow are the same length.

A number of predefined constraints are included in the language, such as perpen-

dicular. The orientation-dependent constraints include horizontal, vertical,

negSlope, posSlope, above, leftOf, horizAlign, vertAlign, points-

Down, pointsLeft, pointsRight, and pointsUp. The orientation-independent

constraints include: acute, acuteDir, acuteMeet, bisects, coincident, col-

linear, concentric, connects, contains, drawOrder, equalAngle, eq-

ualArea, equalLength, intersects, larger, longer, meets, near, ob-

tuse, obtuseDir, obtuseMeet, onOneSide, oppositeSide, parallel, per-

pendicular, and sameSide.

The vocabulary also includes equal, greaterThan, and greaterThanEqual,

allowing the developer to compare any two numeric properties of a shape (e.g., stating

that the height is greater than the width). The constraint modifiers, or and not,

are also present to allow the developer to describe more complicated constraints.

The vocabulary also contains a number of constraints that can be composed from

other constraints. We include these constraints to simplify descriptions and to make

them more readable. They include: smaller, below, rightOf, aboveLeft,

aboveRight, belowLeft, belowRight, centeredAbove, centeredBelow,

centeredLeft, centeredRight, centeredIn, lessThan, lessThanEqual.

A more detailed explanation (including the predefined constraints and their argu-

ments) is listed in Appendix A.2.
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4.4 Predefined Editing Behaviors

When defining a new editing behavior particular to a domain, there are two things

to specify: the trigger – what signals an editing command – and the action – what

should happen when the trigger occurs. The language has a number of predefined

triggers and actions to aid in describing editing behaviors.

LADDER provides the ability to describe editing gestures so that the recognition

system can discriminate between sketching (pen gestures intended to leave a trail of

ink) and editing gestures (pen gestures intended to change existing ink), and because

editing behaviors are different in different domains.

Although we do encourage standardization between different domains by including

some predefined editing behaviors, it is important to allow the developer to define her

own editing behaviors for each domain. The same gesture, such as writing an “X”

inside of a rectangle, may be intended as a pen stroke in one domain (a check inside

of a checkbox, or the letter “X” in a textbox) or as an editing command (deletion of

the box) in another domain.

Depending on the domain, a LADDER description might define an “X” as a

drawing gesture or a deletion gesture. For example, the domain Tic Tac Toe listed

in Appendix B defines a Cross as a drawable shape in its domain. Because it is a

drawable shape in the domain, we do not allow the “X” to also signify deletion, as

it could cause confusion. However, since the UML class diagrams domain does not

commonly include an “X,” the developer is free to define the “X” to signify deletion,

rather than defining it as a new shape. In this case, we add an editing behavior to

signify that “X” should delete a shape (using the trigger: drawOver Cross this

and action: delete this).

In order to encourage interface consistency, the language includes a number of

predefined editing behaviors, described using the predefined actions and triggers.

One such example is the editing behavior dragInside, which indicates that if one
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holds the pen for a brief moment inside the bounding box of a shape, and then starts

to drag the pen, the entire shape automatically translates along with the motion of

the pen. Another example is the editing behavior ScribbleDelete, which states

that if one scribbles over the strokes of a shape, that shape will be deleted. To turn

on these editing behaviors, the developer must add them to the shape’s description

itself.

The arrow definition in Figure 4-9 defines three editing behaviors. The first editing

behavior says that if one clicks and holds the pen over the shaft of the Arrow when

dragging the pen, the entire Arrow will translate, along with the movement of the

pen. The second editing behavior states that if one clicks and holds the pen over

the head of the arrow, the head of the arrow will follow the motion of the pen,

but the tail of the arrow will remain fixed and the entire Arrow will stretch like a

rubber band (translating, scaling, and rotating) to satisfy these two constraints and

to keep the Arrow as one whole shape. The third is similar to the second, defining

rubber-banding over the tail. All of the editing behaviors also change the appearance

of the pen’s cursor and display moving-handles to the sketcher to indicate an editing

command.
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define shape OpenArrow

description "An arrow with an open head"

components

Line shaft

Line head1

Line head2

constraints

coincident shaft.p1 head1.p1

coincident shaft.p1 head2.p1

coincident head1.p1 head2.p1

equalLength head1 head2

acuteMeet head1 shaft

acuteMeet shaft head2

aliases

Point head shaft.p1

Point tail shaft.p2

editing

trigger holdDrag shaft

action

translate this

setCursor DRAG

showHandle MOVE tail head

trigger holdDrag head

action

rubberBand this head tail

showHandle MOVE head

setCursor DRAG

trigger holdDrag tail

action

rubberBand this tail head

showHandle MOVE tail

setCursor DRAG

display original-strokes

Figure 4-9: The description for an arrow with an open head
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The possible editing actions include wait, select, deselect, color, delete,

translate, rotate, scale, resize, rubberBand, showHandle, and setCur-

sor. To give an example, (rubberBand shape-or-selection fixed-point move-point

[new-point]) translates, scales, and rotates the shape-or-selection so that the fixed-

point remains in the same spot, but the move-point translates to the new-point. If

new-point is not specified, then move-point translates according to the movement of

the mouse. rubberBand is used in the editing definition in Figure 4-9.

The possible triggers include: click, doubleClick, hold, holdDrag, draw,

drawOver, scribbleOver, and encircle. Possible triggers also include any ac-

tion listed above, to allow for “chain reaction” editing. “Chain reaction” editing

allows the developer to use a triggered action to also trigger another action.

Shape groups also allow designers to define “chain reaction” editing behaviors. For

instance, the designer may want to specify that when we move a rectangle, if there is

an arrow head inside of this rectangle, the arrow should move with the rectangle.

The language has a number of predefined triggers and actions to aid in describing

editing behaviors. The possible triggers include all of those listed in Appendix A.3.1,

as well as all of the actions listed in Appendix A.3.2, allowing for “chain-reaction”

editing.

4.4.1 Predefined Display Methods

An important part of a sketching interface is controlling what the sketcher sees after

shapes are recognized. Altering the display can help to beautify the document and

serve as a feedback mechanism illustrating that the shape has been recognized. The

designer can specify either that the original strokes should remain, that a cleaned-up

version of the strokes should be displayed, that the constraints should be solved and

the ideal shape should be shown, or that the strokes should be replaced entirely with

Java swing shapes or the contents of an image file. In the cleaned-up version, the

149



original stroke segments are fit to their recognized straight lines, clean curves, clean

arcs, or perfect ellipses.

LADDER also can display the ideal version of the strokes, in which all constraints

are solved using MATLAB. For example, lines that are supposed to connect at their

endpoints are connected, and lines that are supposed to be parallel are made parallel.

In the ideal version of the strokes, all of the signal noise (defined in Section 5.1.1)

arising from sketching is removed.

It may be that we do not want to show any version of the strokes at all, but

want to display some other picture. In this case, we can either place an image at a

specified location, size, and rotation (using the method image), or we can create a

picture built out of predefined shapes, such as circles, lines, and rectangles.

The predefined display methods and their arguments are listed in Appendix A.3.3.

4.5 Syntax for Defining a Domain Description

This section describes the syntax of a domain description. As an illustrative example,

we will walk through the creation of a domain description for UML (Unified Modeling

Language) [37]. The Appendix B shows this and other domain descriptions in their

entirety. We refer to several examples in the UML class diagram domain description

throughout this chapter. UML is chosen here for its simplicity (few shapes) and so-

phistication (similar shapes, several display and editing option) for easier explanation

of the language. However the Appendix B lists several more complicated examples

for perusal.

Recall that to create a domain description, one must specify the list of shapes and

shape interactions in the domain. One also must specify how each of the shapes and

its interactions are drawn, displayed, and edited.
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4.5.1 Domain List

The functional shapes in a UML class diagram are listed below. The name of the

shape is followed by a geometric description in parenthesis.

• UML Class (represented by a rectangle)

• UML Interface (represented by a circle)

• UML Interface Association (represented by a line)

• UML Dependency Association (represented by a open-headed arrow - the arrow

shaft can be solid or dashed)

• UML Aggregation Association (represented by a diamond-headed arrow)

• UML Inheritance Association (represented by a triangle-headed arrow)

The system requires a similar listing of the domain shapes. The domain list

for UML class diagrams is shown in Figure 4-10. This listing is saved in an .ldl file

(LADDER Domain List) and includes all of the functional shapes used in the domain,

as well as any geometrical or abstract shapes used to build those shapes. Primitives

do not need to be included in this list.

If we want, we also can specify how many times a domain object is expected to

occur in a particular sketch in the domain. For example, in mechanical engineering,

every diagram is expected to contain, at most, one symbol for gravity, and, in electrical

engineering, every electrical circuit has at least one ground. We can specify this in

our domain list by adding one of the following wildcards after the shape name:

• * : specifying that a domain object can occur any number (0 or more) of times

in the domain

• positive integer n : specifying that a domain object will occur n times in the

domain
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define domain UML

AbstractArrow

OpenArrow

TriangleArrow

DiamondArrow

DashedLine

DashedArrow

Rectangle

DependencyAssociation

AggregationAssociation

InheritanceAssociation

InterfaceAssociation

AbstractAssociation

InterfaceClass

GeneralClass

AbstractClass

Figure 4-10: The domain listing of shapes for UML class diagrams.

• a positive integer n followed by a plus sign (+) : specifying that a domain object

will occur n or more times in the domain

• a positive integer n followed by a minus sign (-) : specifying that a domain

object will occur n or fewer times in the domain

• nothing : same as *

• + : same as 1+

• - : same as 1-

If a shape that violates this requirement is drawn, it is not recognized. If the

developer would prefer that the shape be recognized, even if this constraint is violated,

the developer should not include the constraint. For instance, if a sketcher draws two

gravity arrows, but only one is allowed, the developer may want both of them to be

recognized and remove the wildcard. However, since the same symbol (a downward

arrow) could also represent a downward force for a particular object, the developer

may choose to enforce this requirement with a wildcard, leaving it as an unrecognized
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and unfinished force that is waiting for a physical body to push. (Note that, in

practice, we usually have chosen not to use these features. There has not been

evidence, thus far, that these features are useful. In fact, strictly constraining the

user can prevent some alternate interpretations. For example, this may cause the

problem that if the first downward arrow drawn is awaiting a body to push, then

the second downward arrow is for gravity. In certain circumstances, the system may

recognize the first as gravity, and then leave the second unrecognized, even when the

body was added to the first.)

4.5.2 Shape Definition

New shapes are defined in terms of previously-defined shapes and the constraints

between them. Figure 4-9 shows a shape definition for an OpenArrow. Figure 4-11

shows a shape definition for a TriangleArrow built from the OpenArrow. The

definition of a shape consists of seven sections. All sections are optional except the

components section.

1. The description contains a textual description of the shape. For example, the

description of the TriangleArrow in Figure 4-11 is “an arrow with a triangle-

shaped head.”

2. The is-a section specifies any class of abstract shapes that the shape may be a

part of. This is similar to the extends property in Java. All shapes extend the

abstract shape Shape. This section may be excluded if the shape only extends

Shape.

3. A list of components specifies the elements from which the shape is built. Note

that the OpenArrow is built from 3 lines. The TriangleArrow in Figure 4-

11 is built from the OpenArrow from Figure 4-9 and a Line. Components

can be accessed hierarchically. For example, the TriangleArrow accesses

the shaft of its OpenArrow component with the statement oa.shaft.
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4. Geometric constraints define the relationships on those components. The Ope-

nArrow shape definition requires that the head1 and shaft meet at a single

point and form an acute angle from line head1 to line shaft when traveling

in a counter-clockwise direction.

The constraints section can specify both hard constraints, such as the one listed

above, and soft constraints, which are specified by the keyword soft. Hard

constraints are always satisfied in the shape, but soft constraints may not be.

Soft constraints can aid recognition by specifying relationships that usually

occur. For instance, in Figure 4-11, the shaft of the arrow is commonly drawn

before the head of the arrow, but the arrow still should be recognized, even

if this constraint is not satisfied. All constraints are hard constraints unless

specified otherwise.5

5. A set of aliases is used to simplify this description and descriptions built using

this description to rename properties and shapes for ease of use later. Both the

OpenArrow and TriangleArrow descriptions have added aliases for the

head and tail to simplify the task of specifying editing behaviors.

6. Editing behaviors specify the editing gesture triggers and how the object should

react to these editing gestures. The TriangleArrow definition specifies three

editing behaviors: dragging the head, dragging the tail, and dragging the entire

arrow. Each editing behavior consists of a trigger and an action. Each of the

three defined editing commands is triggered when the sketcher places and holds

the pen on the head, tail, or shaft, and then begins to drag the pen. The actions

for these editing commands specify that the object should follow the pen either

in a rubber-band fashion for the head or tail of the arrow or by translating the

entire shape.6

7. Display methods indicate what is to be displayed when the shape is recognized.

5Soft constraints are not currently supported by the implemented recognition system.
6Rubber-banding allows sketchers to simultaneously rotate and scale an object, assuming a fixed

rotation point is defined [74]. This action has proved useful for editing arrows and other linking
shapes.
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A shape or its components may be displayed in any color in four different

ways: 1) the original strokes of the shape, 2) the cleaned-up version of the

shapes, where the best fit primitives of the original strokes are displayed, 3)

the ideal shape, which displays the primitive components of the shape with

the constraints solved, or 4) another custom shape that specifies which shapes

(line, circle, rectangle, etc.) or images (jpg, gif) to draw and where. The

TriangleArrow definition specifies that the arrow should be displayed in

the color red and drawn using cleanedStrokes (i.e., using straight lines in

this case).
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define shape TriangleArrow

description "An arrow with a triangle-shaped head"

is-a Shape

components

OpenArrow oa

Line head3

aliases

Line shaft oa.shaft

Line head1 oa.head1

Line head2 oa.head2

Point head oa.head

Point tail oa.tail

constraints

coincident head3.p1 head1.p2

coincident head3.p2 head2.p2

soft draw-order shaft head1

soft draw-order shaft head2

editing

trigger holdDrag shaft

action

translate this

trigger holdDrag head

action

rubberBand this head tail

trigger holdDrag tail

action

rubberBand this tail head

trigger scribble shaft

action

delete this

display

cleanedStrokes

color red

Figure 4-11: The description for an arrow with a triangle-shaped head.
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Hierarchical Shape Definitions

To simplify shape definitions, shapes can be defined hierarchically. Note that the

TriangleArrow in Figure 4-13 is composed of an OpenArrow and a Line. By

defining shapes hierarchically, we can define complicated shapes more simply. For

example, once the developer has defined the TriangleArrow, she can create higher-

level shapes, using this newly-defined TriangleArrow as a component.

Abstract Shape Definitions

In the domain of UML class diagrams, there are three different types of associations

represented by four different types of arrows: an arrow with an open-headed arrow

with a solid shaft (dependency association), an open-headed arrow with a dashed shaft

(dependencey association), an arrow with a triangle head and a solid shaft (inheri-

tance association), and an arrow with a diamond head and a solid shaft (aggregation

association). All of these arrows have the same editing behaviors. Rather than repeat

the editing behaviors four times, we, instead, create an AbstractArrow (shown in

Figure 4-12, which specifies the repeated editing behaviors). The is-a section, used

in Figure 4-11, specifies any class of abstract shapes that the shape may be a part of.

This is similar to the extends property in Java. All shapes extend the abstract shape

Shape. Abstract shapes have no concrete shapes associated with them; they repre-

sent a class of shapes that have similar attributes or editing behaviors. An abstract

shape is defined similarly to a regular shape, except that it has a required section

instead of a components section. Each shape that extends the abstract shape must

define each variable listed in the required section in its components or aliases section.
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define abstract-shape AbstractArrow

required

Point head

Point tail

Line shaft

editing

trigger holdDrag shaft

action

translate this

setCursor DRAG

showHandle MOVE tail head

trigger holdDrag head

action

rubberBand this head tail

setCursor DRAG

showHandle MOVE head

trigger holdDrag tail

action

rubberBand this tail head

setCursor DRAG

showHandle MOVE tail

trigger scribble shaft

action

delete this

display

cleanedStrokes

color red

Figure 4-12: The description for the abstract class AbstractArrow.
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define shape TriangleArrow

is-a AbstractArrow

description "An arrow with a triangle-shaped head"

components

OpenArrow oa

Line head3

aliases

Line shaft oa.shaft

Line head1 oa.head1

Line head2 oa.head2

Point head oa.head

Point tail oa.tail

constraints

coincident head3.p1 head1.p2

coincident head3.p2 head2.p2

soft draw-order shaft head1

soft draw-order shaft head2

Figure 4-13: A shortened description for a TriangleArrow by taking advantage
of properties from AbstractArrow.
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Shape Context

We also can use surrounding shapes to provide context so that we may more effec-

tively recognize shapes in a domain. For example, in mechanical engineering, both

forces and gravity are represented by arrows. However, forces are drawn to push a

particular body (a mechanical engineering term describing a physical mass), whereas

gravity is not. Figure 4-14 defines Force as an arrow, but the definition also gives

contextual information to imply that not all arrows are Forces. Rather, the shape

definition indicates that the Arrow must be pushing a Body (where we define push-

ing geometrically to mean that the head of the arrow touches the body). We use the

keyword context to emphasize that the context shape (the Body shape in our exam-

ple) indicated in the definition is not part of the complete shape (the Force in our

example), but simply provides contextual information to aid recognition.

We also can use shape context to describe how shapes interrelate in order to define

“chain reaction” editing behaviors, which allow the editing of one shape to trigger

the editing of another. For instance, in Figure 4-14, when we move a Body, we want

the Force to move, as well.

define shape Force

description "An arrow is a force only if the arrow head is

pushing an object."

components

Arrow force

context Polygon body

constraints

meet force.head body

editing

trigger dragHold body

action

move force

Figure 4-14: The definition of a Force in mechanical engineering, which uses contex-
tual information.
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Vectors

The arrow defined in Figure 4-9 contains a fixed number of components (3). How-

ever, many shapes that we would like to define, such as a Polygon, Polyline, or

DashedLine, contain a variable number of components. A PolyLine may contain

a variable number of line segments. A variable number of components is specified by

the keyword vector ; the keyword must be accompanied by a specification of the mini-

mum and the maximum number of components allowed in the shape. If the maximum

number can be infinite, the variable n is listed. For instance, the PolyLine must

contain at least two lines, and each line must be connected with the previous. The

definition of a Polygon easily follows from the definition of the PolyLine (both

are defined in Figure 4.5.2).

(define shape PolyLine

(components (vector Line vl[2,n]))

(constraints (coincident vl[i].p2 vl[i+1].p1))

(aliases (Point head vl[0].p1)(Point tail vl[n].p2)))

(define shape Polygon

(components(PolyLine poly))

(constraints(coincident poly.head poly.tail)))

Figure 4-15: Shape description of a polygon.

Likewise, a DashedArrow is made from an Arrow and a Dashedline (both

defined in Figure 4-16), which, in turn, contains at least two line segments. When

given a third argument specifying a length, the constraint near states that two points

are near to each other, relative to a given length.
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define shape DashedLine

components

vector Line vl[2,n]

constraints

collinear vl[i].p1 vl[i].p2 vl[i+1].p1

not intersect vl[i] vl[i+1]

near vl[i].p2 vl[i+1].p1 vl[i].length

aliases

Point head vl[0].p1

Point tail vl[n].p2

define shape DashedOpenArrow

components

OpenArrow oa

DashedLine dl

constraints

near oa.tail dl.head oa.shaft

aliases

Point head oa.head

Point tail dl.tail

Figure 4-16: Description of a dashed line and a dashed open arrow.

4.6 Limitations

4.6.1 LADDER Limitations

LADDER can be used to describe a wide variety of shapes, but we are limited to the

following class of shapes:

• LADDER can only describe shapes with a fixed graphical grammar. The shapes

must be drawn using the same graphical components each time. For instance, we

cannot describe abstract shapes, such as people or cats, that would be sketched

in an artistic drawing.

• The shapes must be composed solely of the primitive constraints contained in

LADDER and must be differentiable from the other shapes in the language

using only the constraints available in LADDER.
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• Pragmatically, LADDER can only describe domains that have few curves or

where the curve details are not important for distinguishing between different

shapes. Curves are inherently difficult to describe in detail because of the diffi-

culty in specifying a curve’s control points. Future work includes investigating

more intuitive ways of describing curves [24] [25].

• Likewise, LADDER can only describe shapes that have a lot of regularity and

not too much detail. If a shape is highly irregular and complicated, so that

it cannot be broken down into subshapes that can be described, it will be

cumbersome to define.

4.6.2 Curves

Curves are inherently difficult to describe in detail because of the difficulty in specify-

ing a curve’s control points. Future work should include investigating more intuitive

ways of describing curves.

4.6.3 Language Faults Exhibited in the User Study

The language implementation allows developers to describe similarities at a primitive

level (e.g., equalSize, parallel). It also allows for comparison to a previous shape

only when the difference with the existing shape is an addition; this is made possible

by the ability to describe shapes hierarchically (e.g., “similar to the shape before,

but with an extra line”). It also allows developers to describe geometrical context

(geometric relations based on other shapes on the screen, e.g., this shape is bigger

than that shape), but not cultural context.

However, the importance of allowing descriptions to include similarities to other

shapes as well as non-geometrical cultural contextual clues was obvious given the

results of this research. For the class of shapes that we have handled, so far, this

has not been a problem, but it certainly could be, given how prevalent it was in the
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user study conducted. Both techniques could prove to be valuable additions to the

language and an interesting research problem. In order to allow developers to describe

shapes in terms of everyday cultural objects, we would have to 1) define each of the

objects that may be used in a description and 2) come up with a similarity metric

for comparing them. Given the number of objects in our everyday lives, this is a

difficult task. We suggest that a common-sense database, such as OpenMind[205],

for accessing everyday objects, might help in implementing this technique.
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Chapter 5

GUILD (Generator of User

Interfaces from a LADDER

Description) Recognition System

Once we have a domain description, we need to translate that into a user interface for

that domain. This researcher built a system called GUILD (Generator of User Inter-

faces from a LADDER Description) that automatically creates a sketch recognition

system from a LADDER domain description.

A LADDER domain description must be translated into shape recognizers (from

the components and constraints sections), exhibitors (from the display section), and

editors (from the editing section) that recognize, edit, and display each domain shape

within the generated domain user interface.

The translation process is analogous to work done on compiler compilers, in par-

ticular, visual language compiler compilers by Costagliola et. al. [54]. A visual

language compiler compiler allows a user to specify a grammar for a visual language,

then compiles it into a recognizer which can indicate whether an arrangement of icons

is syntactically valid. The main difference between Costagliola’s work and ours is that
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1) ours handles hand-drawn images and 2) their primitives are the iconic shapes in

the domain, while our primitives are geometric.

5.1 Signal Noise

5.1.1 Signal Noise versus Conceptual Variations

By signal noise, we mean the unintentional deviations introduced into a shape by the

imprecision of hand control. For instance, when drawing a square, all four sides may

turn out to be of different lengths even though the sketcher meant for them to be the

same length. By conceptual variations, we mean the allowable variations in a symbol

that are drawn intentionally. For example, a capacitor in an electronic circuit may be

drawn as two parallel lines, or as one straight and one curved line (see Figure 5-1).

Figure 5-1: A capacitor can be drawn with two lines or a line and a curve.

In our system, signal noise is handled by the recognition system. For example,

the system can successfully recognize a quadrilateral with uneven sides as a square

because the equalLength constraint has some built-in tolerance (discussed below).

Thus, shapes should be described to the system without accounting for signal noise,

i.e., as if drawn perfectly (e.g., a square should be described as having equal length

sides). As the system does not automatically take into account the possible conceptual

variations (indeed, how could it?), they must be provided for in the shape descriptions.

Other signal errors include a sketcher intending to draw a single line, but using

several strokes to do so. In order for the system to deal with these phenomena,

it first joins lines by merging overlapping and connecting lines. Figure 5-2 shows
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Figure 5-2: Stages of square recognition; a) original strokes, b) primitive shapes, c)
joined/cleaned primitives, and d) higher-level recognition.

the steps that go into recognizing a square. Figure 5-2a shows the original strokes.

Figure 5-2b shows the original strokes broken down into primitives. The system has

recognized the strokes as lines or polylines; the figure shows the straightened lines

that were recognized by the recognition system. (The dots represent their endpoints.)

Figure 5-2c shows the primitives (line segments, in this example) joined together to

form larger primitives (again lines, in this example) using the merging techniques

described above. Figure 5-2d shows the higher-level recognition performed on the

recognized shapes; the method for this is described in the next section. A higher-

level shape can then use the square as one of its components.

5.2 Recognition

The current recognition system is based on an internal indexing system. It is an

improvement on two prior recognition/translation systems built by this researcher.
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5.2.1 Past Implementations

The first system generated Java classes for each shape’s recognizer, editor, and the

shape itself which specified its display capabilities. These Java classes did recognition

by examining different subset collections of shapes, checking whether that subset

could be an example of the desired shape. Constraints were recomputed for each

higher-level shape tested, and, thus, recognition using this method was not as fast

as it could be. However, the main problem with this method was that, if a small

change was to be made about how to recognize a shape (e.g., if a single constraint

was added), the entire system had to be shut down, and the code had to be recompiled

and restarted in order to reflect the change.

The second system generated Jess rules to perform recognition from a series of

bottom up opportunistic data driven triggers [82]. Figure 5-3 shows an example of a

Jess rule that was generated to recognize a TriangleArrow. If a shape consists of

a variable number of components such as a Polyline (as opposed to an arrow which

is composed of a fixed -3- number of components), the shape description is trans-

lated into two Jess rules, one recognizing the base case (a Polyline composed of two

lines) and the other recognizing the recursive case (a Polyline composed of a line

and a Polyline). The Jess-based system improved on the previous implementation

in that it took advantage of the Rete algorithm to perform quicker pattern matching

on shapes. Also, changes could be made to recognition rules (such as adding a new

shape to be recognized or modifying a current shape) in run time. While recognition

is initially quick using this system, the system slows down exponentially when unrec-

ognized strokes are added to the screen. After 30 unrecognized lines are added to the

screen, the system is so backed up that it seems to be indefinitely halted (i.e., more

than an hour to catch up).
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(defrule ArrowCheck

;; get three lines

?f0 <- (Subshapes Line ?shaft $?shaft_list)

?f1 <- (Subshapes Line ?head1 $?head1_list)

?f2 <- (Subshapes Line ?head2 $?head2_list)

;; make sure lines are unique

(test (uniquefields $?shaft_list $?head1_list))

(test (uniquefields $?shaft_list $?head2_list))

(test (uniquefields $?head1_list $?head2_list))

;; get accessible components of each line

(Line ?shaft ?shaft_p1 ?shaft_p2 ?shaft_midpoint ?shaft_length)

(Line ?head1 ?head1_p1 ?head1_p2 ?head1_midpoint ?head1_length)

(Line ?head2 ?head2_p1 ?head2_p2 ?head2_midpoint ?head2_length)

;; test constraints

(test (coincident ?head1_p1 ?shaft_p1))

(test (coincident ?head2_p1 ?shaft_p1))

(test (equalLength ?head1 ?head2))

(test (acuteMeet ?head1 ?shaft))

(test (acuteMeet ?shaft ?head2))

;;deleted code: get line with endpoints swapped

=> ;; FOUND ARROW (ACTION TO BE PERFORMED)

;; set aliases

(bind ?head ?shaft_p1)

(bind ?tail ?shaft_p2)

;; add arrow to sketch recognition system to be displayed properly

(bind ?nextnum (addshape Arrow ?shaft ?head1 ?head2 ?head ?tail))

;; add arrow to Jess fact database

(assert (Arrow ?nextnum ?shaft ?head1 ?head2 ?head ?tail))

(assert (Subshapes Arrow ?nextnum (union\$ \$?shaft_list

\$?head1_list \$?head2_list)))

(assert (DomainShape Arrow ?nextnum (time)))

;; remove Lines from Jess fact database for efficiency

(retract ?f0) (assert (CompleteSubshapes Line ?shaft \$?shaft_list))

(retract ?f1) (assert (CompleteSubshapes Line ?head1 \$?head1_list))

(retract ?f2) (assert (CompleteSubshapes Line ?head2 \$?head2_list))

;;deleted code: retract line with endpoints swapped

)

Figure 5-3: Automatically-generated Jess rule for the arrow definition shown on the
left side of Figure fig:recognition:translator.
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5.2.2 Motivation for Current Implementation

The current system is a major improvement in two ways. Translation from a shape

description to its recognizer is done internally, which means that when a new shape is

defined using the debugger (described in Chapters 9-11), the new shape is immediately

and seamlessly recognized in the recognition system without stopping the system and

recompiling, or requiring any other human intervention. 2) The new approach uses

an indexing algorithm to perform much faster recognition. It processes each stroke

as it is drawn and puts each stroke in a variety of indices (explained throughout the

rest of this chapter). These indices are used later for fast look up. This method is

much faster, and allows recognition to occur with almost no delay, even when many

unrecognized shapes lie on the screen and have to be considered to form higher-level

shapes.

Sketch recognition is the process of combining lower-level shapes on the screen to

create higher-level shapes. These higher-level shapes are defined by the subshapes of

which they are composed and constraints specifying how the subshapes fit together.

To recognize all higher-level shapes, the recognition system must examine every possi-

ble combination of subshapes, as well as every permutation of these subshapes. This

implies that any straightforward algorithm would take exponential time, which is

clearly impractical for any non-trivial sketch.

To combat this problem, other recognition systems have placed drawing require-

ments on the user [185] [150], such as requiring users to draw each shape in its entirety

before starting the next shape, or forcing users to draw each shape in a single stroke.

This produces an unnatural drawing style. Mahoney et. al. [157] have discussed the

inherent complexity involved in the structural matching search task. They reduce the

problem to a constraint satisfaction subgraph problem, but their solutions still take

an exponential time in practice.

Our goal is to make sketch systems as natural as possible by placing as few re-

quirements on the user as possible. In our experience, observing users sketch in a
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Figure 5-4: GUILD: The domain description (shown on the left side of the figure)
is translated into recognizers, exhibitors, and editors for each shape in the domain
(shown on the right side of the figure).

variety of domains, we have found that it is not uncommon for someone to draw part

of a shape, stop, continue drawing other objects in a diagram, and then come back

to finish the original shape. Figure 5-5 shows an example in mechanical engineering.

We have seen interspersing in software design, where UML class diagram designers

sometimes initially draw connections as simple dependency associations, until most

of the classes have been drawn, at which point they will have a better understanding

of the emerging design, and make a more informed decision about the type of asso-

ciation that would be appropriate between two objects. This will cause them to add

different kinds of arrowheads to the associations drawn earlier, producing an inter-

spersed sketch [99]. We have also witnessed interspersing in electrical engineering;

sketchers add voltage directions only after most of the circuit has been drawn.

One way to recognize interspersed drawings is to recognize shapes by how they

look, rather than how they were drawn. In order to recognize completed shapes, while
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Figure 5-5: Five snapshots in the design of a car on a hill in mechanical engineering.
Note that the top of the ground was drawn first, followed by the car base, to ensure
that they are parallel. Then wheels (which act as the connection between the car and
the ground) were added. The wheels were attached to the car only after the car was
completed. The first started object, the ground, was completed last since its purpose
in completion was more in terms of general functioning when attaching it to a CAD
system than in design.

still allowing incomplete, interspersed shapes, the recognition system must examine

all possible subsets of shapes, i.e., the power set of all of the shapes, S, on the screen,

which is, of course, exponential in |S| (the size of S, or the number of shapes on the

screen). Yet, we also want to keep interaction close to real-time.

Here, we describe our indexing technique for sketch recognition that examines

all 2|S| shape subsets when attempting to recognize new shapes, but uses efficient

indexing to keep recognition performance close to real-time. The technique takes

advantage of the LADDER constraint language to index each stroke efficiently for

quick access later. This document also reports timing data that supports the claim

that the recognition of new shapes can be kept close to real-time, even when all

possible shape subsets are considered.

Not only do we want to recognize shapes drawn in other orders, but previous

parts of this thesis motivated the need to recognize shapes by how they look, using

perceptual principles. Our algorithm takes advantage of the shape-based recognition,

indexing the geometrical properties of a shape, to provide a basis for indexing and,

thus, fast lookup.
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5.2.3 Constraint Tolerances

In our approach, signal error is handled by the shape recognizer by giving each con-

straint its own error tolerance, chosen to be as close as possible to perceptual tol-

erance, i.e., the tolerance that humans use. Human perceptual tolerance is context-

dependent, depending on both the shape in question and other shapes on the screen.

Table 5.2.3 shows constraints and the error tolerances chosen. Note that some con-

straints have an absolute tolerance, while others are relative. Some constraints have

a negative tolerance, which means the constraint has to be “blatantly true” in order

to be recognized. This ensures that a constraint is not only geometrically satisfied,

but also perceptually satisfied, meaning that humans will be able to perceive that the

constraint is true. For example, a shape that is to the left of another shape by one

pixel is geometrically to the left, but is not perceptually to the left, as it is difficult for

a human to perceive such a small distance; in this case five pixels. To ensure that a

constraint is perceptually satisfied, we add a buffer zone to the tolerance. Perceptual

error tolerances were determined empirically for horizontal, vertical, posSlope, and

negSlope (as shown in the previous chapter) or estimated from the Gestalt principles

described previously.

5.2.4 Indexing Algorithm

Recognition is done in three stages: 1) domain-independent primitive finding, 2)

domain-independent constraint indexing, and 3) domain-dependent shape formation.

Domain-Independent Primitive Finding

When a stroke is drawn (and has not been identified as an editing gesture as described

in Section 5.3), low-level recognition is performed on it. During processing, each

stroke is broken down into a collection of primitive shapes, including line, arc, circle,

ellipse, curve, point, and spiral, using techniques from Sezgin [194]. Corners used for
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CONSTRAINT UNIT TOLERANCE
horizontal angle 10 degrees
vertical angle 10 degrees
posSlope angle 35 degrees
negSlope angle 35 degrees
coincident x location 10 pixels
coincident y location 10 pixels
bisects x location (length / 4) pixels
bisects y location (length / 4) pixels
near x location 50 pixels
near y location 50 pixels
concentric x location (width / 5) + 10 pixels
concentric y location (width / 5) + 10 pixels
sameX x location 20 pixels
sameX width 20 pixels
sameY y location 20 pixels
sameY height 20 pixels
equalSize size (size / 4) + 20 pixels
parallel angle 15 degrees
perpendicular angle 15 degrees (of a 90 degree

difference)
acute angle 30 degrees (of a 45 degree

difference)
obtuse angle 30 degrees (of a 135 degree

difference)
contains min X,Y & max X,Y -5 pixels
above y location -5 pixels
leftOf x location -5 pixels
larger size -5 pixels

Table 5.1: Constraints and their error tolerances. (Note: size = length of diagonal
of bounding box. We use this formula instead of the area to enable us to compare
lines to two-dimensional shapes. Rubine also chose the same formula for comparing
the sizes of objects for one of his features. [185])
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segmentation are found, using a combination of speed and curvature data (as in Sezgin

[194]). By breaking strokes down into these primitives and performing recognition

with primitives, we can recognize the shapes that have been drawn using multiple

strokes, and handle situations in which a single stroke was used to draw multiple

shapes as long as the corners break the stroke appropriately (e.g., the top line in

Figure 5-6 cannot be broken to find the two squares).

Figure 5-6: This image was drawn with only three strokes. The system cannot
recognize the two squares because the top line cannot be split into three lines without
corner data.

If a stroke has multiple primitive interpretations, all interpretations are added to a

pool of interpretations, but a single interpretation is chosen for display. For example,

both the Line and Arc interpretation of the Stroke in Figure 5-7A will be added

to the pool for recognition using any of the interpretations.

Figure 5-7: Multiple interpretations and their identifiers are added to the recognition
pool. In A, Stroke 0 has two interpretations: Line 1 and Arc 2, each composed
from Stroke 0. In B, Stroke 0 can be broken down into three Strokes (1,2,3).
Stroke 0 has two interpretations: Curve 4, composed of Stroke 0 (and thus also
Strokes 1,2,3); and three lines: Line 5, composed of Stroke 1; Line 6, composed
of Stroke 2; and Line 7, composed of Stroke 3.

We want to ensure that the shape recognition system chooses only one interpre-

tation of a single stroke. In order to ensure that only one interpretation is chosen,
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each shape has an ID, and the appropriate bookkeeping is done to ensure that, while

multiple interpretations are kept while the system is working (i.e., recognizing), the

final displayed result contains only a single interpretation for each stroke.

In cases in which a stroke is determined to be composed of several primitives

(e.g., the Polyline interpretation in Figure 5-7B), the Stroke is segmented, and

the segmented substrokes added as components of the original full Stroke. Further

interpretations can use either the full stroke, as the Curve does in Figure 5-7B, or

one or more of the polyline-interpretation substrokes. This allows several shapes to

be drawn with a single stroke.

Domain-Independent Constraint Indexing

We would prefer to place as few drawing requirements as possible on the sketcher, and

must, as a consequence, find a way to deal with the exponential. While our solution

does not eliminate the exponential, we can use indexing to do a significant amount of

the computation ahead of time. Because the indexing of a shape is dependent only

on its own properties, the time it takes to index a specific shape is not exponential (it

is actually logarithmic in the number of shapes on the screen because several of the

properties are inserted into a sorted hash map). The indexing process occurs only

once for each shape: right after it has been recognized. The recognition process is

still exponential (as it must be if we are still to consider all possible subshapes), but,

in practice, it is very fast because most of the process has been moved to the indexing

pre-processing stage, which is not exponential.

When a new shape is recognized, the system computes its properties, including

its orientation, angle, location, and size. Each property has its own data structure,

permitting quick retrieval of shapes with the desired property value. For instance, the

angle data structure is used when searching for horizontal lines or lines of equal angle.

When a line is recognized, its angle is measured and categorized as “horizontal,”

“posSlope,” “vertical,” or “negSlope.” The category is used as the key for a hash
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map whose values are a linked list of shapes. This allows constant-time retrieval of

a list of all of the lines in a particular orientation. We also want to find parallel

lines, so exact angles are used to add the shape to a sorted map list. This allows for

a logarithmic-time retrieval of the list of lines that are close to a particular angle.

Since it is faster to retrieve shapes by their predefined category (e.g., “vertical”) than

by a angle range (e.g., 75-105 degree angles), the system chooses to do so whenever

appropriate.

Each shape and its accessible components are processing and indexed for: the

components’ possible name, type, angle, x, y, min-x, min-y, max-x, max-y, area,

height, width, and length. Appendix E shows what properties have been indexed

after the drawing of both a line and then an arrow to provide further details.

Domain-dependent Shape Formation

Once properties are computed and indexing has been done, the system tries to see

whether a higher-level shape can be made from this new shape and shapes already

on the screen. We need to check whether this new shape can be a part of any of the

shapes defined in the domain description. For each shape in the domain, the system

assigns the new shape to each possible slot component (i.e., each subshape). If there

are n domain shapes, and each shape S is composed of m components (C1 to Cm),

then the just processed shape is assigned to each slot separately in different shape

templates. Figure 5-8 shows an example. A newly interpreted line is added to the

system. The system checks to see whether the newly interpreted line can be used

to create any of the shapes in the domain. (In this example, we are checking only

the domain shape OpenArrow.) The system creates three templates, one for each

component of the OpenArrow of the correct type (in this case, a line), assigning

the just processed line to a different component to see whether an OpenArrow can

be formed with that component.1

1We state that there are three templates, for explanation simplicity, but, in actuality, when a
single line is drawn, the system creates six arrow templates. The recognition creates two copies of
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Figure 5-8: For each shape added to the system, the recognition system checks
whether the new shape can be a piece of any of the higher-level shapes recogniz-
able by the domain. This figure shows a new line added to the recognition system.
The system checks whether that line, combined with any of the shapes on the screen,
can form an arrow (one of the higher-level shapes in the domain). The system checks
whether the new line can be any of the three lines that compose an arrow and makes
a template for each of these possibilities.

The system then computes the function Lij = f(Si, Cj), which returns a list Lij

of shapes of type Si and the components that make up these shapes, which can be

formed with the just processed shape assigned to component Cj. For example, if the

domain description includes 10 shape descriptions, and OpenArrow is the third

description, then S3 = OpenArrow (as shown in Figure 5-9. An arrow has three

slots (one for each line). If the system puts the recently drawn shape into slot 1, then

C1 = shaft. Thus, Lij returns a list of all of the possible OpenArrows, with the

most recently drawn shape acting as the shaft of the stroke. The length of Lij may

be 0 (no such interpretations are possible), 1 (one interpretation is possible), or > 1

(multiple interpretations are possible; see Figure 5-10).

every line, one in each direction. (i.e., the second is equal to the first, with the endpoints flipped.)
Each directional line is assigned, one at a time, to each component of three arrow templates. This
is actually not a phenomenon applied specifically to lines, but, any group of multiple interpretations
using a single subshape.
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define shape OpenArrow

description "An arrow with an open head"

components

Line shaft

Line head1

Line head2

constraints

coincident shaft.p1 head1.p1

coincident shaft.p1 head2.p1

coincident head1.p1 head2.p1

equalLength head1 head2

acuteMeet head1 shaft

acuteMeet shaft head2

...

Figure 5-9: The description for an arrow with an open head

Figure 5-10: Multiple OpenArrow interpretations are possible using the center
stroke as the shaft.

The new shape can be placed in any slot in any template. P is the union of all of

the possible shapes formed with the new shape.

P =
⋃n

i=1

⋃m
j=1(Lij = f(Si, Cj))

Each template currently has only one slot filled (with the new shape). To compute

Lij = f(Si, Cj), the system assigns all of the other shapes on the screen to the other

slots on the template so that each slot on the template holds the possibilities for that

slot.
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The next stage is to reduce the possibilities for each slot. This is done from the

indexing data structures that were created previously. The system holds a list of

unchecked constraints. In order to remove a component from the list of possible com-

ponents in a slot, we have to be sure a shape cannot be formed using that component.

If only one of the component slots referenced by the constraint contains more than

one possible component, then we can determine, for certain, which components sat-

isfy that constraint, and are allowed in the final shape composition. Let Ti be the list

of constraints from Si that are not yet solved. Let Ot be the number of slots for con-

straint t with more than one component in the possibilities list. For each constraint

with only one slot (or no slots) with more than one component (Ot <= 1), we com-

pute g(t). g(t) removes all of the shapes from the appropriate slot that would make

constraint t false, and then removes constraint t from the list of unsolved constraints

Ti. Figure 5-11 walks through an example.

Finding the constraints that do not satisfy t is a quick process when using the

indexing tables formed above. For each constraint, since Ot <= 1, only one slot is

being refined at a time. Thus, the system computes the numerical value(s) for that

slot that will satisfy the constraint. The system uses the indexing data structures to

obtain a list of all of the shapes on the screen with that particular value(s) (e.g., for

horizontal, it would retrieve all lines with an angle near 0). Then, the intersection

of this list and the list of shapes in the slot is computed, and shapes that are not in

the intersection are removed from the slot.

It is possible that all shapes are removed from the slot, which implies that this

shape, Si, cannot be formed with the set of shapes in the slot, and all processing on

that template is halted. This cycle is repeated until: 1) the template is determined

impossible; 2) all of the constraints are solved, and each slot has only one shape in it;

or 3) all of the remaining constraints have Ot > 1, and the cycle is stuck (see the next

paragraph for what happens). After each cycle, there are some slots that contain only

one shape; consistency checking occurs as the system removes these shapes from all

of the other slots to make sure the same shape is not used in multiple slots.

180



Figure 5-11: Line L7 has been added to the screen where previous shapes L1, L2, L3,
L4, L5, and L6 already exist. The top right shows the initial template when assigning
the new line (with a particular orientation) to the head2 slot of the arrow. Note
that all other shapes on the screen are added. The system then attempts to satisfy
each of the constraints, removing shapes that do not satisfy a constraint from the
template. 1) The system tries to satisfy the constraint equalLength and removes
all shapes in the head1 slot of the template that are not of equal length to L7. The
equalLength constraint is now completed and removed from the list of constraints
yet to be satisfied. 2) The system attempts to satisfy the longer constraint, but since
both arguments have more than one shape in the slot, the constraint is postponed.
3) The system tries to satisfy the coincident constraint and removes L2, L3, and
L5 from the head1 slot. Because L4 is now the only possibility for the head1 slot, it
is removed from the shaft slot, since the same shape cannot be used for both slots.
4) The system tries to satisfy the second coincident constraint, but since none of
the shapes in the shaft slot can be coincident with L4, the shaft slot is empty, and
the system determines that an OpenArrow cannot be formed with the new shape
filling in the head1 slot.
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It is possible that all of the remaining unsolved constraints have Ot > 1. In

this case, the system branches the template, choosing the slot with more than one

remaining possible assignment that has the fewest such possible assignments. It makes

a new copy of the template for each of the possible assignments for that slot, placing

only one in each template, then continues trying to solve the remaining unsatisfied

constraints on each of the templates.

This branching process can, of course, cause its own exponential slowdown. The

system’s near real-time performance results from the fact that 1) branching does not

happen often because most of the shapes on the screen do not obey the required

constraints, and, thus, many shapes are removed from the possibility list at once.

(Consider, for example, the coincident constraint. It is uncommon for many shapes

to be drawn at the same location, so many possibilities are removed simultaneously

from the possibilities list.) And, 2) even in the worst case, where every query results

in a branching factor, the process of checking the constraints is a small proportion

of the overall running time. (See the Results section below.) This is because the

exponential part of the algorithm performs only list retrievals (which has been made

fast with the use of sorted hash maps and other data structures) and list intersections.

At the end of this stage, we have a list P of all of the shape interpretations and

their components. All interpretations are added to the recognition system, but a single

interpretation is chosen for display. The system chooses to display the interpretation

that is composed of the largest number of primitive shapes (i.e., the solution that

accounts for more data). Creating shapes with the largest number of primitive shapes

also results in fewer more-complicated shapes filling the screen. For example, in

Figure 5-12, we choose the square interpretations rather than the arrow for display

purposes, as the square accounts for four primitive shapes, simplifying the diagram

to only two higher level shapes, whereas the arrow interpretation accounts for only

three lines, simplifying the diagram to three higher level shapes.

If the recognition process finds multiple interpretations (i.e., |P| > 1), the system
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Figure 5-12: The left shows the originally drawn strokes. The middle interpretation
is made up of a line and a square (in red and cleaned). The right interpretation is
made up of an arrow (in red and cleaned) and two lines.

adds both interpretations to the recognition system for use in finding higher-level

shapes. The system uses the bookkeeping system described earlier to ensure that

only one final interpretation is chosen for display for each shape with a common

subshape. The system adds all interpretations to the recognition system for use in

finding higher-level shapes. The system uses the bookkeeping system described earlier

to ensure that only one final interpretation is ultimately chosen for display.

5.2.5 Algorithm Results

In a test on a tablet PC with 1GB of RAM and a 1.73 GHz processor, the system

recognized a resistor containing six lines in less than a second, with 189 other shapes

(besides the six lines creating the resistor) on the screen (see Figure 5-13), 3 of which

were higher-level shapes such as resistors, and the other 186 were random lines on

the screen. We added many random lines on the screen to provide many possible

recognition choices as a sort of stress test.

If the user draws many strokes quickly, the system can slow down because there

is a constant amount of time necessary to preprocess each stroke. We analyzed the

running time of the recognition system, using JProbe [182], and determined that, with

many unrecognized shapes on the screen, approximately 74% of the recognition time

was spent breaking down the strokes into lines. The next greatest amount of time

was spent indexing the lines drawn; each shape took a constant amount of time in
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Figure 5-13: Recognition Stress Test. The resistors are shown in red and made bold
for black and white viewing.

the number of shapes on the screen to compute the property values and a logarithmic

amount time to insert in to the appropriate data structure. A very small portion of

time was used to do the actual recognition, even though the last portion is exponential

in the number of strokes on the screen. Because of our indexing, the recognition

portion takes a small amount of time, with little to no constraint calculation, as the

system was only performing list comparisons. As a result, the system still reacts in

what can be considered close to real-time, even with 186 shapes on the screen.

5.3 Editing

A stroke may be intended as an editing gesture, rather than a drawing gesture. If an

editing gesture such as click-and-hold (tap-and-hold the pen on the screen) or double-

click (double-tap) occurs, the system checks to see whether 1) an editing gesture using

that trigger is defined for any shape, and if 2) the mouse is over the shape for which

the gesture is so defined. If so, the drawing gesture is short-circuited and the editing

gesture takes over. The editing gesture takes precedence over the drawing gesture,
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so any ink created during the gesture is not used as part of a drawing gesture. For

instance, instead of registering the ink laid down during click-and-hold as the first

few points of a new drawing stroke, the ink is removed from the screen, and the

shape can then be moved. Other triggers, such as shape-over (a particular shape is

drawn on top of another shape), may require that the drawing gesture be completed

and recognized before the action, such as deleting the shape underneath, occurs.

For example, consider the editing gesture (trigger (drawOver Cross Shape))

(action (delete Shape) (delete Cross)); in this example, when a Cross is

drawn, the Shape underneath is deleted (as is the Cross).

5.4 Display

Section 4.4.1 discussed the various options for shape display. The shape exhibitor

controls the displaying of the newly created shape and ensures that the components

(e.g., the original strokes) are not drawn and only the abstract meaningful shape

(e.g., arrow) itself is drawn. The shape exhibitor keeps track of the location of the

accessible components and aliases of a shape, which 1) can be used by the editing

module to determine whether an editing gesture is occurring, and 2) ensures that

when a shape is moved or deleted, its components are moved or deleted with it. The

shape exhibitor also keeps an original copy of each of the accessible components and

aliases for use when scaling an object to ensure that precision is not lost after several

scalings.

5.5 Connecting to Existing Systems

We included an API to allow developers of a sketch system to connect to an existing

knowledge system, such as a CAD or CASE tool. With this API, the domain-specific

recognition system can communicate with a back-end system, providing additional

185



functionality, e.g., checking the diagram for inconsistencies, running the diagram to

see whether it works as the sketcher intended, etc. Thus far, we have used the API

to connect to Rational RoseTM(for UML class diagrams as in Figure 1-1(c)), Working

Model (mechanical engineering simulations), Spice (for electrical circuit analysis), as

well as our own systems (for finite state machines and course of action diagrams).

Connecting to another program is currently quite simple, although it does require

that the system be recompiled before it works. The developer needs to create a Java

file that extends AppLink.java. The Java file must be the same name as the domain.

For example, to build a back-end for a finite state machine sketch system in which the

‘.ldl’ file is called FiniteState.ldl, the java file must be called FiniteState.java. The

system uses reflection to find the back-end java file. It runs as a separate thread that

gets invoked when the run button is pressed.

Once the run button is pressed, the connect() method is invoked. The devel-

oper overrides this button to implement the back-end functionality. The AppLink

API provides access to all of the current shapes on the screen (using getViewable-

Shapes()), as well as the drawing panel itself (getDrawPanel()). The API also

provides a few other methods for ease of use, such as setPauseColor(DrawnShape

shape, Color color, int milli) which temporarily changes the color of a shape

on the screen for a limited amount of time. (This is used in the finite state machine

application listed in the appendix.) We plan to add other useful methods as more

people use the system, and we see what methods would be useful to many different

applications. (We hope this will help users more easily describe animations, which is

part of the future work.)

Chapter 6 and Appendix B give concrete examples and their code for the usage

of the API.
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5.6 Limitations

This system uses a bottom-up recognition method. A limitation with this bottom-up

recognition method is that, if the primitive shape recognizer does not provide the

correct interpretation of a stroke, the domain shape recognizer will never be able to

correctly recognize a higher-level shape using this stroke. This researcher tries to

circumvent this problem by sending all interpretations created from the lower level

processor, but, if the lower level processor cannot generate a particular shape, then

the system cannot find it. Top-down recognition systems such as SketchRead [12] [7]

[8] have a similar problem, in that they only initially send the best interpretation,

and search for another possibility, if needed, but the interpretation must still be able

to be generated from the lower level processor. In the future, it may be advantageous

to add a top-down recognition process that tasks lower level recognizers to perhaps

lower their thresholds.

Also, this research includes future plans to add the ability to register for sketch

events so as to easily connect to the system using programming languages other than

Java.

The indexing algorithm described in this document was limited to the geometric

constraints and LADDER limitations described above. It would be useful to remove

some of these limitations by combining the techniques presented in this document

with those that have proved useful in work in reference to vision. By processing and

indexing vision features used for recognition, and concurrently indexing on geometric

properties, as described in this document, we can quickly access shapes that have

the needed visual and geometric features. As a very simple example, vision recogni-

tion techniques can easily locate areas of high density ink, or shading, which we are

currently not able to recognize using our geometric recognition techniques. Future

research includes combining vision and sketch-based features to perform more robust

recognition and, perhaps, recognize a larger class of objects.
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Chapter 6

Results: Automatically Generated

Sketch Systems

Sketch systems using this work have been defined for several of domains including

mechanical engineering, UML class diagrams, finite state machines, course of action

diagrams, circuit diagrams, flow charts, GraffitiTM, alphabet, and tic tac toe. These

sketch applications have been built through LADDER/GUILD by this researcher,

master’s students working with this researcher, classroom students in the Sketch

Recognition course taught by this researcher, and by high school students during a

community outreach workshop that this researcher instructed on sketch recognition.

Figure 6-1 shows a selection of shapes that have been recognized using LADDER.

6.1 Tic Tac Toe

Several tic tac toe recognition systems have been automatically generated by this

researcher and high school students. The tic tac toe games build recognize X’s, O’s,

and the board. The pieces can be moved and re-recognized in their new location.

Two shape groups process the winning conformation. The domain description for
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this domain is listed in Appendix B. Figures 6-2, 6-3, 6-4, and 6-5 show screen shots

of the system in action.

6.2 UML Class Diagrams

GUILD was used to build a system to recognize UML class diagrams. The system

has several capabilities:

• It recognizes the shapes in the domain from the LADDER descriptions.

• The system draws the different shapes in different colors to provide recognition

feedback.

• All of the shapes (including the text) can all be automatically beautified to

make the diagram more elegant.

• All of the classes and their building blocks (lines, rectangles, circles, class, in-

terface) can be scaled to beautify the diagram.

• The arrows can be rubberbanded from either their head or their tail.

• Once the contextual classes are attached, a string label is attached to each of

the arrows to help the designer remember what type of association it is. (This

is not shown in the original strokes view.)

Figures 6-6 and 6-7 show messy and cleaned views, respectively, of the beginning of

a UML class diagram. Figures 6-8 and 6-9 show messy and cleaned views, respectively,

of the middle of a UML class diagram. Figures 6-10 and 6-11 show messy and cleaned

views, respectively, of a finished UML class diagram.

The domain list and shape descriptions for this sketch recognition application are

listed in Appendix B.
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Figure 6-1: Variety of shapes and domains described and auto-generated.
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Figure 6-2: The original strokes of an unfinished game played in an automatically
generated tic tac toe recognition system.

Figure 6-3: The cleaned strokes of an unfinished game played in an automatically
generated tic tac toe recognition system.
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Figure 6-4: The original strokes of a finished game played in an automatically gener-
ated tic tac toe recognition system.

Figure 6-5: The cleaned strokes of a finished game played in an automatically gener-
ated tic tac toe recognition system.
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Figure 6-6: The original strokes at the beginning of a UML Class Diagram sketch.

Figure 6-7: The cleaned up strokes of Figure 6-6
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Figure 6-8: The original strokes during the middle of a UML Class Diagram sketch.
Note that the some of the class have been moved or scaled to better fit the text. Also
note that the different arrow types are denoted with different colors.

Figure 6-9: The cleaned up strokes of Figure 6-8. Note that in the cleaned up version
text strings have been added to the arrow as a helpful benefit to the designer.
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Figure 6-10: The original strokes of the final UML class diagram.

Figure 6-11: The cleaned up strokes of Figure 6-10.
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6.3 Mechanical Engineering

Figures 6-12 through 6-17 show an automatically generated recognition system for

mechanical engineering diagrams.

Figure 6-12: Auto-generated mechanical engineering interface
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Figure 6-13: Auto-generated mechanical engineering interface

Figure 6-14: Auto-generated mechanical engineering interface
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Figure 6-15: Auto-generated mechanical engineering interface

Figure 6-16: Auto-generated mechanical engineering interface
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Figure 6-17: Auto-generated mechanical engineering interface
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6.4 Flow Charts

Figure 6-18 shows an automatically generated recognition system for flow charts.

Figure 6-18: Auto-generated flowchart interface

6.5 Finite State Machines

Figures 6-19 through 6-31 show an automatically generated recognition system for

finite state machines.
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Figure 6-19: Drawing a finite state machine.

Figure 6-20: Adding an input string.
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Figure 6-21: Testing the string on the FSM.

Figure 6-22: The string has traveled through all of the states.
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Figure 6-23: The string is rejected because the last state is not an accept state.

Figure 6-24: Changing state q3 to be an accept state.
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Figure 6-25: Testing the string on the modified FSM.

Figure 6-26: The last state is now an accept state.
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Figure 6-27: The input string is accepted.

Figure 6-28: The original strokes.
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Figure 6-29: Running the input string on the messy strokes.

Figure 6-30: Continuing to run the input string on the messy strokes.

207



Figure 6-31: The last state of the input string. (The string is accepted.)
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6.6 Course of Action Diagrams

A sketch recognition system for course of action diagrams was built using the system.

The code for this system is in the appendix of this document. Figures 6-32, 6-37,

6-35, 6-33, 6-36, 6-34 show a subset of the shapes recognizable from the descriptions.

The images show the originally drawn images of course of action shapes that have

been recognized along with system generated descriptions of each of the shapes. More

images are shown in the Appendix.

Figure 6-32: Examples of recognized hand-drawn Course of Action symbols.
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Figure 6-33: Examples of recognized hand-drawn Course of Action symbols.

Figure 6-34: Examples of recognized hand-drawn Course of Action symbols.
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Figure 6-35: Examples of recognized hand-drawn Course of Action symbols.

Figure 6-36: Examples of recognized hand-drawn Course of Action symbols.
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Figure 6-37: Examples of recognized hand-drawn Course of Action symbols.
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6.7 User Comments

Thus far, about a dozen people have had significant experience with LADDER. We

present two quotes having to do with their experiences and suggestions:

“On the most basic level, having seen, worked with, and manipulated LADDER,

I am sold on the power and usefulness of the system. However, I have found some

issues to still exist. There is no notion of a priority of shapes. One cannot indicate

that a certain interpretation should be attempted before another. Since, once a low

level shape has been determined to be a higher level shape, it cannot be re-evaluated.

While this is a performance gain similar to scene graph pruning in 3d-rendering,

this does mean that a false positive for a particular stroke can only be recovered by

deleting and redrawing the sketch. Additionally, in some cases, if the false positive is

too broad of a definition, then it will always be selected and the more specific, and

more contextually correct option is not chosen.”

“The best part of the Ladder language was its hierarchical nature, as shapes can

be built using other existing and user defined shapes. This obliterated the need to

rewrite definitions for existing shapes which were part of the new shape and be able

to re-use these shapes. I would also have like arcs to be handled better here because

there are many significant domains that use arcs as shapes, and being a primitive in

itself, it should have been handled by Ladder.”
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Chapter 7

SHADY : (SHApe DEbugger), an

Editing Tool to Prevent Syntax

Errors

As seen in the previous chapter, the language that is described in this thesis has

proved to be quite powerful and capable of generating a number of different sketch

systems. Manually typing a description can allow the developer to be specific about

the shape to be described, and she can describe the shape as intended. However,

creating a description by hand can be time-consuming. Human-generated descriptions

typically contain syntactic and conceptual errors. We performed a user study in which

35 people were asked to describe shapes, using both their natural language and a

more structured language, such as LADDER. We found both versions to contain a

number of both syntactic and conceptual errors. Typical conceptual errors include

omitted constraints (which allow unintended shapes to be recognized) and incorrect

and conflicting constraints (preventing the intended shape from being recognized).

To deal with the problem of malformed syntax, we developed SHADY, a graphical

user interface to input and debug shape descriptions [102]. The GUI constrains the

input to allow only syntactically valid descriptions. Figure 7-1 shows a screenshot of
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Figure 7-1: A screen shot of the GUI used to enter typed descriptions of a shape.
The GUI automatically checks and controls for correct syntax.

the GUI used to enter in descriptions of a shape.

The GUI consists of three collapsible panels: Panel 1 is the domain list. Panel 2

is a syntax checker for entering shape definitions. Panel 3 is a drawing panel to draw

the domain diagrams to test the included recognizers in real-time.

7.1 Panel 1: Domain List

The domain list in Panel 1 is an automatically computed listing of all of the primitive

shapes and domain shapes used in the domain, and is a subset of all of the available

primitive shapes. The primitive shape list is used to reduce the recognition possi-

bilities. When a stroke is first recognized into a collection of primitive shapes, the
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system allows only interpretations using the primitive shapes used by the domain.

By reducing the possibilities, recognition is both faster and more accurate. The do-

main shape list includes all of the non-primitive shapes that were either part of the

LADDER library of predefined shapes or were defined specifically for this domain.

Shapes can be added to, deleted from, reordered in, and commented out/in of this

list.

7.2 Panel 2: Shape Definition Syntax Checker

Panel 2 consists of a shape definition syntax checker. A shape can be started anew or

an existing definition can be loaded. The GUI allows the user to specify any existing

shape that the current shape extends.

Each input line consists of several auto-complete drop down boxes that dynami-

cally update themselves as the shape description is typed. Users can type whatever

they want, but incorrect syntax (a value not listed in the drop-down box) is turned

red. The system allows the user to type in invalid entries because the user may

make other changes in the descriptions in the future that may make that statement

valid. The goal is not to constrain the developer, but, instead, encourage her to type

syntactically correct descriptions.

The components subsection allows one to enter in the component type and name

for each component. The available types in the drop down box are all primitives

and all shapes included in the domain list. A shape can be marked as shared or

optional. For each constraint in the constraint subsection, there is a drop down box

for all available constraints in LADDER. Once a constraint is chosen, the number of

argument boxes is automatically dynamically updated to provide the same number

of arguments as are appropriate for the shape. Each argument input box is built

from a drop down box whose contents are also dynamically created. The system

first checks what is the valid shape type permitted in that argument box, then it
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dynamically checks which shapes are accessible from the list of components, and fills

in the constraint drop down box with all shapes of the appropriate type. Similar

checking is done for the aliases, display, and editing GUI subsections.

7.3 Panel 3: Drawing Panel

The GUI also includes a drawing panel, which is essentially the same as the domain

recognition system output by this system. As new shapes are added (or updated)

to the domain list, it dynamically adds (or updates) them to the list of recognizable

shapes so that they are appropriately recognized when drawn on the drawing panel.

To recognize the shape, the system uses the same recognition techniques employed

by the GUILD recognition engine, as described in Chapter 5 [100].
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Chapter 8

Computer-generated Descriptions

from a Single Example

We correct syntax errors using a constrained GUI. Yet, we feel that it is more natural

to draw a shape than it is to type it textually, so we built a system that automati-

cally generates shape descriptions from a single example using techniques similar to

Veselova [210]. It turns out to be quite difficult for non-computer scientists to list all

of the constraints necessary to in a complete shape description: one needs to think

very logically to complete this task. Computer generated descriptions have the added

benefit that they are free of syntactic errors.

Generating a shape description consists of four steps.

1. The user draws a sample shape.

2. The system generates a list of all true constraints.

3. The system confirms, with the help of the user, that the initial list is correct.

4. The system shortens the list, using perceptual rules to create a best-guess de-

scription.
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8.1 Generating a List of All True Constraints

8.1.1 Component Labeling

The system begins by assigning a label to each component in the initial hand-drawn

shape (e.g., line1, line2). It then creates a list of all of the components that

are accessible within one layer of indirection (e.g., line1, line1.p1, line1.center,

line1.p2, etc.).

8.1.2 Constraint Listing

LADDER constraint inter-relations (with some exceptions; see below) between the

components listed above are considered, and the appropriate constraint is generated.

For every shape, there is a fixed number of constraints to describe that shape, based

on the number and type of primitives that make up the shape. For example, if there

are four lines, then 12 “size” constraints will be listed, with each line pairing assigned

with either equalSize1, larger, or smaller. Each LADDER constraint is grouped

with other mutually exclusive constraints that measure a certain property (e.g., size).

Another example of a mutually exclusive group within which only one constraint can

be true is orientation: horizontal, posSlope, negSlope, vertical.

A three-lined shape will necessarily have (among other constraint types) exactly

three orientation constraints, exactly three relative size constraints, and exactly 27

coincident constraints (comparing the p1, p2, and center points of each line).

This generated list describes the specific instance of the drawn shape. A recognizer

based on this complete description will recognize the initial drawn shape, but it will

not recognize any shapes with differing true constraints, even if it is similar to the

initial drawn shape in many ways.

1equalLength is syntactic sugar for equalSize, and used to compare size in lines
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8.1.3 Limited Set of Constraints

LADDER includes a large number of constraints, and, because constraints are inter-

related, the same shape can be described in a number of ways. We would like to

limit the number of constraints that are generated. Because indirection greatly in-

creases the number of generated constraints, we limit its use to coincident and

contains when the subshape is a line. We also do not keep constraints using the

subshape’s stroke or boundingBox, since there will exist a similar constraint us-

ing the shape itself. For example, we include intersects line1 line2, but not

intersects line1.stroke line2.stroke nor intersects line1.boundingBox

line2.boundingBox, as they are redundant.

Other omitted constraints, and the reason for omitting them are listed below:

equal, greaterThan, greaterThanEqual These constraints compare properties of

many different types (e.g., height, width, area, length, angle). We do

not know how to create near-misses for these constraints since error thresh-

olds would vary greatly for different property types. (We generate constraints

comparing properties using property-specific constraints such as equalAngle,

equalSize, or equalLength.)

negation constraints Negation constraints are omitted because they would be re-

dundant. Listing a positive constraint automatically implies several negative

constraints. In particular, a positive constraint implies a negative constraint

for all of the other constraints in a mutually-exclusive group. For instance, if

we have included the constraint horizontal line1 is true for the hand-drawn

shape, that automatically implies that not posSlope line1, not negSlope

line1, and not vertical line1. (Note that for any constraints where the

mutually-exclusive constraints in LADDER do not cover the entire space of

possible drawn shapes, we add an additional constraint to cover the rest of the

space, e.g., contains, and notContains.)
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disjunctive (or) constraints Disjunctive constraints are omitted because we are

including all possible true constraints in the positive example, and, because it

is impossible for a disjunctive constraint to be present in a single example. The

presence of a disjunctive constraint implies variation, and we are not yet includ-

ing variation in our description (since we are attempting to describe a single

specific instance of a shape). (The system can generate disjunctive constraints

later in the process; see below.)

composite constraints Composite constraints, which combine two other constraints

already in the language, are redundant syntactic sugar, and, thus, are omitted.

The initial list of constraints is kept short by ensuring that we do not include

tautologically true constraints. For example, the center and the two endpoints of a

line should not be listed as collinear.

Below is an example of some of the rules used to prevent tautologically true

constraints:

• A shape should not be listed having a constraint relationship with itself.

• The center and the two endpoints of a line should not be listed as collinear.

• Even though the contains constraint examines the boundingBox of a shape,

neither a line nor a point can contain an item (even a point).

• A shape should not be listed as larger than a point (since it is meaningless to

state that a shape with a positive area is larger than a point, all of which have

an area of size equal to 0).

• A line should not be listed as larger than another line. (The constraint longer

is to be used, instead, for lines, as larger compares the bounding boxes of two

shapes and longer compares the lengths of two lines.)

• A shape and a subpart of this shape should not be listed as being on the same

side of a line.
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8.2 Confirming that the Initial List Is Correct

Because the initial shape is hand-drawn, it will have some signal errors (as defined

in Section 5.1.1). Signal errors are managed by the recognition system, and, while a

shape description should include conceptual variations, it should not include signal

variations. Thus, the system needs to generate a description that includes the con-

ceptual variations (conjectured with techniques below), but without signal variation.

To interpret what the initial drawn shape would look like without signal variation,

the system needs to recognize what the sketcher intended to draw, rather than what

he drew (e.g., recognize that the sketcher intended to draw two lines to be of equal

length, even though, due to the messiness of his sketch, the two lines may not be

exactly of equal length).

The recognition system chooses the initial list of true constraints using the built-in

thresholds. These error tolerances are set to handle most data and to try to determine

the user’s intention when drawing a shape. Examples: Lines drawn must be within 15

degrees of 0 and 90 in order to be considered horizontal or vertical, respectively.

Line lengths have to be within a factor of 1.2, or have a difference of less than 20

pixels in order to be considered of equal length. Coincident (and bisecting) points

must be within 20 pixels of each other, or the distance must be smaller than 1/8 of the

length of both attached lines (or the diameter of a circle when comparing its center).

Note that these thresholds both include a constant threshold, related to pixels and

screen size, and a relative threshold, related to line lengths, as people tend to be less

careful about perfectly joining their lines when shapes are drawn larger.

But human error is not deterministic; these error tolerances are imperfect. Thus,

if the signal error is large (i.e., the drawing is particularly messy), it is conceivable

that our recognition system incorrectly recognized a constraint, and, as a result, our

initial list of all true constraints generated by the system will have an error in it.2

2The system may have incorrectly classified a line drawn at 14 degrees as horizontal, when the
sketcher meant it to have a positive slope, or the system may have incorrectly classified a line drawn
at 16 degrees as positively sloped, when the sketcher meant it to be horizontal.

223



To deal with this possibility, we use MATLAB to generate an example constraint

that obeys all of the generated constraints. (For example, if the recognition system

detects what it considers to be a horizontal line, it recreates the shape with that line

perfectly horizontal.) By generating the shape with the chosen constraints obeyed,

the interpretations made by the system become perceptually obvious.

We present the generated shape to the developer, and ask her to confirm that the

shape is a “cleaned-up” version of the shape she drew. If she says “yes,” the system

continues to the next section. If she says “no,” the system has made a classification

error, and the developer is asked to redraw the shape more carefully to reduce the

chance of misclassification due to signal error.

8.3 Choosing the Appropriate Generalization

The generated list of all true constraints describes the specific instance of the initial

hand-drawn shape without allowable conceptual variations. We know that the correct

shape description will be some generalized version of this description. It will accept

some shapes (including this one) and reject others. The task of the computer is to de-

termine, as best as possible, what the appropriate generalization is, using perceptual

rules.

The computer generalizes the constraint list by selecting perceptually-important

constraints to remain, and removing others. We first prune the list by removing

redundant constraints.

8.3.1 Removing Redundant Constraints

Several of the constraints are redundant, providing no additional information when

taking into account the other constraints. For instance, if line1 is above line2, then

implied by this statement is that each of the subcomponents of line1 is above each
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of the subparts of line2. The system removes these more-general (in that they only

require one part of the line to be to the left of the other), but redundant, constraints.

We do this because, when drawing an example shape, users will often draw it in the

a more general way. For example, if a sketcher is drawing a rectangle, he usually will

not draw it with all four sides of equal length, even though a square is still a valid

rectangle.

Examples of rules used to prune at this stage include:

• If a line is listed as vertical, remove the constraints stating that any of the

line’s subparts are above one another or are horizontally aligned (share the same

x value). Horizontal is treated in the same way.

• If one shape is above another, remove constraints stating that the subshapes of

those shapes that are above each other. (For example, if line1 is above line2,

remove the constraint stating that line1.p1 is above line2.) The following con-

straints are treated in the same manner: leftOf, sameX (vertically aligned),

sameY (horizontally aligned), sameSide, or oppositeSide (of a line).

• Remove any collinear constraints in which all of the points are on a single line

when taking into account coincident constraints. (For example, if line1.p1 is

coincident with line2.p2, remove the constraint coincident line2.p2 line1.center

line1.p2.)

• Remove near constraints, if the points are also coincident.

• Remove acute and obtuse constraints, if obtuseMeets or acuteMeets

(i.e., the lines are slanted and the endpoints are coincident) constraints are true.

• Remove constraints that are true because of transitivity. (For example, if line1

and line2 are equal length, and line2 and line3 are of equal length, then re-

move the constraint stating that line1 and line3 are of equal length.) Other re-

lational constraints are treated similarly, including equalSize, larger, par-

allel, perpendicular, left of, above, sameSide, and coincident.
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• Remove similar connected and meets constraints, if points are also coinci-

dent.

• If three lines are vertically or horizontally aligned, remove any collinear con-

straints among them.

8.3.2 Selecting Perceptually-Important Constraints

From the remaining constraints, the system attempts to choose which constraints are

required for the shape, and which happen to be true just because the sketcher had to

draw a specific instance on paper.

Certain constraints seem less accidental and are more perceptually important.

Recall the example given earlier in this chapter. When drawing an example of a

rectangle, a sketcher will rarely draw all four sides to be of equal length. The reason

for that is that humans are particularly attuned to certain visual properties that are

seen as more perceptually important. (See Section 4.2 for a more complete description

of perceptual constraints.) When shapes that include these perceptually-important

properties are drawn, they are considered non-accidental. To give an example: If a

sketcher drew two lines of equal length, it is improbable that he meant to imply that

the lengths between the two lines can have any ratio, whereas, if he drew two lines of

differing length, it is probable that the two lines also can be of equal length.

The system now selects a subsets of constraints as our best-guess. By selecting only

a subset, the system introduces allowable conceptual variations to the shape concept.

The system limits the initial number of constraints in our best-guess description to n2,

where n is the number of primitive components in the drawn example. (For example,

an arrow has three lines, and, thus, the system would choose nine initial constraints.)

This has been found to to be a good heuristic, as it allows at least one constraint

stating how each shape relates to every another shape (equal to n∗(n−1)/2, which is

less than n2), but does not allow a constraint for every type of relation that a shape
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can have with every other shape (which would require greater than 7 ∗ n(n − 1)/2

constraints, which is greater than the chosen n2 limit). Future sections of this thesis

describe how to improve this best-guess with near-miss examples. There is no limit

to the number of constraints that may exist in the final description after that process.

For our best-guess, the system selects those constraints which are the most per-

ceptually important, and, thus, seem less accidental.

The system loosely ranks the constraints in order of their perceptual importance.

In particular, the following constraints are identified as most perceptually important:

coincident, horizontal, vertical, bisects, parallel, equalSize, sameX

(vertically aligned), and sameY (horizontally aligned).

The system selects all of the perceptually-important constraints from the list of all

possible true constraints. If there are more then n2 constraints after adding the above

constraints, the system removes those constraints closer to the end of the above list,

such as sameX and sameY, since they are perceptually weaker constraints than the

others. (Horizontal is stronger than sameY because, in the former, the horizontal

line is concrete, whereas in the latter it is abstract.)

If there are fewer than n2 constraints, the system adds constraints in an order

based loosely on perceptual importance: acuteMeets, obtuseMeets, larger,

perpendicular, connected, meets, intersects, collinear, near, posS-

lope, negSlope, leftOf, above, acute, obtuse, sameSide, and far.

This final list of constraints in the initial best-guess description will contain n2 of

the most perceptually-important constraints.
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Chapter 9

Debugging Descriptions with

User-generated Examples

While, we can prevent syntax errors by manually typing in shape descriptions, using

the SHADY GUI tool, or by having them generated from a single drawn example,

shape descriptions can still include conceptual errors.

Computer-generated descriptions may be imperfect because it may be difficult for

the computer to determine the acceptable variations intended by the developer from

a single example. The perceptual rules help the computer to produce a reasonable

description, but there are several variations that are domain-specific (such as whether

or not a shape can be rotated) that cannot be determined from perceptual rules alone.

These generated descriptions may be over- or under-constrained. For instance, if the

developer draws a square, she may intend something as specific as a square or as

general as a rectangle or a quadrilateral.

Figure 9-1 shows the difficulty of automatically generating a perfect description;

the components line1 and line2 look the same in both the square and the arrow. The

constraint perpendicular line1 line2 is true for both shapes, and any computer

algorithm that would include the constraint for one shape would include it for the
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Figure 9-1: Lines 1 and 2 are identical in the square and in the arrow. However, the
constraint perpendicular line1 line2 should be included in a square description,
but not in an arrow description.

other. However, if the constraint is missing from the square definition, the square

definition will be incorrect, as it is under-constrained, but, if the constraint is included

in the arrow definition, it will be over-constrained and incorrect. If a shape definition

is over-constrained, a drawn shape will not be recognized (giving false negatives),

while, if it is under constrained, drawn shapes other than the one intended will be

recognized (giving false positives).

9.1 System Interaction

To remove conceptual errors, the system needs to know the allowable variations in a

shape. The obvious way to solve this problem is to have users supply several positive

and negative examples, and have the system learn from these user-supplied examples.

So, this research includes the development of a system that learned allowable varia-

tions from user-provided near-miss examples [214]. The user first provides the system

with a shape description (either manually typed in or computer-generated from a

single example), then draws several example shapes to test whether the description

would properly recognize the acceptable variations.

The system would attempt to recognize the drawn shapes using the provided

shape description. If a shape description is over-constrained, it will produce a false

negative, i.e., fail to recognize a shape that it should have recognized. The system
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provides a panel on which the user draws a positive example of the shape described.

If the shape is not recognized based on the description given, the system highlights

the failed constraint or constraints. The developer can then decide to remove or

adjust the specified constraint(s). Figure 9-2 shows a description of an arrow being

debugged.

Figure 9-2: An incorrect arrow description being debugged from user-provided ex-
amples The arguments in the second acute constraint are incorrectly flipped. The
constraint should read (acute shaft head2), indicating that the counter-clockwise
angle formed from the directional lines is acute.
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define shape Arrow

components

Line shaft

Line head1

Line head2

constraints

coincident head1.p1 shaft.p1

coincident head2.p1 shaft.p1

acuteMeet head1 shaft

acuteMeet shaft head2

equalLength head1 head2

Figure 9-3: A correct arrow description.

Figure 9-4: Three different variable assignments for an arrow, with the over-
constrained descriptions from Figure 9-2, and their failed constraints.
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Figure 9-5: An armored infantry shape description from the Course of Action domain
is being debugged with the debugger.
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9.2 Determining Failed Constraints

For any given shape and its description, there are many ways that the variable names

of the components can be assigned. For example, the arrow described in Figure 9-3

has 48 possible variable assignments.1

Each different variable assignment causes different constraints to be false. The

system generates all possible variable assignments and evaluates the user-provided

constraints for each of them. Figure 9-4 presents three of the 48 possible assignments.

Figure 9-4A and B give only one false constraint, whereas Figure 9-4C gives several

false constraints.

9.3 Selecting Variable Assignments

If the system were to display all of the possible variable assignments and their failed

constraints, the user would be overwhelmed. Instead, SHADY tries to choose the

assignment or small collection of assignments that most closely matches what the

user intended.

In Figure 9-2, a user actually intended to describe an arrow as in Figure 9-3,

but he mistyped one of the constraints. The arguments in the second acuteMeet

constraint are incorrect. The constraint should read acuteMeet shaft head2,

indicating that the angle formed is acute, if one 1) shifts the lines to collocate their

p1 endpoints, and then 2) travels in a counter clockwise direction from head2.p2 to

shaft.p2.

The system makes the assumption that the description given by the developer is

mostly correct and selects the variable assignments with the fewest failed constraints.

1The three variables, shaft, head1, head2, can be assigned to the three drawn lines (using combi-
natorics) in C(3, 3) = 3∗2∗1 = 6 different ways. Each of the lines can have its two endpoints assigned
in two ways (23), giving the total possible number of assignments to be C(3, 3) ∗ 23 = 48. (Notice
that this number grows quickly as the four lines of a rectangle can be assigned in C(4, 4) ∗ 24 = 384
possible ways.)
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If there are several variable assignments containing the minimum number of failed

constraints, the system chooses all of them. In the case of Figure 9-4, the system

chooses the variable assignments represented by Figure 9-4A and B.

9.4 Displaying the Failed Constraints

At this point, each of the selected variable assignments has the same number of failed

constraints, and the system cannot further distinguish among them. Often, because

of symmetry in the shape, different variable assignments can give the same failed

constraint(s). When this occurs, the system collapses the two assignments into one,

selecting only one of the variable assignments.

The system lists the collection of failed constraints for each chosen variable assign-

ment and displays the failed constraints visually on the shape. In Figure 9-4A and 9-

4B, both failed constraints constrain the same angle between the same two lines.2

The system presents the failed constraint by changing the color of the components

referenced in the failed constraint. The system also explains any failed constraint at

the bottom of the screen, in case the developer has misused it. Figure 9-2 shows a

screen shot of the system telling the developer which constraints have failed. Fig-

ure 9-5 provides another example of a more complicated hierarchically-defined shape

being debugged.

9.5 System Faults

As noted previously, this system does help users to debug descriptions by identify-

ing description errors from user-generated examples, and the system was useful for

generating correct descriptions.

2The system has a unique identifier on each of the lines so that it can keep track of which line is
which, even if it has a different label across different constraint lists.
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Figure 9-6: When asked to draw many examples of a particular shape in a user study,
users tended to draw the shape in the same fashion repeatedly.

Unfortunately, users proved to be poor at generating sufficiently informative exam-

ples. In order for developers to completely test their description, they must generate

a shape that tests each necessary constraint. However, there is no guarantee that

the user will ever draw the shape in a way that exposes the bug in the description.

Humans, especially non-computer scientists, are notoriously poor at generating infor-

mative near-miss examples, just as they are unreliable at generating informative test

cases for a program.

As an experiment, nine users were asked to generate several variations of an arrow;

one user produced the examples shown in Figure 9-6. When asked why he did not vary

the arrow, he pointed out several minor variations in the arrows that he drew. When

asked why he did not draw any rotated arrows, he paused for a minute, then said that

he did not think of doing that, but that he would be happy to draw some now. When

asked why he did not include other variations, he had a similar response. While other

users provided more variations than in this example, none of them were complete in

providing all of the allowable variations. Users are poor at drawing shape variations

for the same reason that they are poor at textually typing shape variations; they

forget constraints, making conceptual errors appear in their descriptions. It is also

unlikely that the developer will draw such examples exposing forgotten constraints,

as we are asking her to illustrate the faults in the description, and if she were aware

of such faults, she would simply edit the description.
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Chapter 10

Active Learning with

System-generated Near-miss

Examples to Refine a Concept

Winston developed a method for learning structural descriptions from examples [214].

He argued that the ideal training sequence is one in which each example is a near-

miss. His work supposes that a human teacher supplies the system with appropriate

near-misses. However, as mentioned earlier, this research has found users unable

to produce a sufficient range of near-miss shapes that would make evident missing

or superfluous constraints. As suggested previously, this is a generic phenomenon:

whether debugging code or geometric descriptions, good test cases are difficult to

generate.

To overcome this problem, the system itself provides the examples that help to re-

fine its model. The work in this document applies this framework to the field of sketch

recognition, and shapes are recognized based on the learned structural description.

As the sketch recognition interface is produced directly from the shape descrip-

tions, the interface will only be as accurate as the descriptions. Descriptions with too
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define shape Square

components

Line top

Line left

Line bottom

Line right

constraints

horizontal top

horizontal bottom

vertical left

vertical right

equalLength left right

equalLength top bottom

Figure 10-1: An under-constrained definition for a square. It does not specify that all
four sides need to be the same (which could be rectified by including the constraint
equalLength top left).

few relations (constraints) will recognize non-examples of the symbol (false positives),

while descriptions with too many relations will produce false negatives, not permit-

ting the degree of variation in a symbol’s appearance that is routinely accepted by

people using that graphical language.

10.1 Types of Conceptual Errors

There are two types of conceptual errors: an omitted constraint yielding an under-

constrained description, and an erroneous constraint producing an over-constrained

description. A simple example of an under-constrained description is given in Fig-

ure 10-1, where the definition for a square fails to require all four sides to be the same

length (i.e., is missing equalLength top left). An example of an over-constrained

shape description is given in Figure 10-2, where the definition of a rectangle contains

the erroneous constraint equalLength top left. Substitution errors (e.g., ver-

tical top instead of horizontal top) are not considered to be an additional error

type; rather, they are the result of the combination of an over-constrained definition

(the vertical constraint should be removed) and an under-constrained definition (the
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define shape Rectangle

components

Line top

Line left

Line bottom

Line right

constraints

horizontal top

horizontal bottom

vertical left

vertical right

equalLength left right

equalLength top bottom

equalLength top left

Figure 10-2: An over-constrained definition for a rectangle. It contains the erroneous
constraint equalLength top left, instead, defining a square.

horizontal constraint should be added). Redundant constraints (where both are true,

but one is not necessary) are not considered errors as they do not affect the correct

recognition of the shape.

10.2 Solution

To solve this problem, this research includes the development an algorithm using a

novel form of active learning [51] that automatically generates its own suspected near-

miss [214] examples, which are then classified as positive or negative by the developer.

The algorithm is a modification of the traditional one of machine learning of concepts,

in which a teacher supplies labeled examples (and non-examples) of the concept (e.g.,

“This is an arrow” “This is not an arrow”), and the system constantly updates its

evolving version of the concept. This research suggests a change to this model, to one

in which the system selectively generates its own (near-miss) examples, and uses the

teacher as a source of labels. The system generates these examples to test whether

components of its current concept description are necessary to the concept, or merely

happened to be true of the initial example. For example, is it necessary for both lines
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in the head of an arrow to be the same length or was this accidental in the original

example?

System-generated near-misses offer a number of advantages. They work even

when the teacher does not know the complete concept description in advance; e.g.,

the teacher might not have thought about whether an arrow-like figure with unequal

head lines is still an arrow, or whether an arrow can have a shaft that is shorter than

its head lines. Also, the system can be an efficient learner simply by virtue of keeping

careful track of which parts of the concept description have been verified as necessary

and which are yet to be tested, thereby generating only informative examples, such

as near-miss examples which differ in only one respect from the current concept.

The result is a system that behaves somewhat like a persistent, literal-minded,

but intelligent student who wants to get all of the details right, and does so, by

asking, “And would this be an example? How about this one? And this one...?”

When learning a concept, while working within a fixed vocabulary and rule-set, the

computer learner knows exactly where its uncertainties of the concept lie, and which

hypotheses need to be tested and confirmed. For example, in a 2 line sketch, there

are 114,000 total possible shapes that can be displayed.1 Because there are so many

possibilities, choosing examples that quickly reduce the space of possible variations is

important. This requires that the learning participant who is generating the examples

needs to keep track of all of the shapes that have been shown, which shapes are no

longer possible, which shapes are still allowed, and which example shapes still to be

shown can most effectively reduce the ambiguity that still remains, given a series of

positive and negative shapes. Because of the large number of variations possible and

the discrete nature of the task, a computer is more effective at generating the near

miss examples.

Active learning is a dialogue between a teacher and a student. The goal of the

dialogue is to teach the student a concept that is known by the teacher. Examples are

1Several of these shapes are impossible because of conflicting constraints. For example, posSlope
line1, horizontal line2, parallel line1 line2.
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selected, either by the teacher or the student, and the teacher labels these examples.

Our learning model is based on the principle that the learning participant (either the

teacher or the student) who knows better which information is lacking in the student’s

formation of the concept, should be the one who generates the near-miss examples.

In human-human (teacher-student) learning, humans are poor at knowing what

they do not know; initially, the human teacher knows better what information the

student is missing from his concept and provides the near-miss examples. However,

as the student begins to learn the concept, at some point, there is a transfer of

knowledge to the student. As the student begins to understand the concept, he knows

what information still needs to be confirmed. At this point the student begins to

generate his own near-miss examples, confirming and removing uncertainties, saying

such things as, “Oh, I think I get it. So, is this an example? What about this one?

Yes, that makes sense, now. I understand.”

In our task of learning structural shape descriptions, the human developer is the

teacher, and the computer is the student. Our situation is different from the human-

human learning environment in that the task of learning structural shape descriptions

occurs in a fixed domain with a fixed vocabulary and syntax. The computer student

can easily keep all existing possibilities concurrently in memory and know exactly

what information is necessary to confirm the current shape concept. Conversely, a

human teacher is not good at keeping all possible uncertainties in her mind at one

time. In this case, the computer-as-student is better able to provide informative

near-miss examples, allowing it to more quickly and effectively refine a concept.

10.3 Initial Conditions

Our approach needs a positive hand-drawn example and a description that will cor-

rectly recognize that one example (Figure 10-3). The developer can choose to type

the description or have one generated automatically from the hand-drawn example,
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Figure 10-3: Hand-drawn positive example and description.

using techniques developed by our group [210]. In either case, descriptions are built

from the LADDER vocabulary of constraints.

We begin with the first steps of the debugging process for user-typed descriptions,

because these require initial debugging steps not required for machine-generated de-

scriptions.

10.3.1 Debugging User-Typed Descriptions

User-typed descriptions are first checked for syntactic validity, using SHADY. The

system then checks to make sure that the initial description accepts the initial positive

example using techniques described previously. If this (known to be correct) example

is not recognized, the description must be over-constrained and needs to be corrected.

The system displays the subcomponents of the failed constraints in red and asks the

developer whether the indicated failed constraints could be removed to correct the

description. If there are several variable assignments containing the minimum number

of failed constraints, the system chooses all of them and displays the collection of failed

constraints, one at a time.

The developer is required to remove enough constraints to permit her description

to recognize the initial hand-drawn shape. This ensures that the process starts with

a positive (hand-drawn) example and a description capable of recognizing it.
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10.3.2 Automatically Generating a Description

If the initial description is generated by the system using techniques described earlier

in this thesis, it is guaranteed to recognize the hand-drawn example.

10.3.3 The Initial Description

The important point now is that no matter how the description was entered (manually

or computer-generated), the description now is known to recognize the hand-drawn

positive example. Hence, the description is known not to be over-constrained with

respect to the single example seen so far.

10.4 Over-constrained Descriptions

The current challenge is that, while the initial description may recognize the initial

hand-drawn example, it may be over-constrained compared to the actual concept for

the shape. The arrow in Figure 10-1 happens to have two perpendicular lines at its

head; it is a positive example of an arrow, but over constrained in the sense that

a figure without a perpendicular head is still an arrow. Hand-drawn examples will

almost always be over-constrained because the sketcher is required to make arbitrary

choices, and it is difficult for the computer to determine which choices are purposeful

and which are accidental. Even if the sketcher had drawn an arrow with a non-

perpendicular head, the initial hand-drawn example may still be over constrained, as

an acute (or obtuse) constraint may be generated instead. The arrow and square in

Figure 9-1, displayed in a previous chapter, express these difficulties.
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10.4.1 Constraint Candidate List

Earlier, we indicated that the system generates the complete list of constraints true

of the initial sketch. This list is saved and used as the initial value for a list called

the constraint candidate list. Each time a positive example shape is encountered, the

system removes from the constraint candidate list any constraints not true of the new

positive example: Any constraint not true of a positive example cannot be true of

the concept.

The system also generates a list of negative constraints. Each time the system

encounters a negative example, it knows for certain that at least one constraint in

the shape caused the negative example, but we do not know which one. It first

removes all of the constraints already seen in a positive example, as it knows none

of these constraints caused the negative example. At least one of the constraints

in the negative constraint list caused the negative example. Each time the system

encounters a negative shape with only one variable change, i.e., with only one negative

constraint left in the negative constraint list, the system knows that constraint caused

the negative example. In this case, it can add the single constraint to the list of

constraints known to cause a negative example. Otherwise, the system saves the

generated list of possible negative constraints for later processing.2 Elements of this

collection (lists with more than one constraint) may eventually be reduced to one

constraint when some of the constraints are removed after a positive example shape.

10.4.2 Selecting the Constraints to Test

To remove all uncertainties, the system would have to generate all possible variations

of the shape, which would imply testing all possible permutations of the constraints

found in the original positive hand-drawn example. This would be unreasonable,

2Constraint lists of negative examples frequently contain more than one constraint because con-
straints are interrelated in the sense that one constraint cannot be falsified without falsifying another:
an example shape in which two lines are constrained not to meet, for instance, is necessarily also an
example in which those two lines are not connected.
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requiring several hundred permutations for even a three-line shape. This research

uses the perceptual knowledge gained from Gestalt principles to reduce the number

of generated shapes.

Instead of generating a shape to test each constraint, the system chooses a small

number of constraints which it feels are likely to be necessary in the final concept and

tests those. This small number of constraints is chosen from the initial best-guess

description created from a single hand-drawn example described above. A shape is

then generated that tests that particular constraint.

10.4.3 Initial Over-constrained Testing

Because it is often the case that shapes can be rotated and scaled, the system first

rotates and scales the shape and presents several examples all at once to the user.

In the case of scaling, the developer is asked to indicate the status of each example

individually; the individual positive and negative examples are handled as in the

previous section.

For rotation, the user is permitted only to say whether or not all of the examples

are positive. (We currently do this in order to avoid problems with shapes having

rotational symmetry.) If the user indicates that all of the examples are positive, they

are handled in the fashion described in the previous section.

10.4.4 Testing Other Constraints

The system checks to see whether the description is over-constrained by examining

each constraint in turn, and generating a suspected near-miss shape to test whether

that constraint is necessary. For example, in the description in Figure 10-4, the system

tests the six listed constraints.3

3It is possible that a single constraint, when made false, produces a set of inconsistent constraints.
In this case, the system removes a constraint that which shares an argument and retests.
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A constraint is tested by creating a description in which the constraint is replaced

by its negation, then a shape that fits this description is generated. (The shape gener-

ation technique is described below and in Appendix C). Figure 10-5 shows the shapes

generated when testing (coincident head1.p1 shaft.p1) and (perpendicular

head1 head2).

Because the topology of a shape is considered to be the most perceptual property

of a shape [210], the system tests all coincident constraints first, presenting several

examples all at once to the developer. The system modifies the constraint candi-

date list to take into account the positive and negative examples as specified by the

developer.

Imagine that the developer indicates that the shape generated by the revised

description does not agree with her mental model of an arrow (as in the case of

testing the coincident constraint of Figure 10-5). This shows that the constraint

in question is a necessary part of the description because there exists both a positive

example where the constraint is met (the originally hand-drawn shape) and a negative

example in which the only thing changed is that the constraint is now not met (the

generated shape).

Imagine, on the other hand, that the developer indicates that the shape generated

by the revised description does agree with her mental model of an arrow (as in the

case of testing the perpendicular constraint of Figure 10-5). Thus, the original

description was over-constrained: the constraint is superfluous since there exists a

positive example in which the constraint is not met.

10.5 Under-constrained Descriptions

Once the shape description is known to be not over-constrained, the system checks

whether it is under-constrained by making a list of possible missing constraints. As

the list of possible missing constraints can be very large, the system generates it by
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define shape Arrow

components

Line shaft

Line head1

Line head2

constraints

coincident head1.p1 shaft.p1

coincident head2.p1 shaft.p1

acuteMeet head1 shaft

acuteMeet shaft head2

equalLength head1 head2

perpendicular head1 head2

Figure 10-4: An over-constrained description of an arrow; it should not contain the
constraint perpendicular head1 head2.

the same filtering process used in Section 10.3.2, with several additional filters: The

system also removes constraints that are more general than and that follow transi-

tively from those in the current description. The system then chooses n2 constraints

from this list (using the same perceptual ranking scheme as mentioned previously) to

test for possible accidental exclusion.

The system tests each of those n2 constraints to determine whether it is missing

from the description by adding its negation to the description (e.g., not horizontal

shaft), then generating a shape based on this description. Figure 10-7 shows two

generated possible near-miss examples which test constraints horizontal shaft

and longer shaft head1.

Imagine that the developer indicates that the non-horizontal example in Figure 10-

7 agrees with her mental model of an arrow. Because the system contains a positive

example of an arrow with the constraint met (the original hand-drawn shape) and

not met (the generated shape), the system concludes that the constraint should not

be included (i.e., it was an accident that the original arrow happened to be drawn

horizontally).

However, imagine that the developer indicates that the not longer example in
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Figure 10-5: Near-miss examples testing whether description is over-constrained.

Figure 10-6: Hierarchical examination of the contains constraint.

Figure 10-7 is not an arrow. In this case, the system contains two examples with

identical descriptions except for the longer constraint; the (hand-drawn) shape in

which the constraint is met is a positive example, and the (generated) shape in which

the constraint is not met is a negative example. This indicates that the constraint is

necessary to the concept of the shape.

10.5.1 Generating Shapes

To test if a constraint is necessary, the system generates a list of constraints with

all of the constraints true in the initial positive example, and the negation of the

constraint to be tested. For example, to test if longer line2 line3 is required,
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Figure 10-7: Possible near-miss shapes for an arrow.

then the system removes that constraint from the initial description and replaces it

with either longer line2 line3 or longer line3 line2. The system submits

the constraint list to MATLAB, which then produces a shape that satisfies those

constraints. The system then shows this newly generated shape to the user, asking

the user to label it as positive or negative. The collection of positive and negative

examples is used to generate a shape description that properly classifies all examples.

It is possible that the list of constraints submitted to MATLAB cannot produce

a feasible shape. In this case, MATLAB will produce a closest feasible solution. The

system will then examine this generated shape and its true constraints. If the system

already has a labeled example with the same constraints true, or if the system can

already classify the shape (with certainty) based on the previously labeled examples,

the system will not show the shape to the user. Otherwise, if the system cannot

yet classify the shape, then labeling this solution will still provide extra information,

and the system will display the shape to the user. Likewise, sometimes MATLAB

will fail to produce a feasible solution even when one exists because it got stuck

in a local minima. In this case, the system acts as if it cannot produce a feasible

shape (as described above), since it cannot tell the difference. Because the desired

shape may not be generated, the system may not be able to fully determine the exact

desired shape description, but, hopefully, the displayed near-miss examples will help

to effectively converge the shape description to the correct answer.
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10.5.2 Some Limitations

The technique described in this chapter has been tested solely on shapes composed

of lines and circles. Future research includes plans to incorporate curves and arcs in

the near future. At this point, we are uncertain of the difficulties that incorporating

arcs and curves might cause.
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Chapter 11

Concept Learning Algorithm

The system uses these labeled examples to automatically build a LADDER shape

description using a modification of the version spaces algorithm that enables it to

handle interrelated constraints and has the ability to learn negative and disjunctive

constraints.

The algorithm holds a collection of possible concepts called a concept space. At

least one concept is correct at all times, although it is possibly too general. The

algorithm assumes that all data is properly labeled, and that the final concept can be

described using the constraints provided in the LADDER language. The algorithm

starts with an initially empty concept which accepts everything. Concepts are refined,

created, and pruned with positive and negative examples.

11.1 Creating the Initial Concept

A shape concept specifies what constraints can be true in a drawn shape in order

for it to be recognized. The constraints are grouped together based on the shape

property that they measure (referred to in this thesis as measurable properties). All

of the constraints in a single group are designed to be mutually exclusive from the
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Figure 11-1: Abbreviated initial concept for a three-lined shape.

others in the same group. An example of a measurable property is the orientation

of a line, the mutually-exclusive constraints on line orientation are horizontal,

vertical, posSlope, and negSlope. The number of variables in a shape concept

is equal to the number of measurable constraints for a shape, which can be computed

from the number and type of subshapes. A shape consisting of three lines will have

more measurable constraints than a shape consisting of two lines. For example, a

three-line shape can have three orientation constraints, three relative size constraints,

and 27 coincident constraints, as well as other types of constraints. Figure 11-1

shows a shortened initial concept space for a three-line shape. If we do not know

whether a constraint is allowed in a positive example, we label the constraint with a

question mark. Once a constraint is seen in a positive example, the system replaces

the question mark with a p. If we know that a constraint causes a negative example,

the system replaces the question mark with an N.

Figure 11-2 shows several examples of orientation of a line after the p’s and

N ’s have been learned; the constraints implied from these multi-valued variables

are shown.
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Figure 11-2: Constraints implied by multi-valued variable for line orientation.

11.1.1 Refining the Concepts

For each positive example, the algorithm labels each constraint present in the positive

example with a p in the concept. Figure 11-4 shows the arrow concept after the initial

positive example shown in Figure 11-3. Note that horizontal line2, larger line3

line2, and larger line3 line1 were all true in the positive example in Figure 11-3,

and that all of those constraints were labeled with a p in the concept presented in

Figure 11-4.

Figure 11-3: Initial positive example of an arrow.

Because constraints are often interrelated in our domain of structural shape de-

scriptions, it may be hard to tell which constraint caused a negative example. For

example, in the negative example shown in Figure 11-5, it is unclear which constraint

– (larger line2 line3) or (larger line3 line2) (or both) – caused the negative

example. Thus, the system must divide each shape concept into two shape concepts,

where one concept states that (larger line2 line3) caused the negative example,

and the other states that (larger line3 line2) caused the negative example.
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Figure 11-4: Arrow concept after initial positive example.

Figure 11-5: Negative arrow example.

11.1.2 Converging to a Single Concept: Purple Cow Heuris-

tic

Many concepts can be created during the branching process. However, shape concepts

are naturally pruned while learning. Duplicate concepts are often created and will be

pruned. The algorithm also prunes examples that imply impossible concepts which

place a p over an N.

If all shape permutations are generated, it is possible to converge eventually to
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Figure 11-6: Two possible concepts after a negative example.

a single concept using this algorithm. However, producing all of the permutations

is undesirable because that would mean that the user would have to label several

hundred examples. Ideally, few negative examples would cause concept branching (as

branching may require many more examples to prune down again to a single concept);

however, this is difficult to do as many of the geometric constraints are interrelated.

Thus, this researcher has developed a heuristic called the purple cow heuristic to

reduce to a single concept.

The purple cow heuristic works as follows: “I have never seen a purple cow, so

I am going to assume one does not exist.” This heuristic, applied to the structural

shape domain, is reworded as, “I have never seen this constraint exist in a positive

example shape, thus I am going to assume it will never exist in a positive example

shape.” The system does this at an application level by updating all ? ’s labels to N ’s.

Any constraint seen in any positive example will necessarily have a p labeling in

all possible concepts in our concept space and will never be mislabeled in our final

concept using the purple cow heuristic. However, a ? may be mistakenly be changed

into a N.
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Because constraints are often interrelated, and because it is impossible to generate

shapes with certain constraint combinations, it may be impossible for the system to

gain sufficient proof that a certain constraint caused a negative example. For example,

we cannot create a near-miss example to test an arrow that keeps line3 longer than

line2, line2 equal to line1, while making line3 shorter than line1. Because of

these features of structural shape descriptions, This heuristic works particularly well

for our problem.

11.1.3 Creating the Final Description

Our final single concept is then translated to a description by translating each multi-

valued variable to the appropriate constraint. We then remove redundant or transitive

constraints, and output our final description. This description can then be used to

automatically generate a recognizer from that description, using the techniques and

system described above. Figure 11-7 provides an example.
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Figure 11-7: Converting the final concept to a shape description. Each bucket is first
converted to a single (or no) constraint. Redundant constraints are then removed
using techniques described earlier.
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Chapter 12

System Interaction

Here is an overview of the process a developer would take to create a sketch interface

using the techniques from this thesis. Note that this process is considerably faster

than writing arecognition system from scratch.

1. Developer makes a list of all of the shapes in the domain.

2. Developer produces a description of all of the shapes in the domain:

(a) Developer draws an example shape.

(b) The computer automatically generates a best-guess description (or the

developer can choose to manually type one herself).

(c) The computer checks that the description is not over-constrained. For each

constraint in the current description...:

i. The computer generates one suspected near-miss example shape that

tests whether that constraint is required.

ii. The developer specifies whether or not the shape is a valid example

shape.

iii. The computer uses this knowledge to include or remove the constraint.
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(d) The computer checks that the description is not under-constrained. The

computer generates a manageable (less than 20) number of constraints that

may be missing. For each possible new constraint:

i. The computer generates one suspected near-miss shape that tests if

that constraint is required.

ii. The developer specifies whether or not the shape is a valid example

shape.

iii. The computer uses this knowledge to include or remove the constraint.

(e) The developer then manually specifies how the shape should be displayed

and edited.

3. Each description is then translated into a recognizer for that shape, specifying

how the shape should be recognized, displayed, and edited.

4. The new code is compiled into a sketch recognition user interface for that do-

main.

5. The sketch recognition user interface can be run, and it will recognize, display,

and allow editing of the shapes described in the description.
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Chapter 13

User Study: Lessons Learned

about the Successes and Difficulties

of Near-miss Generation

To date, ten different users have generated shapes using the automated near-miss

generator. Eight of them were asked to create toy-example shapes; the rest were

asked to develop a sketch system for a particular domain. All of the interactions

were informal. The toy-example group was asked to generate between three and six

shapes. Depending on the difficulty the user encountered, users were urged to try

more or fewer examples. Problems that were readily identifiable were fixed between

user sessions. To identify more serious problems and to stress-test the system, users

were given both examples that this researcher had tried before and those that had

not yet been tried by anyone.
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13.1 Methodology

Users were first presented with the debugging system and given brief verbal instruc-

tions. They were then observed as they stepped through the system. Help was

provided when needed. Users ranged from age 22-72. All were computer proficient,

with computers playing a significant part in their daily work activities. Users were

highly educated; all were either in or had completed some form of graduate school.

Several of the users were in computer science, but others were in fields such as math-

ematics, business, education, and sociology. A selection of the shapes that users were

asked to draw is in Figure 13-1.

Figure 13-1: Some of the shapes that users were asked to draw.

The process occurred as follows:

1. The user draws a positive example as in Figure 13-2.

2. The system internally generates a list of true constraints, and automatically

generates a shape that satisfies those constraints. The system shows this exam-
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Figure 13-2: The user draws a shape.

ple to the user, as in Figure 13-3.

3. If the generated shape is incorrect, the user starts again, redrawing the shape.

4. If the generated shape is correct, the system selects a subset of all of the true

constraints as a first best guess, and shows this list to the user, as shown in

Figure 13-4. In particular, the system selects only the most perceptually impor-

tant constraints. The list is shown to the user 1) to engender user autonomy.

Our purpose is to enable the user, not to force him or her to use our near-

miss debugging system. And 2) to provide transparency to the systems current

shape concept and the assumptions made. By providing transparency, we hope

that the system’s actions make more “sense” to the user, and the user feels

that there is a purpose to their actions, rather than providing information to

an unresponsive system.

5. In order to allow for user autonomy, the user may stop and accept this definition
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Figure 13-3: The system re-generates the drawn shape to make sure it is understood.

(now or at any time in the future).

6. Otherwise, the user can debug the description. The user is presented four

near-miss examples at a time, as shown in Figure 13-5. The user clicks the

examples to label them as positive (green) or negative (red) examples, as shown

in Figure 13-6.

7. The system updates the description, as shown in Figure 13-7. The user can

stop and accept the description at any time.

8. The system will continue to show examples (further examples shown in Fig-

ures 13-8, 13-9, 13-10, and 13-11) until the user stops and accepts the descrip-

tion, or when it has learned the description as best as possible, and there are no

more examples to show. Using the learning algorithm described in the previous

examples, the system generated all possible two line shapes (a total of 4,773

perceptually different shapes) in only 20 examples, or five pages of near-miss

examples. However, the system reached its final guess (i.e., it did not change

its guess) after the first page of four near-miss examples.
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Figure 13-4: The initial description shown to the user.

13.2 Success and Failures

The results of the user study were not as expected, and the near-miss generator often

failed or went un-used, as described by the following sections. However, when the

system generated a correct solution, it did so quickly and effectively. As noted earlier,

the system could reduce the space of 4,773 perceptually different shapes with only 20

examples, and came across the final description after only 4 examples (or even fewer,

as explained below).

13.2.1 Generating All Possible Shapes

Because of the difficulties of generating specific near-miss examples, it was not clear

whether the system was doing an exhaustive search of the space. Thus, to test the

learning algorithm separately from the near miss generation (producing the results

stated in the previous paragraph), we automatically generated all of the perceptual

examples of the shapes. This was done in two ways. The first method asked Matlab
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Figure 13-5: The first set of near-miss examples shown to the user.

to generate every possible constraint combination, running it 10 times with different

starting conditions for each failed shape. Unfortunately, the system still could not

guarantee that all possible shapes were generated - in fact, at least one such shape

was found to be missing - and it took two weeks of CPU time on a supercomputer.

The second method took a ten by ten square to be used as a condensed represen-

tation of a 200 by 200 square, but since the shapes were to be perceptually different,

this multiplicative factor of 20 proved useful. This researcher first created all possible

two-lined shapes that could be created from the space. This involved 10 possible

values for each x and y value, 102 possible values for each point, 104 values for each

line, and 108 possible values for each two lined shape. This researcher removed lines

of zero length and duplicate lines (since each line could be represented twice, once for

each direction). Then, the system generated a list for each shape containing all con-
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Figure 13-6: The first set of the near-miss examples after the user has labeled the
positive and negative examples.

straints true for that shape, and computed an error value representing their distance

from the ideal representation of those constraints. The error value was computed

similarly to those described in Chapter C. When multiple shapes generated the same

list of perceptually true constraints, the system kept only the shape with the smallest

error. This guaranteed that all possible shapes were generated, and, in fact, took a

much shorter time doing it - approximately a day and a half running on a 1.73 GHz

laptop, with other work processes running concurrently.
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Figure 13-7: The updated description.

13.3 Lessons Learned

This section outlines some of the lessons learned from the study.

13.3.1 Lesson 1: Users Could Draw Shapes, but Needed

Training

In order to generate a description, the user had to first draw an example shape.

Provided the example shape was drawn relatively carefully, it was properly reproduced

by the system. Users who were unfamiliar with a tablet pc had trouble initially. Their

initial pen strokes sometimes did not lay a continuous stream of ink, or their strokes

were rushed and ambiguous, even to the human eye. All of the users were eventually

able to draw shapes that could be understood (and re-drawn) by the system.
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Figure 13-8: The second set of labeled near-miss examples.

13.3.2 Lesson 2: Users Liked the Automatically-generated

Description

After the system displays the understood-shape to the user, it generates a first best-

guess and shows it to the user. Users were quite happy with the automatically-

generated shape description. After the generated description was displayed, users

would exclaim, with phrases such as: “Oh wow. Yes, that’s it.” or “Okay, what’s the

next shape?” In effect, they felt that the system had correctly described their shapes.

The two users who were designing a domain system would often stop after the initial

automatically-generated solution because it was either correct, or so close to what

they wanted that it required minimal manual tweaking. The toy-examples contained

some problems that specifically needed to be modified and were impossible to generate
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Figure 13-9: The third set of labeled near-miss examples.

solely from a single example. For example, one person was asked to draw two parallel

equal-length lines that were rotatable, but not horizontal. Because the lines can be

drawn only as positively-sloped, negatively-sloped, or vertical, it is impossible to for

the computer to determine from a single example that the lines cannot be horizontal,

but they can be other orientations.

The other advantage of the initial automatically generated description is that it

was fast and efficient for even large shapes with many components. It was shown

to be a big time-saver for generating descriptions of large shapes. Unfortunately,

the users who were building domain descriptions chose, instead, to manually tweak

descriptions of large shapes, rather than opt for the slow near-miss process, which

was unbearably slow for large shapes.
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Figure 13-10: The fourth set of labeled near-miss examples.

Figure 13-12 shows a no smoking symbol which was quickly and correctly genera-

ted. (However, for ease of reading, the user may wish to replace sameX and sameY

with a single concentric constraint.) The list of chosen constraint is:

• posSlope line1

• equalSize line1 ellipse1

• sameX line1 ellipse1

• sameY line1 ellipse1

Figure 13-13 shows an image of a house for which a description was automatically

generated. The long list of all the true constraints for the system to chose from is

shown below:
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Figure 13-11: The fifth set of labeled near-miss examples.

1. connected 12 line2 line1

2. connected 12 line3 line2

3. connected 11 line5 line1

4. connected 21 line4 line1

5. connected 12 line4 line3

6. connected 22 line6 line3

7. connected 21 line6 line4

8. connected 12 line5 line4

Figure 13-12: A no smoking symbol which was quickly and correctly generated.

272



Figure 13-13: The drawn and cleaned up image of a house for which a description was
automatically quickly generated for, but for which generating near miss examples for
took an impractical amount of time.

9. connected 12 line6 line5

10. vertical line1

11. vertical line3

12. horizontal line2

13. horizontal line4

14. posSlope line5

15. negSlope line6

16. equalArea line2 line1

17. equalArea line3 line2

18. equalArea line3 line1

19. equalArea line4 line1

20. equalArea line4 line2

21. equalArea line4 line3

22. equalArea line6 line5

23. acuteMeet line5 line4

24. acuteMeet line6 line4

25. obtuseMeet line6 line3

26. obtuseMeet line6 line5

27. obtuseMeet line5 line1

28. smaller line5 line1

29. smaller line5 line2

30. smaller line6 line3

31. smaller line5 line3

32. smaller line5 line4
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33. smaller line6 line2

34. smaller line6 line1

35. smaller line6 line4

36. above line6 line1

37. above line6 line2

38. above line4 line2

39. above line5 line2

40. leftOf line5 line3

41. rightOf line3 line1

42. rightOf line6 line1

43. sameY line3 line1

44. sameY line6 line5

45. overlapLeftOf line4 line3

46. overlapLeftOf line5 line2

47. overlapLeftOf line4 line2

48. overlapLeftOf line5 line4

49. overlapLeftOf line6 line3

50. overlapRightOf line2 line1

51. overlapRightOf line3 line2

52. overlapRightOf line4 line1

53. overlapRightOf line5 line1

54. overlapRightOf line6 line4

55. overlapRightOf line6 line5

56. overlapRightOf line6 line2

57. overlapAbove line6 line4

58. overlapAbove line4 line1

59. overlapAbove line3 line2

60. overlapAbove line4 line3

61. overlapAbove line5 line1

62. overlapAbove line5 line3

63. overlapAbove line6 line3

64. overlapAbove line5 line4

65. overlapBelow line2 line1

66. near line3 line1

67. near line4 line2

68. near line5 line2

69. near line5 line3

70. near line6 line1

71. near line6 line2
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72. perpendicular line2 line1

73. perpendicular line4 line1

74. perpendicular line3 line2

75. perpendicular line4 line3

76. parallel line3 line1

77. parallel line4 line2

78. slanted line6 line2

79. slanted line5 line3

80. slanted line5 line2

81. slanted line6 line1

The list of perceptually important constraints is shown below. The list is still

long, as six lines permit as many as 36 constraints to be chosen. From this list, we

see the importance of creating hierarchical (and thus shorter) descriptions.

1. connected 12 line2 line1

2. connected 12 line3 line2

3. connected 11 line5 line1

4. connected 21 line4 line1

5. connected 12 line4 line3

6. connected 22 line6 line3

7. connected 21 line6 line4

8. connected 12 line5 line4

9. connected 12 line6 line5

10. vertical line1

11. vertical line3

12. horizontal line2

13. horizontal line4

14. posSlope line5

15. negSlope line6

16. equalArea line2 line1

17. equalArea line3 line1

18. equalArea line4 line1

19. equalArea line6 line5

20. acuteMeet line5 line4

21. acuteMeet line6 line4

22. obtuseMeet line6 line3

23. obtuseMeet line6 line5
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24. obtuseMeet line5 line1

25. above line6 line1

26. above line6 line2

27. above line4 line2

28. above line5 line2

29. leftOf line5 line3

30. rightOf line3 line1

31. rightOf line6 line1

32. sameY line3 line1

33. sameY line6 line5

34. smaller line5 line1

13.3.3 Lesson 3: Shape Generation Can Take a Long Time

After a shape is drawn, the system presents the same shape to the user for verification.

This is called shape perfecting or creating an idealized version of this shape. Shape

perfecting is quite fast because 1) a solution exists and 2) the solution is near to the

starting conditions. However, when trying to generate a shape which may not exist,

or for which the starting condition is far from the solution, the system can take a

long time. For example, shapes with more than three lines can take so long enough

to compute, that is becomes impractical.

While the system would sometimes be quite fast, if a solution exists (a few sec-

onds), a failure, or worse, several failures in a row, would undeniably frustrate the

user. Because shape constraints are often interrelated, it is difficult to predict whether

a shape will fail or not.

13.3.4 Lesson 4: Failure Does Not Mean the Shape Cannot

Exist

When learning a shape description, it is tempting to presume that if a shape is not

generated, then it cannot exist. However, shape generation may also fail simply
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because the starting conditions are bad. Thus, we reprogrammed the generator to

try several different random starting conditions. However, this did not guarantee

success, and greatly added to the wait time.

The uncertainty of the viability of a proposed list of constraints created other

difficulties. It made it difficult to determine whether there were more similar shapes

that should be generated, or if there were no more shapes to be generated and the

near-miss generation should stop. Because of this, the system generated more near-

miss examples than it should have. The learning algorithm would have benefited from

the knowledge that a particular constraint could not create a shape.

13.3.5 Lesson 5: The System May Generate Perceptually

Confusing Examples

Sometimes the system would return an example shape, but return an error greater

than zero. Because this happened quite often, we wanted to use these generated

shapes. However, sometimes these examples were good, and sometimes they were

perceptually confusing. For example, in Figure 13-14, the two non-touching (the far

constraint) parallel lines are asked to be of the same size (i.e., length), while still

asking them to be horizontally and vertically aligned. This is physically impossible.

But the system generates the example as best as it can and shows the example to

the user. Perceptually, lines of similar lengths may appear to be of equal length to

each other if they were not parallel and horizontally and vertically aligned. However,

when the two lines are parallel and next to each other, the difference in length is

perceptually obvious. The problem lies in that the system thinks it has created an

example where the lines are close enough to the same length, but, in fact, it has not.

This could perhaps be alleviated by more sophisticated thresholds which take into

account the locality of other shapes during shape generation.

The system can also generate perceptually confusing negative examples. For in-
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Figure 13-14: A perceptually confusing positive example.

stance, in Figure 13-15, the lines seem to be close to parallel. This example could be

fixed by requiring negative-sloped lines to be closer to -45 degrees.

Displaying the description next to the generated shape solved some of the percep-

tual ambiguity, but we feel that this is a less than ideal solution.

13.3.6 Lesson 6: Positive Examples Were More Helpful than

Negative Examples

When the system sees a positive example, it knows that all of the constraints in the

example are allowed in a positive example. When the system sees a negative example,

it knows only that at least one of the constraints in the examples caused the negative

example. When the system does not know which example caused the negative exam-

ple, it has to branch the concept space. Because constraints are inter-related, it is

very common for the negative causing constraint to be unknown. Branching is costly,

278



Figure 13-15: A perceptually confusing negative example .

and when there are many negative examples (which is common), the branching can

slow down the system noticeably.

Because of the high costs of branching, the system first processes the positive

examples, and, holds the negative examples which have more than one possible cause

for later processing.

13.3.7 Lesson 7: Show Rotations First

Showing rotations first (which was not done in the example shown above, but is now

part of the current system) has two benefits. First, many shapes can be rotated.

By showing a rotated example first, if the shape is rotatable, the system will have a

positive example, with many changed constraints, causing the system to learn more

quickly. The other advantage of rotation is that it can be done without automatically

generating the shape through Matlab, and the generated shape is guaranteed to return

quickly. Thus, rotated examples can be provided quickly even for extremely large

shapes.

Because of the added benefit of rotations, this researcher also had the system
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create other changes that could be computed without Matlab, such as scaling, sin-

gle line rotations, and moving of line endpoints by shortening and elongating lines.

While scaling helped moderately, the other transformations helped minimally, and, if

shown first, would often only hinder the learning speed by showing unhelpful negative

examples.

By showing rotations first, the system can automatically choose whether to use

orientation-dependent or orientation-independent constraints, which greatly reduces

the number of constraints to test. The problem with this idea, though, is that part of

the shape may be rotatable, and part of the shape may not be. One can either hope

that this is generally not the case, or have the system produce examples that rotate

only a subset of the shape.

13.4 Overall Qualitative Results

Despite its failings, users tended to like the near-miss generator. The slowness was

the main reason that people chose to stop after either the first or second generated

description, and manually tweak the descriptions themselves. When asked, they did

say that, if the system did not take so long for complex shapes, they would have

chosen to have the system automatically construct the definition from the near-miss

examples, as they found it much easier to label a shape than to examine the list of

constraints to find any problems. They also thought that they probably missed certain

examples and created imperfect descriptions when hand-tweaking. However, since the

goal of this research is to allow users to create shape recognizers that matched their

internal perceptions of a shape, it is difficult to find a definitive way to test if their

final descriptions were correct.
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Chapter 14

Implications for Future Research

This research has several implications for future investigations. Some of the specific

implications were highlighted at the end of each chapter of this thesis. Broader issues,

and those that are of a general nature, are discussed in this chapter.

14.1 Empowering Instructors to Build Sketch Sys-

tems for Immediate Feedback in the Class-

rooms

14.1.1 Motivation

LADDER and GUILD were developed to simplify development sketch interfaces to

allow development by non-experts in sketch recognition. The number on application

in mind for this has been integration of sketch recognition system in the classroom

to improve pedagogy.

Imagine the following scenario:
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Scenario: The class is Computability; the instructor is teaching finite state ma-

chines (FSMs) today. Writing on a SmartBoard behind her, she explains how an

FSM works by drawing one into a sketch recognition system that she built before

class in less than a half-hour. Once she has completed drawing the FSM, she adds an

input string and presses “run.” The students watch and learn, as each state briefly

turns red as the input string passes through it. After observing various different

demonstrations, the students are then asked to build an FSM of their own which

satisfies a certain class of input strings. Students attempt to build the correct FSM

on their own tablet PCs; they test their FSMs with several input examples, using

the FSM sketch application built by the instructor. Once each student is satisfied

with his or her solution, he or she submits it to the teacher. Each submitted solution

is automatically classified as either correct or incorrect, and the further classified by

the error that it contains. The groups are displayed to the instructor on her personal

tablet PC on the podium. The teacher then selects one submission that contains a

common error and displays it on the SmartBoard. She handwrites an input string

that is not recognized, but should be, and the students watch the interactive display

to understand where the error lies. The students leave the classroom with a thorough

understanding of FSM, and the instructor receives feedback on the level of student

understanding on FSMs.

This scenario emphasizes the profound effect that LADDER and GUILD could

have on pedagogy and classroom learning. Sketch recognition systems can be used

to:

1. explain drawn graphical content in an interactive way.

2. provide students classroom graphical practice on classroom-provided student

tablets.

3. provide students at home practice.

4. automatically correct graphical homework.

282



5. automatically correct in-class assignments for immediate feedback.

Graphical diagrams are an important part of the teaching process. Whiteboard

sketches by the instructor are used in the communication of ideas [70] [78] [79] [114]

[207]. Animations are an effective way to explain material, but they currently have

to be canned animations, rather than animations pertaining to real-time drawings.

CAD (computer automated design) systems enable interactive graphical design, but

teachers may not integrate these CAD systems into their classroom because 1) the

CAD systems don’t provide sketching capabilities, and their interface may be unnat-

ural and require intricate learning, 2) teaching CAD system use may take time away

from other classroom material, 3) the CAD system may be prohibitively expensive, or

4) the CAD system may not provide the functionality necessary to teach the material

and is not easily modified to suit the teaching needs.

This document has already emphasized the benefits of sketch systems, allow-

ing both drawing freedom and computer design advice and simulation capabilities.

Sketches are used throughout the educational process [13]; here are a few examples:

finite state machines, mechanical engineering diagrams, electrical circuit diagrams,

physics diagrams, chemical symbols and reactions, flow charts, UML diagrams to

design software, musical notation, tree data structures, graphs, and many others.

As noted earlier in this thesis, from 2000-2002, this researcher built a UML class

diagram sketch recognition system which was used in two sections of a game pro-

gramming course at Columbia University to teach 60 high school students software

engineering techniques [99]. The system was well received, and it helped students to

comprehend difficult computing concepts without having to also teach them Rational

RoseTM. Although sketch recognition applications have been built for a variety of

domains, it is impractical to build a system that will suit the needs of all instructors

as there is an overabundance of academic content expressed graphically. The needs

of educators are usually class, or even assignment specific, and until now, sketch re-

cognition systems have remained inaccessible to educators who need systems specific

to their classroom learning goals.
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Graphical diagrams are important in many subjects, and used throughout the

learning process, but correcting these diagrams proves difficult and time-consuming.

Oftentimes, these graphical assignments or tests are omitted for these reasons. This is

unfortunate as pedagogical studies suggest that not only does testing aid in learning,

but it is more effective than testing alone [184]. Roediger explains that students

remember more of what they learned when alternating only two study sessions with

two testing sessions rather than by having four study sessions. Roediger also describes

how early feedback after testing increases the percent of the material learned.

14.1.2 Determining Pedagogical Usefulness

Part of this future work also includes measuring this technology’s effectiveness and

impact on pedagogy through a case study of classroom use. The interactions of the

students and the teacher will be watched, recorded, and interviewed to determine

their reactions to the technology and their perceptions of the application’s effec-

tiveness in 1) aiding teacher explanations, 2) aiding student self-understanding, 3)

simplifying homework correction, 4) providing student feedback, and 5) simplifying

the monitoring of student understanding.

This researcher has high hopes for integrating these technologies and has already

given several lectures on it, has had several instructors ask to be part of the study for

use in their classroom, and has been asked to give a guest lectures at a neighboring

university.

It is the hope of this researcher that work will benefit pedagogy as a whole, aiding

the teaching and learning process through quicker and more effective feedback, with

the sketch recognition systems ultimately built from this project being used to teach

students at all levels (from kindergarten to graduate students). This researcher also

hopes that this future work will bridge a gap between education and computer science,

which will increase the interest of women (an under-represented group) in computer

science [106].
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14.1.3 Improving the Usability of LADDER and GUILD

Future work includes integrating LADDER and GUILD into the classroom, thus

creating a more robust system through interviews and monitoring reactions and usage

[9] [34] [124]. We hope that with the availability of tablet PCs in the classroom,

this will revolutionize classroom teaching by providing understanding, animation,

correction, and immediate feedback of hand-drawn graphical input. We expect that

broad use will make clear how sketch user interfaces can be more simply and easily

defined. This includes broadening what is expressible and examining how other forms

of context can be used to improve recognition, and determining how editing, display,

animations, and functionality can be more intuitively described.

Other questions to be looked at by the researcher include: What is the most

effective way to specify connections to existing back-end systems? How can additional

context (as described below) be specified in a simple, but yet, effective way?

14.2 Multi-modal LADDER and GUILD Devel-

opment

Future work includes integrating several modes of interaction into both the develop-

ment process (discussed here) and for use in recognition (discussed below). We would

like to study what is the most effective way of inputting domain information; thus far

domain information information is entered using only text and sketching, but other

ways of describing domains include speech and hand gestures [23]. We expect that

hand gestures and speech may be an effective way of inputting editing and animation

information.
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14.3 Recognizing a Broader Class of Shapes by

Combining User-Dependent and User-Independent

Methods

To provide more robust recognition, this researcher proposes to integrate user-independent

recognition methods (as described in this document) and user-dependent recognition

methods (such as the feature-based methods used by Rubine [185]).

We expect that the combination of these two results will provide both faster

and more accurate sketch recognition, essentially capturing the benefits of the two

methods. The advantage of the user-dependent feature-based recognition technique

is that it is fast and robust in terms of messy drawing. The disadvantage of this

technique is that a shape will not be recognized if the shape that is to be recognized

is drawn with a different number or order of strokes than in the training example.

The advantage of the user-independent geometric recognition technique described

in this paper is that shape can be drawn using any style as shapes are recognized

by what they look like, rather than how they were drawn. The disadvantage of this

technique is that shapes drawn quickly that do not look like the intended shape may

be mis-recognized because the low-level stroke parse was unable to parse the stroke

into the appropriate primitives.

Figure 14-1 shows the power of combining these techniques. The rectangle at the

top of the figure is the initial hand-drawn example. The middle row shows rectangles

that will be recognized by the geometric-based recognition algorithm, but not the

feature-based recognition algorithm. The bottom row shows rectangles that will be

recognized by the feature-based recognition algorithm, but not the geometric-based

recognition algorithm. By combining these recognition techniques, the recognition

system will recognize a larger class of shapes, while still providing users with the

flexibility to draw however they like and quickly recognizing shapes.
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Figure 14-1: Rectangles. Row 1: The original training example. Row 2: Rectangles
recognized from the training example, using geometric-based recognition. Row 3:
Rectangles recognized from the training example using feature-based recognition.

On a similar note, there exist a number of user-independent vision techniques

for recognizing shapes in a pixelized format [27] [18] [29] [126] [132]. We feel that

integrating these techniques into the system will cause it to recognize a larger number

of shapes more accurately.

14.4 Using Context Reducing Ambiguity

One important difficulty in sketch recognition is that we do not necessarily want to

recognize what the user drew, but, rather, what the user intended to draw. Humans

can make use of the plethora of available local and global contextual information

surrounding the sketch, which provides additional clues about the sketchers inten-

tion, and can, thus, recognize many shapes that computers cannot. Sketch systems

currently deal with ambiguity by constraining the drawing style [150] or by waiting

for further geometrical information to disambiguate the shapes using only a minimal

amount of local geometric context [102] [104] [12] [99] [157] [210].

However, humans use a myriad of forms of context when recognizing shapes, not

just local geometrical context. The shape description user study described in Sec-

tion 4.2.2 shows subjects utilizing a combination of geometric, similarity, cultural,

and common sense contextual cues to describe objects. This study and related re-

search [176] revealed the importance of geometrical context, but it also showed the

importance of other forms of context, including the value of describing things in terms
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of previously defined objects, using similarity and in terms of cultural objects. This

was particularly pertinent because users were specifically instructed not to include

such terms in their descriptions, but to use only geometrical terms, which causes us

to wonder how much more prevalent they would be if they were permitted.

Future work to be done by this researcher includes the ability to improve sketch

recognition using 1) local perceptual context, such as the geometrical profiles of the

shapes drawn, human perception tolerance, similarity to other shapes previously

drawn, surrounding speech, and surrounding hand gestures, and 2) global context,

including functional context [183] and common sense context.

14.4.1 Developing Robust Geometric Recognizers through

Perception

In order to correctly interpret shapes at a higher level, the system needs to ensure that

1) our lower level stroke processors generate all of the possible shape interpretations,

as well as a probabilistic measure of certainty, and 2) the geometric shape builders

generate all of the possible true geometric constraints and a probabilistic measure of

their certainties. This document has previously shown the need for and the usefulness

of using perceptually based constraints for recognition, but there is a need to do an

exhaustive study on the effect of perception of hand-drawn shapes, using various levels

of context. To provide further understanding, this researcher outlines a selection of

the questions she will study for the parallel constraint: What is the threshold for

two lines to be parallel? That is, how close to parallel do two lines have to be for

them to be parallel? Are these thresholds different if they are shown perfectly clean

lines versus messy hand-drawn lines? Do these thresholds change if the lines are close

together, or if there are other shapes between these lines? Do the thresholds change

if the lines are horizontal or vertical, compared to lines of other angles? How do the

thresholds differ if subjects are asked only if the two lines are parallel versus if they

are asked to give the angle between the lines? Is there a different threshold when
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users are asked to draw parallel lines compared to when they are shown two parallel

lines?

The following studies will be performed for each of the shapes and constraints in

the language. For shapes:

1. The users will be asked to draw shapes of a particular type (e.g., circle).

2. The users will be asked to identify specific values relative to the tested shape

given randomly produced shapes (e.g., they may be asked to determine the ratio

between the width and the height of a circle).

3. The users will be shown hand-drawn shapes alone on a page, and they will be

asked to click a check box, identifying whether the sketcher intended to draw

the tested shape.

4. The users will be shown hand-drawn shapes in local context (i.e., with the other

shapes on the page), and they will be asked to click a check box, identifying

whether each is the tested shape.

5. The users will be shown a video of the user drawing the shape, and they will be

asked to click a check box, identifying whether the user intended to draw the

tested shape.

For constraints:

1. The users will be asked to draw shapes abiding by a particular constraint. (For

example, the users may be asked to draw parallel lines.)

2. The users will be asked to identify specific values in reference to the constraint

given randomly produced shapes. (For example, the users may be asked to

determine the angle between two lines.)
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3. The users will be shown hand-drawn shapes alone on a page, and they will be

asked to click a check box, identifying whether the sketcher intended to abide

to the tested constraint (e.g., whether the two lines are parallel).

4. The users will be shown hand-drawn shapes in local context (i.e., with the other

shapes on the page), and they will be asked to click a check box, identifying

whether the tested constraint is held.

5. The users will be shown a video of the user drawing the shape, and they will

be asked to click a check box, identifying whether the user intended for the

constraint to be held.

This researcher plans to analyze the data to produce thresholds and a certainty

measure for each of the shapes and constraints. When appropriate, she will produce

different thresholds for different contextual situations.

The information gained above will be integrated into the system’s low level and

high-level recognizer. For any given hand-drawn stroke, the low level recognizer will

produce all possible interpretations, along with a certainty measure. For any higher-

level shape to be formed geometrically, it will produce all possible true constraints

and a measure of certainty.

14.5 Multi-modal Context

Imagine a mechanical engineering instructor giving a lecture with graphical content

at a white board; she is not just sketching, she is speaking, sketching, and actively

moving her hands to convey and communicate the material and interactions between

the elements. Each of the modes play an important part of the educational process

[88] [137]. Students use all of the modes to effectively understand the diagrams

and the topic. Integrating speech and gesture into the shape concept, and, thus,

the recognition process, could provide contextual information to improve recognition.
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Adler and Eisenstein at MIT and others have developed algorithms to aid in the

understanding of speech or gesture combined with sketching [2] [3] [4] [64] [65] [63]

[66] [68] [67]. Cohen shows the benefit of multi-modal systems [50]. Several multi-

modal systems integrating sketch and speech have been built [35] [49] [127] [175].

This researcher plans to extend LADDER and GUILD to allow shape descriptions

to include accompanying speech and hand gestures which may help disambiguate

shapes.

14.5.1 Functional Context

Functional context can be used to clarify an otherwise ambiguous diagram. Humans

use functional context to select a more plausible interpretation. For example, an oth-

erwise ambiguous electrical engineering drawing may have one interpretation which

causes voltage to run through the circuit, while the other does not. In this case, the

clear choice should be to choose the interpretation that causes something to happen.

However, this is not a simple task for the computer. In order for the computer to be

able to make such an interpretation, it must know not only how to simulate the draw-

ing, but also which simulation results are preferred to others. The example given may

seem simple, but think of a circuit diagram with a myriad of possibilities for voltage

flow. Or, think of a mechanical engineering diagram in which certain items must be

of identical size in order to achieve the desired performance. As a first step in this

problem, this researcher plans to identify several scenarios in which this may occur,

as well as data for the appropriate solution. She shall then look at different ways

of encoding the information in order to keep things simple for the developer. This

researcher hopes to find several ways of abstracting functional domain context so that

the ideas may be useable in different domains.
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14.6 Describing Shapes Through Similarity

Previous studies discussed in this document have shown that humans are particularly

sensitive to similarities in shape. In these studies, users described new shapes in terms

of previously defined shapes, even when they were explicitly told not to. GUILD ’s

current recognizers allows users to build new shapes hierarchically, thus providing a

limited amount of similarity, enabling users to build recognizers for shapes described

as: “this shape is the same as the last, except that it also has....” However, based

on a study described in this thesis, it seems that humans use similarity in a myriad

of ways, simplifying descriptions, and also enabling users to describe and recognize

shapes that would otherwise be impossible or at least impractical to distinguish. This

researcher plans to develop a model for recognition based on fuzzy logic to recognize

similar shapes. By allowing users to describe similar shapes recognition systems can

recognize a larger class of shapes. For instance, using the new fuzzy logic model,

a system can recognize the rounded rectangle as a shape that is similar to both a

rectangle and a circle.

14.7 Using Common Sense to Simplify Shape De-

scription

The shape description study described in this thesis revealed a plethora of cultural

artifacts in the user’s descriptions despite explicit instructions not to include any

non-geometrical objects. Different users tended to use the same cultural artifact to

describe the same shape, emphasizing the existence of a shared common sense library

of cultural artifacts related to shape and function. For example, the McDonalds’ Arch,

a cultural artifact known for its shape, was commonly used to describe a side-ways

curved capital-E; a bridge, a cultural artifact known for its function (a bridge connects

two larger areas with a path, but bridges themselves can vary in appearance), was

commonly used in the study to describe the shape“][” in our study. In order to allow
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developers to describe shapes in terms of everyday cultural objects, one would have

to 1) define each of the objects that may be used in a description and 2) come up with

a similarity metric for comparing them. Given the number of objects in our everyday

lives, this is no inconsequential task. However, this researcher hopes and expects that

users will use only a limited set of cultural shapes to describe these shapes, and that

the set of shapes will be common among groups of people. This researcher expects

that integrating common sense artifacts into the sketch recognition system will 1) ease

human descriptions of shapes and 2) help systems to better recognize drawn images.
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Chapter 15

Conclusion

The over-arching goal of this work is to make human-computer interaction as natural

as human-human interaction. Part of this vision is to have computers understand

a variety of forms of interaction that are commonly used between people, such as

sketching. Computers should, for instance, be able to understand the information

encoded in diagrams drawn by and for scientists and engineers, including mechanical

engineering diagrams.

Sketches are used throughout the design, brainstorming, and educational process;

we name here a few examples: finite state machines, mechanical engineering diagrams,

electrical circuit diagrams, physics diagrams, chemical symbols and reactions, flow

charts, UML diagrams to design software, musical notation, tree data structures,

graphs, and many others.

Ordinary paper offers one the freedom to sketch naturally, but it does not provide

the benefits of a computer-interpreted diagram, such as more powerful editing and

design advice or simulation abilities. Sketch recognition systems bridge that gap by

allowing users to hand-sketch their diagrams, while recognizing and interpreting these

diagrams to provide the power of a computer-understood diagram.

Many sketch systems have been built for a myriad of domains. Unfortunately,
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these sketch systems may not fill the needs of the sketcher, and building these sketch

systems requires not only a great deal of time and effort, but also an expertise in

sketch recognition at a signal level. Thus, the barrier to building a sketch system

is high. This researcher wants to empower user interface developers, including de-

signers and educators, who are not experts in sketch recognition, to be able to build

sketch recognition user interfaces for use in designing, brainstorming, and teaching.

In response to this need, this researcher has developed the FLUID framework for

f acil itating UI development.

As part of the framework, this researcher has developed a perception-based sketch-

ing language, LADDER, for describing shapes, and a customizable recognition system,

GUILD, that automatically generates a sketch recognition system from these shapes.

In order to allow drawing freedom, shapes are recognized by what they look like,

rather than by how they are drawn.

LADDER provides the ability to describe how shapes in a domain are drawn,

displayed, and edited within the user interface. Because humans are naturally skilled

at recognizing shapes, the system uses human perceptual rules as a guide for the

constraints in the language and for recognition. These perceptual rules were reinforced

through a user study of 35 people who were asked to describe approximately 30 shapes

each. The language also has a number of higher-level features that simplify the task

of creating a domain description, including hierarchy, abstract shapes, vectors, and

context.

GUILD transforms a LADDER description into a user interface. Because of the

importance of drawing freedom, this researcher developed a new, fast recognition

algorithm based on indexing. This algorithm takes advantage of the perceptually-

based constraints in LADDER to allow shapes to be drawn in an interspersed manner,

but still to be recognized in real-time.

GUILD also provides an API to allow users to connect to existing back-end sys-

tems. Thus far, about a dozen people have used the system to build domain systems
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for over fifteen different domains.

Because showing the ideal shape is an important part of beautification, this re-

searcher also built a shape generator that uses MATLAB to create an idealized version

of a shape with all of the constraints solved. This system is also used to generate

near-miss shapes.

As it is difficult to create a correct shape description, the research built a debug-

ging system to correct syntactical and conceptual errors. Because it is more natural to

draw a shape than to describe it, this researcher developed a system to automatically

generate a description from a single drawn example, based on work by others. The

generated shape description can then either be hand-tweaked or modified automat-

ically with a concept learning algorithm developed by this researcher, using labeled

near-miss examples. These near-miss examples can either be generated by the user

or, because users are often unreliable at generating their own near-miss examples,

they can be generated automatically by the system. This researcher had several users

try the near-miss generation system, and then asked them comment on the successes

and failures of the systems.

This researcher feels that the future implications of this research are large. She

mentioned several examples, throughout the work. But she is most interested in seeing

her work applied to classroom pedagogy. Graphical diagrams play an important

part in the learning process, but they are time-consuming to grade and are often

omitted from the homework and testing process. Testing and early feedback has

been shown to be critical in the learning process. This researcher feels that the

work in this document can be applied to in-class and out-of-class learning, enabling

teachers to create their own recognition systems for class and homework use, and

by 1) aiding teacher explanations through interactive animations, 2) aiding student

self-understanding through student-directed interactive animations, 3) allowing for

automatic graphical homework correction, 4) permitting immediate student feedback,

and 5) simplifying the monitoring of student understanding.
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This researcher would also like to improve sketch recognition accuracy by 1) com-

bining user-dependent (feature-based) recognition with user-independent (geometric)

recognition techniques, and by2) incorporating global and local context into the re-

cognition system, including geometric, perceptual, functional, multi-modal, similarity,

and common sense context.
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Appendix A

LADDER Elements

A.1 Predefined shapes

• Shape

The abstract shape that all shapes extend. The accessible properties for all

shapes are:

– Rectangle boundingBox: the smallest rectangle parallel to the horizon

that can be placed around the shape

– Point center: the center point of the boundingBox

– double width: the width of the boundingBox

– double height: the height of the boundingBox

– double area: the area of the boundingBox

– long time: the time at which the shape was completed. Time is included

to allow constraints to specify stroke order or direction.

• Point

A point. The accessible properties are:

– double x: the x value of the point
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– double y: the y value of the point

• Path

A continuous stroke, not necessarily straight. The accessible properties are:

– Point p1: one endpoint of the stroke

– Point p2: the other endpoint of the stroke

– double length: the length of the stroke

• Line

A straight line. The accessible properties are:

– Point p1: one endpoint of the line

– Point p2: the other endpoint of the line

– Point midpoint: alias for center

– double length: length of the line

– double angle: angle of the line. The angle is between 0 and 360 degrees,

and is the angle between a directional horizontal line pointing to the right

and the Line directed from p1 to p2.

All Lines are also Paths.

• Curve

A curve defined by four points: its two endpoints and two control points. The

accessible properties are:

– Point p1: one endpoint of the curve

– Point p2: the other endpoint of the curve

– Point control1: one control point

– Point control2: the other control point of the curve
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• Spiral

A spiral starting from one angle and radius, ending at another. The radius con-

tinually gets larger or smaller throughout the spiral, with the amount specified

by the growFactor. The accessible properties are:

– Point p1: one endpoint of the spiral

– Point p2: the other endpoint of the spiral

– Point center: center of the spiral, a.k.a. the rotation point

– double radius1: the radius of the spiral at p1 (i.e., the distance from

center to p1)

– double radius2: the radius of the spiral at p2 (i.e., the distance from

center to p2)

– double angle1: the angle of the line from center to p1

– double angle2: the angle of the line from center to p2

– double degrees: the total number of degrees covered (can be larger

than 360)

– double numLoops: the number of complete rotations around the center

point (equal to degrees/360)

– double growFactor: the proportional change in the radius of the circle

at each rotation

• Arc

An arc, a portion of an ellipse

– Point p1: one endpoint of the arc

– Point p2: the other endpoint of the arc

– Point center: center of the arc, as if the arc were a complete ellipse;

a.k.a. the rotation point

– double width: the width of the ellipse implied by the arc
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– double height: the height of the ellipse implied by the arc

– double angle1: the angle of the line from center to p1

– double angle2: the angle of the line from center to p2

• Ellipse

An ellipse in any orientation. This is an ellipse defined by the four points of a

rectangle surrounding it. The accessible properties are:

– Point center: center of the ellipse

– double width: the width of the ellipse

– double height: the height of the ellipse

• Text

Text is entered by using the keyboard or the handwriting input device provided

by the tablet pc. Its accessible properties are:

– Point center: center of the string

– String text: the text of the string

A.2 Predefined Constraints

Note that any argument with a name linex can take an argument of any shape type

that contains a Point p1 and Point p2, such as a curve or an arc. A line between

these two points will then be used in computation.

Constraints with an underscore in them are more specific versions of other con-

straints. While it is permissable to use them in hand-written constraints, these are

included for use by the near-miss generator to effectively reduce the possibility space.

Note that the constraints define what the shapes should look like in the ideal

sense, or what the sketcher intended. Each of the constraints has a noise tolerance

included in it, discussed previously in this document.
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• above shape1 shape2

The center of shape1 is above the center of shape2.

Orientation-Dependent

• acute line1 line2

The angle from line1 to line2, when traveling in a counter-clockwise direction, is

acute. The maximum computable angle between undirected lines is 180 degrees, as

line1 and line2 are undirected. (Deprecated because it is hard to use. Use slanted

instead.)

Orientation-Independent

• acuteDir line1 line2

line1 and line2 are directed from Point p1 to Point p2. The maximum computable

angle between directed lines is 360 degrees. The angle between the two lines is acute,

when measuring in the counter-clockwise direction. (Deprecated because it is hard

to use. Use slanted instead.)

Orientation-Independent

• acuteMeet line1 line2

line1 and line2 meet at one of their endpoints. The lines are directional lines pointing

away from their meeting point. These lines form an acute angle when measuring in a

counter-clockwise direction. The specification of p1 and p2 have nothing to do with

the direction of the lines when measuring the angle.

Orientation-Independent

• below shape1 shape2

The center of shape1 is below the center of shape2.

Orientation-Dependent

• bisectspoint line

The point is located at the center (bisects) of the line.

Orientation-Independent

• bisects 1c line1 line2

Endpoint p1 of line1 bisects line2 (is located at the center of the line2 ). This is a
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more specific constraint than bisects.

Orientation-Independent

• bisects 2c line1 line2

Endpoint p2 of line1 bisects line2 (is located at the center of the line2 ). This is a

more specific constraint than bisects.

Orientation-Independent

• bisects c1 line1 line2

Endpoint p1 of line2 bisects line1 (is located at the center of the line1 ). This is a

more specific constraint than bisects.

Orientation-Independent

• bisects c2 line1 line2

Endpoint p2 of line2 bisects line1 (is located at the center of the line1 ). This is a

more specific constraint than bisects.

Orientation-Independent

• coincident point1 point2

point1 and point2 are located at the same location.

Orientation-Independent

• collinear point1 point2 point3

point1, point2, and point3 are located on one line.

Orientation-Independent

• concentric shape1 shape2

The center of shape1 and the center of shape2 are coincident.

Orientation-Independent

• connected shape1 shape2

shape1 and shape2 have p1, p2, or portx defined as endpoints. (Ports are used to

allow complex shapes to have more than one endpoint. This is used in domains such

as electrical engineering.) One endpoint from shape1 and one endpoint from shape2

are coincident.

Orientation-Independent
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• connected 11 line1 line2

Endpoint p1 of line1 is coincident to endpoint p1 of line2. This is a more specific

constraint than connected.

Orientation-Independent

• connected 12 line1 line2

Endpoint p1 of line1 is coincident to endpoint p2 of line2. This is a more specific

constraint than connected.

Orientation-Independent

• connected 21 line1 line2

Endpoint p2 of line1 is coincident to endpoint p1 of line2. This is a more specific

constraint than connected.

Orientation-Independent

• connected 22 line1 line2

Endpoint p2 of line1 is coincident to endpoint p2 of line2. This is a more specific

constraint than connected.

Orientation-Independent

• contains shape1 shape2

The boundingBox of shape1 contains the boundingBox of shape2.

Orientation-Independent

• diagonal line1 line2

The line has a positive or negative slope.

Orientation-Dependent

• drawOrder shape1 shape2

shape1 was drawn before shape2.

Orientation-Dependent

• equal value1 value2

value1 is equal to value2. Deprecated. This is not suggested for use, use a more

specific constraint like equalSize.

Orientation-Independent
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• equalAngle line1 line2 line3 line4

The angle between line1 and line2 is equal to the angle between line3 and line4.

Orientation-Independent

• equalLength line1 line2

line1 and line2 are of equal length.

Orientation-Independent

• equalSize shape1 shape2

shape1 and shape2 are of equal size. The size of the object is measured by the

length of the boundingBox. This allows lines and other objects to be compared

appropriately.

Orientation-Independent

• far shape1 shape2

shape1 and shape2 are far from each other.

Orientation-Independent

• horizontal line

The line is horizontal. (The slope is zero.).

Orientation-Dependent

• intersects shape1 shape2

If shape1 and shape2 are lines, then they intersect; else, their boundingBoxes over-

lap.

Orientation-Independent

• larger shape1 shape2

The diagonal of the boundingBox of shape1 is longer than the diagonal of the

boundingBox of shape2

Orientation-Independent

• leftOf shape1 shape2

All of shape1 is to the left of all of shape2. The x values do not overlap.

Orientation-Dependent
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• longer line1 line2

The length of line1 is longer than the length of line2. This is syntactic sugar for

larger

Orientation-Independent

• longer shape1 shape2

The length of line1 is longer than the length of line2. This is syntactic sugar for

larger

Orientation-Independent

• near shape1 shape2

shape1 is near to shape2.

Orientation-Independent

• negSlope line

The line has a negative slope. It is pointing from bottom right to upper left. The

line is undirected.

Orientation-Dependent

• not constraint

This constraint confirms that the constraint is not true.

Meta-constraint

• obtuse line1 line2

The angle from line1 to line2 when traveling in a counter-clockwise direction is

obtuse. line1 and line2 are undirected. The maximum computable angle between

undirected lines is 180 degrees. (Deprecated because it is hard to use. Use slanted

instead.)

Orientation-Independent

• obtuseDir line1 line2

line1 and line2 are directed from Point p1 to Point p2. The maximum computable

angle between directed lines is 360 degrees. The angle between the two lines is obtuse,

when measuring in the counter-clockwise direction. (Deprecated because it is hard
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to use. Use slanted instead.)

Orientation-Independent

• obtuseMeet line1 line2

line1 and line2 meet at one of their endpoints. The lines are directional lines pointing

away from their meeting point. These lines form an obtuse angle when measuring

in a counter-clockwise direction. The specification of p1 and p2 have nothing to do

with the direction of the lines when measuring the angle.

Orientation-Independent

• onOneSide line shape

The bounding box of the shape is on a single side of the line. This is syntactic sugar

for intersects.

Orientation-Independent

• oppositeSide line shape1 shape2

The center of shape1 and the center of shape2 are on the opposite sides of the line. If

you draw a line between the two center points, that line will intersect the line when

the two lines are extended to infinity.

Orientation-Independent

• or constraint1 constraint2

This constraint checks that at least one of the two constraints listed is true.

Meta-constraint.

• overlapAbove shape1 shape2

The y-values overlap, but the center of shape1 is above the center of shape2.

Orientation-Dependent

• overlapBelow shape1 shape2

The y-values overlap, but the center of shape1 is below the center of shape2.

Orientation-Dependent

• overlapLeftOf shape1 shape2

The x-values overlap, but the center of shape1 is to the left of the center of shape2.

Orientation-Dependent
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• overlapRightOf shape1 shape2

The x-values overlap, but the center of shape1 is to the right of the center of shape2.

Orientation-Dependent

• parallel line1 line2

line1 is parallel to line2. They are both undirected lines. They have the same slope.

Orientation-Independent

• perpendicular line1 line2

line1 is perpendicular to line2. They are both undirected lines. The slopes are

reciprocal inverses of each other (-1/m).

Orientation-Independent

• pointsDown arc

The direction of the arc has an angle of 270. The bump is at the bottom.

Orientation-Dependent

• pointsLeft arc

The direction of the arc has an angle of 180. The bump is at the left.

Orientation-Dependent

• pointsRight arc

The direction of the arc has an angle of 0. The bump is at the right.

Orientation-Dependent

• pointsUp arc

The direction of the arc has an angle of 90. The bump is at the top.

Orientation-Dependent

• posSlope line

The line has a positive slope. It is pointing from bottom left to upper right. The line

is undirected.

Orientation-Dependent

• rightOf shape1 shape2

All of shape1 is to the right of all of shape2. The x values do not overlap.

Orientation-Dependent
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• sameSide line shape1 shape2

The center of shape1 and the center of shape2 are on the same side of the line. If you

draw a line between the two center points, that line will not intersect the line when

the two lines are extended to infinity.

Orientation-Independent

• sameX line shape1 shape2

The center of shape1 and the center of shape2 are at the same x-value. The shapes

are vertically aligned.

Orientation-Dependent

• sameY line shape1 shape2

The center of shape1 and the center of shape2 are at the same y-value. The shapes

are horizontally aligned.

Orientation-Dependent

• slanted line1 line2

The angle between line1 and line2 is either acute or obtuse. The angle is not parallel

or perpendicular. The lines are undirected.

Orientation-Independent

• smaller shape1 shape2

shape1 is smaller than shape2. The diagonal of the boundingBox of shape1 is shorter

than the diagonal of the boundingBox of shape2.

Orientation-Independent

• smaller line shape1

An endpoint of the line touches the shape.

Orientation-Independent

• vertical line

The line is vertical. The slope is infinite.

Orientation-Dependent

• vertPosSlopeline

The line is either vertical or has a positive slope.
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Orientation-Dependent

A.3 Predefined Editing Behaviors

A.3.1 Predefined Triggers

The possible triggers include all of those listed here as well as all of the actions listed

in Appendix A.3.2, allowing for “chain-reaction” editing.

• click shape/selection

Click the mouse on a shape or selection.

• doubleClick shape/selection

Double click the mouse on a shape or selection.

• clickHold shape/selection

Click and hold down the mouse over a shape or selection for a time greater than

0.4 seconds.

• clickHoldDrag shape/selection

Click and hold down the mouse over a shape or selection for a time greater than

0.4 seconds, then move the mouse with the mouse button held down.

• draw shape/shape-composition

Draw a particular shape or shape-composition.

• penOver shape/selection

Hold the pen over of a shape or selection. For instance, this constraint may

be used to show a special cursor handle to imply that an object can be scaled

when the pen rests over one of the corners of the bounding box.
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• drawOver new-shape old-shape/selection

Draw a new-shape on top of an old-shape or selection. For instance, one may

wish to draw an X over an object to signify deletion.

• scribbleOver shape/selection

Draw a scribble over a shape or selection. A scribble is defined as a back and

forth motion repeatedly crossing over an object.

• encircle shapes

Draw a closed path around a group of shapes . This trigger may be used to

select a collection of shapes.

• Any editing action

Any action (listed in Section A.3.2) also can be used as a trigger.

A.3.2 Predefined Actions

• wait milliseconds

Wait for a certain number of milliseconds before performing the next action.

• select shapes

Select the collection of shapes specified.

• deselect selection

Deselect the collection of shapes specified.

• color shape/selection color

Color the shape or selection the color specified.

• delete shape/selection

Delete the specified shape or selection.

• move shape/selection [x-shift y-shift]

If the x-shift and y-shift are not specified, then translate the specified shape or

312



selection according to the motion of the mouse. If x-shift and the y-shift are

specified, translate according to the amount specified.

• rotate shape/selection fixed-point [amount]

Rotate the specified shape or selection in reference to the amount specified.

Rotation occurs around the fixed-point. If the amount is not specified, then

rotate according to the motion of the mouse.

• scale shape/selection fixed-point [amount]

Scale the specified shape or selection in terms of the amount specified. The

fixed-point remains fixed, and the other points move to adjust to the scaling.

For instance, when dragging the bottom corner of a square, the fixed-point could

be the upper corner of the square. If the amount is not specified, then scale

according to the motion of the mouse.

• resize shape/selection width height

Resize the bounding box of the shape or selection specified to the width and

height specified. This is done by a combination of scale and translate commands.

• rubberBand shape/selection fixed-point move-point

Translate, scale, and rotate the shape or selection specified so that the fixed-

point remains in the same spot, while the move-point translates according to

the movement of the mouse, and the entire shape or selection remains solid.

• rubberBand shape/selection fixed-point old-point new-point

Translate, scale and rotate the shape or selection specified so that the fixed-

point remains in the same spot, while the old-point translates according to the

location of the new-point , and the entire shape or selection remains solid.

• setCursor type point

Shows a specialized cursor handle at a particular point . The type can be NOR-

MAL, MOVE, SCALE, ROTATE, DRAG, PAINT, or TEXT.
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• showHandle type point

Place an object at a particular point specifying that the object can be edited.

The type can be MOVE, SCALE, or ROTATE.

A.3.3 Predefined Display Methods

The predefined display methods are listed below. The arguments in square brackets

are optional.

If only color is specified, then the object is drawn as normal. If a display method

other than color is specified, the shape is drawn only as specified. E.g., if the display

method paintString is listed, then only the string will be displayed unless accom-

panied by a paintCleaned or other such display command to display the entire

drawn shape.

• color color1 [shape1 ] [shape2 ] [shape3 ]

Draw the shapes in the color specified. All three shape arguments are optional.

If no shapes are included, draw the entire shape in the specified color; else, draw

only the shapes listed in color1.

• originalStrokes [shape1 ] [shape2 ] [shape3 ] [shape4 ]

All arguments are optional. If no shapes are specified, draw the entire shape

using the original strokes. Otherwise, draw only the subshapes specified using

the original strokes.

• cleanedStrokes [shape1 ] [shape2 ] [shape3 ] [shape4 ]

All arguments are optional. This command specifies that the entire shape should

be drawn using cleaned strokes using no arguments. Or, it specifies that only

the shapes specified in the arguments should be drawn using cleaned strokes.

Cleaned strokes is when the primitives are drawn neatly, but nothing more.

• idealStrokes [shape1 ] [shape2 ] [shape3 ] [shape4 ]
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Note that Matlab is needed on your machine to get this to work properly. All

arguments are optional. This command specifies that the entire shape should

be drawn using ideal strokes using no arguments. Or it specifies that only the

shapes specified in the arguments should be drawn using ideal strokes. Ideal

strokes is when all the constraints are solved before displaying. For instance,

two lines may be constrained to meet at their endpoints. When displaying the

ideal strokes, shapex will be drawn such that these lines actually do meet at

their endpoints.

• paintPoint locationPoint [size] [color ]

Draws a point of the size specified at the locationPoint specified. Note that

the last argument is optional, in which case the point is drawn to be of size 2.

The color can also be specified. If no color is specified, the point will be drawn

using the color specified.

• paintLine start-point end-point [color]

This draws a line from the start-point to the end-point. The color can also be

specified. If no color is specified, the line will be drawn using the color specified.

• paintEllipse center-point width height [color ]

Draws an ellipse specified at the center-point with the specified width and height.

The color can also be specified. If no color is specified, the ellipse will be drawn

using the color specified.

• paintRectangle upper-left-corner-point lower-right-corner-point [color ]

This draws a horizontal rectangle from the upper-left-corner-point to the lower-

right-corner-point . Note that this will still work if the points are reversed; it

simply draws the smallest rectangle that surrounds both points. The color can

also be specified. If no color is specified, the rectangle will be drawn using the

color specified.

• paintString string start-point [size] [color ]

This draws a text string at the specified start-point. size specifies the size of
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the font, else the default size will be used. The string should not contain any

spaces. The color can also be specified. If no color is specified, the string will

be drawn using the color specified.

• paintText textObject start-point [size] [color ]

Draws the text in the textObject specified (which had been entered in by the

keyboard as part of the drawing and saved as such in the definition) at the

specified location. The color can also be specified. If no color is specified, the

string will be drawn using the color specified.

• paintImage filename centerPoint [width] [height ]

This draws the image (.gif or .jpg) in the specified filename located in the

images director where this shapedef is defined. You can have subdirectories,

just replace the slash with a dot. The image is drawn with then center of the

image at the centerPoint. The image can be scaled to the width and height

specified. If no width or height is specified, the image will be displayed the

original size. If just the width is specified, the image will be scaled the shape

keeping the original aspect ratio.
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Appendix B

Domain Descriptions

This appendix provides sample domain descriptions, including Tic Tac Toe, UML

class diagrams, Finite State Machines, and Course of Action Diagrams to aid in

understanding, and for use with LADDER and GUILD. Images of these domains are

shown in Chapter 6.2.

B.1 Tic Tac Toe

B.1.1 Domain List

The contents of TicTacToe.ldl are as follows:

sketch.shapes.geom.ellipse.Circle

sketch.shapes.tictactoe.Cross

sketch.shapes.tictactoe.Board

sketch.shapes.tictactoe.CircleWin

sketch.shapes.tictactoe.CrossWin
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B.1.2 Circle Shape Description

The contents of Circle.lsd are as follows:

(define shape Circle

(isA Body)

(components

(Ellipse e)

)

(display

(color blue)

(paintEllipse e.center e.width e.width)

)

(editing

((drag this) (move this))

)

)

B.1.3 Cross Shape Description

The contents of Cross.lsd are as follows:

(define shape Cross

(isA Shape)

(components

(Line pos)

(Line neg)

)

(constraints

(posSlope pos)
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(negSlope neg)

(equalLength pos neg)

(intersects pos neg)

)

(display

(color green)

)

(editing

((drag this) (move this))

)

)

B.1.4 Board Shape Description

The contents of Board.lsd are as follows:

define shape Board

(isA Shape)

(components

(Line top)

(Line bottom)

(Line left)

(Line right)

)

(constraints

(intersects left bottom)

(intersects left top)

(intersects right bottom)

(intersects right top)

(equalLength left right)
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(equalLength top bottom)

(vertical left)

(vertical right)

(horizontal bottom)

(horizontal top)

(not (intersects left right))

(not (intersects top bottom))

)

(display

(color black)

)

)

B.1.5 CircleWin Shape Description

The contents of CircleWin.lsd are as follows:

(define shape CircleWin

(isA Shape)

(components

(Circle c1)

(Circle c2)

(Circle c3)

(Board board)

)

(constraints

(collinear c1.center c2.center c3.center)

(intersects c1 board)

(intersects c2 board)

(intersects c3 board)
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)

(display

(color black c1 c2 c3)

(paintString CIRCLE_WINS board.center)

(cleanedStrokes)

)

)

B.1.6 CrossWin Shape Description

The contents of CrossWin.lsd are as follows:

(define shape CrossWin

(isA Shape)

(components

(Cross c1)

(Cross c2)

(Cross c3)

(context Board board)

)

(constraints

(collinear c1.center c2.center c3.center)

(intersects c1 board)

(intersects c2 board)

(intersects c2 board)

)

(display

(color red)

(paintString CROSS_WINS board.center)

(cleanedStrokes)
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)

)

B.2 UML Class Diagrams

B.2.1 Domain List

The contents of UML.ldl are as follows:

sketch.shapes.uml.Circle

sketch.shapes.uml.Arrow

sketch.shapes.uml.TriangleArrow

sketch.shapes.uml.DiamondArrow

sketch.shapes.uml.Rectangle

sketch.shapes.uml.Interface

sketch.shapes.uml.Class

sketch.shapes.uml.AbstractClass

sketch.shapes.uml.DependencyAssociation

sketch.shapes.uml.GeneralizationAssociation

sketch.shapes.uml.CompositionAssociation

B.2.2 Circle Shape Description

The contents of Circle.lsd are as follows:

(define shape Circle

(isA Shape)

(components

(Ellipse e)
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)

(display

(color magenta)

(paintEllipse e.center e.width e.height)

)

(editing

((drag center) (move this))

((drag boundBottomRight)

(scale this boundBottomRight boundTopLeft))

)

)

B.2.3 Arrow Shape Description

The contents of Arrow.lsd are as follows:

(define shape Arrow

(isA AbstractArrow)

(components

(Line head1)

(Line head2)

(Line shaft)

)

(constraints

(coincident shaft.p1 head1.p1)

(coincident shaft.p1 head2.p1)

(longer shaft head2)

(equalLength head1 head2)

(acuteMeet shaft head1)

(acuteMeet head2 shaft)
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)

(aliases

(Point head shaft.p1)

(Point tail shaft.p2)

(Point pointHead1 head1.p2)

(Point pointHead2 head2.p2)

)

(display

(color red)

(cleanedStrokes)

)

(editing

((drag center) (move this))

((drag head) (rubberband this tail head))

((drag tail) (rubberband this head tail))

)

)

B.2.4 TriangleArrow Shape Description

The contents of TriangleArrow.lsd are as follows:

(define shape TriangleArrow

(isA AbstractArrow)

(components

(Arrow oa)

(Line head3)

)

(constraints

(coincident head3.p1 oa.pointHead1)
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(coincident head3.p2 oa.pointHead2)

)

(aliases

(Line shaft oa.shaft)

(Line head1 oa.head1)

(Line head2 oa.head2)

(Point head oa.head)

(Point tail oa.tail)

)

(display

(color pink)

(cleanedStrokes)

)

(editing

((drag center) (move this))

((drag head) (rubberband this tail head))

((drag tail) (rubberband this head tail))

)

)

B.2.5 DiamondArrow Shape Description

The contents of DiamondArrow.lsd are as follows:

(define shape DiamondArrow

(isA AbstractArrow)

(components

(Arrow oa)

(Line d1)

(Line d2)
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)

(constraints

(coincident d1.p1 d2.p1)

(coincident d1.p2 oa.pointHead1)

(coincident d2.p2 oa.pointHead2)

)

(aliases

(Line shaft oa.shaft)

(Line head1 oa.head1)

(Line head2 oa.head2)

(Point head oa.head)

(Point tail oa.tail)

)

(display

(color magenta)

(cleanedStrokes)

)

(editing

((drag center) (move this))

((drag head) (rubberband this tail head))

((drag tail) (rubberband this head tail))

)

)

B.2.6 Rectangle Shape Description

The contents of Rectangle.lsd are as follows:

(define shape Rectangle

(isA Shape)
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(components

(Line top)

(Line bottom)

(Line left)

(Line right)

)

(constraints

(horizontal top)

(horizontal bottom)

(vertical left)

(vertical right)

(coincident top.p2 right.p1)

(coincident right.p2 bottom.p1)

(coincident bottom.p2 left.p1)

(coincident left.p2 top.p1)

(above top bottom)

(leftOf left right)

)

(display

(color magenta)

(paintRectangle top.p1 bottom.p1)

)

(editing

((drag center) (move this))

((drag boundBottomRight)

(scale this boundBottomRight boundTopLeft))

)

)
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B.2.7 Interface Shape Description

The contents of Interface.lsd are as follows:

(define shape Interface

(isA AbstractClass)

(components

(Circle circle)

(Text text)

)

(constraints

(contains circle text)

)

(display

(color blue)

)

(editing

((drag center) (move this))

((drag text) (move text))

((drag boundBottomRight)

(scale this boundBottomRight boundTopLeft))

)

)

B.2.8 Class Shape Description

The contents of Class.lsd are as follows:

(define shape Class

(isA AbstractClass)
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(components

(Rectangle rect)

(Text text)

)

(constraints

(contains rect text)

)

(display

(color blue)

(cleanedStrokes)

)

(editing

((drag center) (move this))

((drag boundBottomRight)

(scale this boundBottomRight boundTopLeft))

((drag text) (move text))

)

)

B.2.9 AbstractClass Shape Description

The contents of AbstractClass.lsd are as follows:

(define shape AbstractClass

(isA Shape)

)

B.2.10 DependencyAssociation Shape Description

The contents of DependencyAssociation.lsd are as follows:
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(define shape DependencyAssociation

(isA Shape)

(components

(Arrow arrow)

(context AbstractClass classhead)

(context Class classtail)

)

(constraints

(contains classhead arrow.head)

(contains classtail arrow.tail)

)

(display

(paintString uses arrow.center)

(cleanedStrokes)

(paintString uses arrow.center)

)

)

B.2.11 GeneralizationAssociationShape Description

The contents of GeneralizationAssociation.lsd are as follows:

(define shape GeneralizationAssociation

(isA Shape)

(components

(TriangleArrow arrow)

(context Class headclass)

(context Class tailclass)

)

(constraints
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(contains headclass arrow.head)

(contains tailclass arrow.tail)

)

(display

(paintString extends arrow.center)

(cleanedStrokes)

(paintString extends arrow.center)

)

)

B.2.12 CompositionAssociation Shape Description

The contents of CompositionAssociation.lsd are as follows:

(define shape CompositionAssociation

(isA Shape)

(components

(DiamondArrow arrow)

(context Class headclass)

(context Class tailclass)

)

(constraints

(contains headclass arrow.head)

(contains tailclass arrow.tail)

)

(display

(paintString composes arrow.center)

(cleanedStrokes)

(paintString composes arrow.center)

)
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)

B.3 Finite State Machines

B.3.1 Domain List

The contents of FiniteState.ldl are as follows:

sketch.shapes.finitestate.State sketch.shapes.geom.arrow.Arrow

sketch.shapes.finitestate.AbstractState

sketch.shapes.finitestate.State

sketch.shapes.finitestate.InputString

sketch.shapes.finitestate.StartState

sketch.shapes.finitestate.Transition

sketch.shapes.finitestate.AcceptState

B.3.2 Arrow Shape Description

The contents of Arrow.lsd are as follows:

(define shape Arrow

(isA Shape)

(components

(Line head1)

(Line head2)

(Line shaft)

)

(constraints

(coincident shaft.p1 head1.p1)
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(coincident shaft.p1 head2.p1)

(longer shaft head2)

(equalLength head1 head2)

(acuteMeet shaft head1)

(acuteMeet head2 shaft)

)

(aliases

(Point head shaft.p1)

(Point tail shaft.p2)

)

(display

(color green)

(cleanedStrokes)

)

(editing

((drag center) (move this))

((drag head) (rubberband this tail head))

((drag tail) (rubberband this head tail))

)

)

B.3.3 AbstractState Shape Description

The contents of AbstractState.lsd are as follows:

(define shape AbstractState

(isA Shape)

)
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B.3.4 State Shape Description

The contents of State.lsd are as follows:

(define shape State

(isA AbstractState)

(components

(Ellipse c)

(Text t)

)

(constraints

(intersects c t)

)

(display

(paintEllipse c.center c.height c.height)

(paintText t c.center)

(color blue)

)

(editing

((drag this) (move this))

)

)

B.3.5 AcceptState Shape Description

The contents of AcceptState.lsd are as follows:

(define shape AcceptState

(isA AbstractState)

(components
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(Ellipse c)

(State s)

)

(constraints

(intersects c s)

)

(display

(paintEllipse s.center s.height s.height)

(paintEllipse s.center c.height c.height)

(color blue)

(paintText s.t s.center)

)

(editing

((drag this) (move this))

)

)

B.3.6 StartState Shape Description

The contents of StartState.lsd are as follows:

(define shape StartState

(isA AbstractState)

(components

(AbstractState state)

(Line top)

(Line bottom)

(context Text text)

)

(constraints
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(posSlope bottom)

(negSlope top)

(coincident bottom.p2 top.p2)

(intersects state top.p2)

(near text.location top.p1)

)

(aliases

(Point textTop top.p1)

(Point textBottom bottom.p1)

(Point textRight top.p2)

)

(display

(color green)

)

(editing

((drag this) (move this))

)

)

B.3.7 InputState Shape Description

The contents of InputState.lsd are as follows:

(define shape InputString

(isA AbstractState)

(components

(context StartState state)

(Text input)

)

(constraints
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(intersects state input)

)

(display

(color red)

)

(editing

((drag this) (move this))

)

)

B.3.8 Transition Shape Description

The contents of Transition.lsd are as follows:

(define shape Transition

(isA Shape)

(components

(Arrow arrow)

(Text text)

)

(constraints

(intersects arrow text)

)

(aliases

(Point head arrow.head)

(Point tail arrow.tail)

)

(display

(cleanedStrokes arrow)

(paintText text arrow.center)
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(color black arrow)

(color red text)

)

(editing

((drag head) (rubberband this tail head))

)

)

B.3.9 Backend Code

The finite state machine application checks to see if an input string is accepted by

the drawn system. It highlights each state that it passes on the way to be red.

The backend code is as follows:

package edu.mit.sketch.language.applink;

import java.awt.Color; import java.util.ArrayList; import

java.util.List;

import edu.mit.sketch.language.shapes.DrawnShape; import

edu.tamu.hammond.sketch.shapes.TText;

public class Finitestate extends AppLink {

@Override

public void connect() {

this.start();

}
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public void run(){

DrawnShape startState = null;

List<DrawnShape> stateList = new ArrayList<DrawnShape>();

List<DrawnShape> transitionList = new ArrayList<DrawnShape>();

String inputString = null;

//classify shapes

for(DrawnShape s : getViewableShapes()){

if(s.isOfType("InputString")){

inputString = ((TText)s.get("input")).getText();}

if(s.isOfType("StartState")){

startState = s;}

if(s.isOfType("AbstractState")){

stateList.add(s);}

if(s.isOfType("Transition")){

transitionList.add(s);}

}

//check diagram correctness

if(inputString == null){ popUp(true, "Please add input string");

return;}

if(startState == null){ popUp(true, "can’t find input state");

return;}

//highlight states as they are passed

setPauseColor(startState, Color.red, 3000);

DrawnShape currentState = startState;

for(int i = 0; i < inputString.length(); i++){

DrawnShape nextState = null;

String letter = inputString.substring(i, i+1);
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for(DrawnShape transition: transitionList){

if(currentState.contains(transition.get("tail"))){

if(((TText)transition.get("text")).getText().

equals(letter)){

for(DrawnShape state : stateList){

if(state.contains(transition.get("head"))){

nextState = state;

setPauseColor(transition.get("arrow"),

Color.red, 5000);

break;

}

}

}

}

if(nextState != null){break;}

}

if(nextState == null){

popUp(true, "No Next state for " + letter +

" transition!") ;

return;}

setPauseColor(nextState, Color.red, 3000);

currentState = nextState;

}

//check if final state is an accept state

if(currentState.isOfType("AcceptState")){

popUp(false, inputString + " String Accepted");

} else {

popUp(false, inputString + " String Rejected");

}
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}

}

B.4 Course of Action

B.4.1 Domain List

The contents of CourseOfAction.ldl are as follows:

sketch.shapes.courseOfAction.Unit

sketch.shapes.courseOfAction.FriendlyUnit

sketch.shapes.courseOfAction.UnitType

sketch.shapes.courseOfAction.EnemyUnit

sketch.shapes.courseOfAction.Command

sketch.shapes.courseOfAction.Supply

sketch.shapes.courseOfAction.Armored

sketch.shapes.courseOfAction.Reconnaissance

sketch.shapes.courseOfAction.Signals

sketch.shapes.courseOfAction.Infantry

sketch.shapes.courseOfAction.BridgeIcon

sketch.shapes.courseOfAction.Bridging

sketch.shapes.courseOfAction.Antitank

sketch.shapes.courseOfAction.Artillery

sketch.shapes.courseOfAction.Motorized

sketch.shapes.courseOfAction.TransportIcon

sketch.shapes.courseOfAction.Transport

sketch.shapes.courseOfAction.Medical

sketch.shapes.courseOfAction.RocketIcon

sketch.shapes.courseOfAction.Rocket
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sketch.shapes.courseOfAction.EngineeringIcon

sketch.shapes.courseOfAction.Engineering

sketch.shapes.courseOfAction.Triangle

sketch.shapes.courseOfAction.Observation

B.4.2 Unit Shape Description

The contents of Unit.lsd are as follows:

(define shape Unit

(isA FriendlyUnit)

(components

(Line top)

(Line bottom)

(Line left)

(Line right)

)

(constraints

(coincident top.p2 right.p1)

(coincident right.p2 bottom.p1)

(coincident bottom.p2 left.p1)

(coincident left.p2 top.p1)

(parallel left right)

(parallel top bottom)

(perpendicular left bottom)

(equalLength left right)

(equalLength top bottom)

(longer top left)

(leftOf left.center right.center)

(above top.center bottom.center)
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)

(aliases

(Point topleft top.p1)

(Point topright right.p1)

(Point bottomright bottom.p1)

(Point bottomleft left.p1)

(Point topmiddle top.center)

(Point bottommiddle bottom.center)

(Point rightmiddle right.center)

(Point leftmiddle left.center)

)

(display

(color green)

)

(editing

((drag this) (move this))

)

)

B.4.3 FriendlyUnit Shape Description

The contents of FriendlyUnit.lsd are as follows:

(define shape FriendlyUnit

(isA Shape)

)

B.4.4 UnitType Shape Description

The contents of UnitType.lsd are as follows:
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(define shape UnitType

(isA Shape)

)

B.4.5 EnemyUnit Shape Description

The contents of EnemyUnit.lsd are as follows:

(define shape EnemyUnit

(isA Shape)

(components

(Unit enemy)

(context Unit unit)

)

(constraints

(contains enemy unit)

)

(display

(color red)

)

(editing

((drag this) (move this))

)

)

B.4.6 Command Shape Description

The contents of Command.lsd are as follows:

(define shape Command
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(isA Shape)

(components

(Line left)

(Line right)

(Line top)

(Line bottom)

)

(constraints

(coincident left.p1 top.p2)

(coincident top.p1 right.p2)

(coincident right.p1 bottom.p2)

(larger left right)

(parallel left right)

(leftOf left right)

(above top bottom)

(parallel bottom top)

(perpendicular left top)

(equalLength top bottom)

)

(display

(color cyan)

)

)

B.4.7 Supply Shape Description

The contents of Supply.lsd are as follows:

(define shape Supply

(isA UnitType)
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(components

(context Unit unit)

(Line line)

)

(constraints

(touches line unit.left)

(touches line unit.right)

(parallel line unit.bottom)

(above unit.center line.center)

(above line.center unit.bottommiddle)

)

(display

(color red)

)

(editing

((drag this) (move this))

)

)

B.4.8 Armored Shape Description

The contents of Armored.lsd are as follows:

(define shape Armored

(isA UnitType)

(components

(context Unit unit)

(Ellipse ellipse)

)

(constraints
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(contains unit ellipse)

(larger ellipse unit.top)

)

(display

(color orange)

)

(editing

((drag this) (move this))

)

)

B.4.9 Reconnaissance Shape Description

The contents of Reconnaissance.lsd are as follows:

(define shape Reconnaissance

(isA UnitType)

(components

(context Unit unit)

(Line cross)

(Armored ellipse)

)

(constraints

(coincident unit.bottomleft cross.p1)

(contains unit ellipse)

(coincident unit.topright cross.p2)

)

(display

(color cyan)

)
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(editing

((drag this) (move this))

)

)

B.4.10 Signals Shape Description

The contents of Signals.lsd are as follows:

(define shape Signals

(isA UnitType)

(components

(context Unit unit)

(Line top)

(Line middle)

(Line bottom)

)

(constraints

(coincident unit.topleft top.p1)

(coincident top.p2 middle.p1)

(coincident middle.p2 bottom.p1)

(coincident bottom.p2 unit.bottomright)

(parallel middle unit.left)

)

(display

(color green)

)

)
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B.4.11 Infantry Shape Description

The contents of Infantry.lsd are as follows:

(define shape Infantry

(isA UnitType)

(components

(context Unit unit)

(Line cross1)

(Line cross2)

)

(constraints

(coincident unit.topleft cross1.p1)

(coincident unit.bottomright cross1.p2)

(coincident unit.topright cross2.p1)

(coincident unit.bottomleft cross2.p2)

)

(display

(color red)

)

(editing

((drag this) (move this))

)

)

B.4.12 BridgeIcon Shape Description

The contents of BridgeIcon.lsd are as follows:

(define shape BridgeIcon
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(isA Shape)

(components

(Line top)

(Line bottom)

(Line leftup)

(Line leftdown)

(Line rightup)

(Line rightdown)

)

(constraints

(equalLength top bottom)

(longer top leftdown)

(longer top rightup)

(longer top rightdown)

(longer top leftup)

(coincident top.p1 leftup.p1)

(coincident top.p2 rightup.p1)

(coincident bottom.p1 leftdown.p1)

(coincident bottom.p2 rightdown.p1)

(parallel top bottom)

(parallel leftup rightdown)

(parallel leftdown rightup)

(above leftup.p2 leftdown.p2)

(above rightup.p2 rightdown.p2)

(above top bottom)

(leftOf leftup rightdown)

(near top.center bottom.center)

)

(display

(color cyan)
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)

)

B.4.13 Bridging Shape Description

The contents of Bridging.lsd are as follows:

(define shape Bridging

(isA UnitType)

(components

(context Unit unit)

(BridgeIcon bridge)

)

(constraints

(contains unit bridge)

(parallel unit.top bridge.top)

)

(display

(color green)

)

)

B.4.14 Antitank Shape Description

The contents of Antitank.lsd are as follows:

(define shape Antitank

(isA UnitType)

(components

(context Unit unit)
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(Line pos)

(Line neg)

)

(constraints

(coincident unit.topmiddle pos.p1)

(coincident unit.topmiddle neg.p1)

(coincident unit.bottomleft pos.p2)

(coincident unit.bottomright neg.p2)

)

(display

(color orange)

)

(editing

((drag this) (move this))

)

)

B.4.15 Artillery Shape Description

The contents of Artillery.lsd are as follows:

(define shape Artillery

(isA UnitType)

(components

(Ellipse ellipse)

(context Unit unit)

)

(constraints

(larger unit.left ellipse.boundTop)

(contains unit ellipse)
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)

(display

(color blue)

)

)

B.4.16 Motorized Shape Description

The contents of Motorized.lsd are as follows:

(define shape Motorized

(isA FriendlyUnit)

(components

(context Unit unit)

(Infantry infantry)

(Line line)

)

(constraints

(coincident unit.topmiddle line.p1)

(coincident unit.bottommiddle line.p2)

(concentric unit infantry)

)

(display

(color orange)

)

(editing

((drag this) (move this))

)

)
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B.4.17 TransportIcon Shape Description

The contents of TransportIcon.lsd are as follows:

(define shape TransportIcon

(isA Shape)

(components

(Ellipse circle)

(Line line1)

(Line line2)

(Line line3)

(Line line4)

)

(constraints

(intersects circle line1)

(intersects circle line2)

(intersects circle line3)

(intersects circle line4)

(equalLength line1 line2)

(equalLength line1 line3)

(equalLength line1 line4)

(concentric line1 circle)

(concentric line2 circle)

(concentric line3 circle)

(concentric line4 circle)

(perpendicular line1 line3)

(perpendicular line2 line4)

)

(display

(color green)
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)

(editing

((drag this) (move this))

)

)

B.4.18 Transport Shape Description

The contents of Transport.lsd are as follows:

(define shape Transport

(isA UnitType)

(components

(context Unit unit)

(TransportIcon transport)

)

(constraints

(contains unit transport)

)

(display

(color green)

)

(editing

((drag this) (move this))

)

)

B.4.19 Medical Shape Description

The contents of Medical.lsd are as follows:
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(define shape Medical

(isA UnitType)

(components

(context Unit unit)

(Line vert)

(Line hor)

)

(constraints

(coincident unit.topmiddle vert.p1)

(coincident unit.bottommiddle vert.p2)

(coincident unit.leftmiddle hor.p1)

(coincident unit.rightmiddle hor.p2)

)

(display

(color green)

)

)

B.4.20 RocketIcon Shape Description

The contents of RocketIcon.lsd are as follows:

(define shape RocketIcon

(isA Shape)

(components

(Line left)

(Line middle)

(Line right)

(Line pos)

(Line neg)
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)

(constraints

(parallel left middle)

(parallel middle right)

(collinear left.center middle.center right.center)

(equalLength left middle)

(equalLength middle right)

(leftOf left middle)

(leftOf middle right)

(coincident left.p1 pos.p1)

(coincident pos.p2 neg.p1)

(coincident neg.p2 right.p1)

(collinear middle.p1 middle.p2 neg.p1)

(above neg.p1 middle)

)

(display

(color cyan)

)

)

B.4.21 Rocket Shape Description

The contents of Rocket.lsd are as follows:

(define shape Rocket

(isA UnitType)

(components

(RocketIcon rocket)

(context Unit unit)

)
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(constraints

(contains unit rocket)

(parallel unit.left rocket.left)

)

(display

(color green)

)

)

B.4.22 EngineeringIcon Shape Description

The contents of EngineeringIcon.lsd are as follows:

(define shape EngineeringIcon

(isA Shape)

(components

(Line top)

(Line left)

(Line middle)

(Line right)

)

(constraints

(larger top left)

(equalLength left middle)

(equalLength middle right)

(coincident top.p1 left.p1)

(coincident top.center middle.p1)

(coincident top.p2 right.p1)

(parallel left middle)

(parallel right middle)
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(perpendicular top left)

)

(display

(color cyan)

)

)

B.4.23 Engineering Shape Description

The contents of Engineering.lsd are as follows:

(define shape Engineering

(isA UnitType)

(components

(context Unit unit)

(EngineeringIcon engineering)

)

(constraints

(contains unit engineering)

(parallel unit.top engineering.top)

)

(display

(color green)

)

)

B.4.24 Triangle Shape Description

The contents of Triangle.lsd are as follows:
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(define shape Triangle

(isA Shape)

(components

(Line line1)

(Line line2)

(Line line3)

)

(constraints

(coincident line1.p2 line2.p1)

(coincident line2.p2 line3.p1)

(coincident line3.p2 line1.p1)

)

(display

(color cyan)

)

)

B.4.25 Observation Shape Description

The contents of Observation.lsd are as follows:

(define shape Observation

(isA UnitType)

(components

(context Unit unit)

(Triangle triangle)

)

(constraints

(contains unit triangle)

)

360



(display

(color orange)

)

)

B.4.26 Back-end Code

The course of action application simply prints out a string description of each shape

below it, waits 6 seconds, and then removes the string.

The backend code is as follows:

package edu.mit.sketch.language.applink;

import java.util.ArrayList; import java.util.List;

import edu.mit.sketch.language.shapes.DrawnShape; import

edu.tamu.hammond.sketch.shapes.TPoint; import

edu.tamu.hammond.sketch.shapes.TText;

public class CourseOfAction extends AppLink {

@Override

public void connect() {

List<DrawnShape> unitList = new ArrayList<DrawnShape>();

List<DrawnShape> typeList = new ArrayList<DrawnShape>();

List<DrawnShape> commandList = new ArrayList<DrawnShape>();

List<DrawnShape> enemyList = new ArrayList<DrawnShape>();

for(DrawnShape s : getViewableShapes()){

if(s.isOfType("Unit")){

unitList.add(s);}
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if(s.isOfType("UnitType")){

typeList.add(s);}

if(s.isOfType("Command")){

commandList.add(s);}

if(s.isOfType("EnemyUnit")){

enemyList.add(s);}

}

System.out.println("Commands at: ");

for(DrawnShape command : commandList){

System.out.println(" Command : " + command.getCenter());

TText t = new TText(command.getCenter(), "Command");

t.setCenter(new TPoint(

(command.getMinX() + command.getMaxX())/2,

command.get("bottom").getMaxY() + 10));

t.setName("added");

command.addComponent(t);

}

for(DrawnShape enemy : enemyList){

unitList.remove(enemy.get("unit"));

}

System.out.println("Friendly Units at: ");

for(DrawnShape friend : unitList){

String s = "Friendly ";

for(DrawnShape type : typeList){

if(type.get("unit").equals(friend)){

s += type.getType() + " ";

}
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}

s += "Unit";

TText t = new TText(friend.getCenter(), s);

t.setCenter(new TPoint(

(friend.getMinX() + friend.getMaxX())/2,

friend.getMaxY() + 10));

t.setName("added");

friend.addComponent(t);

System.out.println(" " + s + ": " + friend.getCenter());

}

System.out.println("Enemy Units at: ");

for(DrawnShape enemy : enemyList){

String s = "Enemy ";

for(DrawnShape type : typeList){

if(type.get("unit").equals(enemy.get("unit"))){

s += type.getType() + " ";

}

}

s += "Unit";

TText t = new TText(enemy.getCenter(), s);

t.setCenter(new TPoint(

(enemy.getMinX() + enemy.getMaxX())/2,

enemy.getMaxY() + 10));

t.setName("added");

enemy.addComponent(t);

System.out.println(" " + s + ": " + enemy.getCenter());

}

repaint();

wait(6000);
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//remove the text strings

for(DrawnShape s : getViewableShapes()){

TText added = (TText) s.get("added");

if(added != null){

s.removeComponent(added);

s.moved();

}

}

repaint();

}

}

B.4.27 Images

Because the characteristics of a unit can be combined, many different shapes can be

composed from the above shapes. This section shows a variety of different shapes

drawn and recognized from the above descriptions.

The Original Hand-drawn Sketches

The Cleaned-up Drawings with System Generated Labels
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Figure B-1: Example 1 of hand-drawn Course of Action symbols.

Figure B-2: Example 2 of hand-drawn Course of Action symbols.
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Figure B-3: Example 3 of hand-drawn Course of Action symbols.

Figure B-4: Example of 4 of hand-drawn Course of Action symbols.

366



Figure B-5: Example 5 of hand-drawn Course of Action symbols.

Figure B-6: Example 6 of hand-drawn Course of Action symbols.
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Figure B-7: Example 1 of recognized hand-drawn Course of Action symbols from
Figure B-1..
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Figure B-8: Example 2 of recognized Course of Action symbols from Figure B-2..

Figure B-9: Example 3 of recognized Course of Action symbols from Figure B-3..
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Figure B-10: Example 4 of recognized Course of Action symbols from Figure B-4..

Figure B-11: Example 5 of recognized Course of Action symbols from Figure B-5..
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Figure B-12: Example 6 of recognized Course of Action symbols from Figure B-6.
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Appendix C

Generating Ideal Shapes with

MATLAB: “You’re Getting

Warmer.”

One overarching goal of this thesis has been to explain how shapes can be automati-

cally generated from a list of constraints. Chapters 4 and 5 suggested that developers

may choose to display the ideal shape with all the constraints solved. In Chapter 10

explains how near miss shapes can be generated automatically by altering a shape

description. This chapter describes how that is done, using minimization and opti-

mization in MATLAB.

C.1 Input: Drawn Shape and Description

To generate a shape based on a description, the system needs two things: 1) a de-

scription that includes all of the constraints that should be true in our generated

shape, and 2) a starting shape that is close to the final solution and provides the

initial starting points for the constraint solver. The starting shape should be as close
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as possible to the final shape, as it makes finding a solution faster and easier than

trying to find a solution from a random initial starting point because the algorithm

uses hill-climbing to find the solution. When generating the ideal shape for display of

a recognized shape, the originally drawn shape (which should be very close to the final

shape because it was recognized as an example of the ideal shape with signal error)

is chosen as the starting shape. When generating a near-miss, the initial hand-drawn

example is chosen as the starting shape. This should be mathematically (most of

the constraints are already solved) and perceptually (thus, the shape seems similar to

others shown) close to the final shape, as the goal is to provide a near-miss example

that is close to the initial shape, altering the initial shape as little as possible, while

testing the chosen constraints.

C.2 Why the Problem Is Difficult

The LADDER constraint set includes both nonlinear and disjunct constraints, which

are quite difficult to solve. EqualLength is an example of a nonlinear constraint:

the formula for the distance between two points (x1, y1) and (x2, y2) is

√
(x2− x1)2 + (y2− y1)2.

Disjunct functions include even simple functions such as posSlope, as there exist

two separate solutions, one solution where endpoint p1 is in the upper right and

endpoint p2 is in the lower left, and another solution where endpoint p2 is in the

upper right and endpoint p1 is in the lower left. Because there exists a requirement

that lines have a length of greater than 30 pixels (to prevent lines of imperceptible

length), there is no way to transition between the two solutions.

Also, finding the minimum value of a nonlinear objective function requires an

exhaustive search of the space, which takes an impractical amount of time for large

integer-based graphs, and is impossible on a real-number-based graph.
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C.3 Choosing the Appropriate MATLAB Function

MATLAB has several functions for solving nonlinear constraints:

fmincon : Find a minimum of constrained nonlinear multivariable function

fminunc : Find minimum of unconstrained multivariable function

fminsearch : Find minimum of unconstrained multivariable function using derivative-

free method

All three functions minimize a nonlinear multivariable function, taking as inputs a

function to be minimized and initial starting values for the variables to be determined.

In our case, the variables to be determined are the (x1, y1), (x2, y2) endpoints of a

line, as well as the top left corner and bottom right corner of the smallest rectangle

enclosing an ellipse (so that x2− x1 represents the width of the ellipse, and y2− y1

represents the height of the ellipse). 1

fmincon not only minimizes an objective function, but also allows the user to

specify less than and equality constraints on the variables to be determined. Thus,

both inequality constraints, including the requirement that x1 must lie on the screen

(0 < x1 < 500), and equality constraints, including specifying that two lines must

be of equal length or parallel, can be specified in this matter. However, constraints

are either true or false, and fmincon often has no way of knowing if it is getting

closer to a value that solves the constraint or not, especially for nonlinear disjunct

constraints. Thus, in order to guarantee that fmincon produces a solution to the

constraints, it must be given an initial feasible solution as the starting condition.

While fmincon can find a solution for simple equations, moderately difficult systems

of equations fail to produce a solution. (E.g., a system of equations constraining

three lines succeeds less than 10% of the time, and a system of equations constraining

1When necessary the system appropriately translates between the differing coordinate systems
in Java and Matlab.
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four lines almost never produces a feasible solution, when not given a correct initial

starting position.) Thus, for fmincon to be useful, the function needs a solution

that solves the constraints before trying to solve the constraints. This is impractical,

since the solution is unknown, and if it was known, there would be no need of a

constraint solver. However, a constraint for which initial starting variables that solve

the constraint can easily be computed can still be specified in the constraint section

of fmincon. For example, the upper and lower bound requirements (0 < x1 < 500)

can be included in the list of constraints to be solved by the numerical solver, as

the system can easily produce initial values that abide by this constraint, (Any shape

drawn on the page will conform to this constraint.) The remaining constraints will be

moved into the objective function, and, instead, of trying to solve these constraints,

the system will try to minimize the value of the objective function (which translates

into the error of the constraints to be solved). This does not present a problem as it is

possible to translate all of the LADDER constraints into a function which produces an

error to be added to the output of the objective function (described below). It is still

possible to generate the proposed shape even when all of the constraints (including the

simple boundary conditions) are moved to the objective function. With this method,

MATLAB generate the proposed shape faster and with more reliability.

fminunc solves unconstrained minimization problems. If all constraints are moved

into the objective function, then fmincon and fminunc perform similarly. Because all

constraints can be moved to the objective function with similar results, fmincon and

fminunc are functionally equivalent for this problem.

The third function, fminsearch, solves unconstrained minimization problems, but

is different from fminunc in that it does not use a derivative-based search method,

which is used by both fmincon and fminunc. fmincon and fminunc require that

the constraint (in fmincon only) and objective (in both) functions are continuous,

since they use a gradient-based method that is designed to work on problems where

the objective and constraint functions are both continuous and have continuous first

derivatives. However, fminsearch does not require that the function be continuous,
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and solves nondifferentiable problems and can often handle discontinuity, particularly

if it does not occur near the solution.

Since the generated objective function is often discontinuous (as explained above)

and all of the constraints can be moved to the generated objective function, this

researcher choose to use fminsearch function predominately.

However, even though the MATLAB manual states that “fminsearch solves nondif-

ferentiable problems and can often handle discontinuity,” one must note the operative

use of the word “often.” fminsearch still does not guarantee that it will find a solu-

tion, if one exists. All three functions, including fminsearch, might give only locally

optimal solutions.

C.4 Generating the Objective Function

Our goal in creating a successful objective function is to create a function that contin-

uously lets the program know that it is getting closer to the solution. Each function

returns an error associated with that constraint, returning zero when the constraint

is solved, or a positive number representing the error relative to the distance to the

solution.

The equation below explains the objective function O(x); x represents a solution

vector, O represents the objective function, and Ci(x) represents a numerical con-

straint function for the ith shape description constraint that takes in the solution

vector x and returns a scalar value representing the error for that constraint.

O(x) = C1(x) + C2(x) + ... + Cn(x)

For an example of a numerical constraint function, look at the equalLength

constraint. One could create a function that would return 0 if the two lines were

of equal length and 1 if they are not of equal length, but that would not let the

computer know if it was approaching the solution or deviating from it. One could,
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instead, create a function that returns the absolute value of the difference between the

two line lengths.2 In this way, as the line lengths become closer, the error decreases.

Another example is the constraint posSlope. In this case, one could use a similar

technique and return the absolute value of the actual line angle minus the ideal angle

of a positively-sloped line of 45 degrees. However, while that error function does

lead the computer to a correct solution, it does not give the computer the allowed

flexibility; to the computer, the transformation of a line from 0 to 20 degrees is the

same as a transformation of a line from 25 to 45 degrees, as the change in error is

the same. However, as shown and discussed earlier in this thesis, humans are much

more perceptually clued into changes from 0 to 20 than from 25 to 45. A change

of a line from 0 to 20 degrees changes the line from horizontal to positively sloped,

whereas a change from 25 to 45 degrees does not change its perceptual description.

Therefore, the chosen error function to test positively-sloped lines returns 0, if the

line is between 25 and 75 degrees; otherwise, it returns the distance from the closer

of the two angles.

Appendix D lists the objective function used for each constraint.

C.5 Finding a Solution

MATLAB is not guaranteed to find a solution. It may fail because the presented

geometric shape constraints are impossible, or it may fail simply because it got stuck

in a local minimum.

My system first wants to be able to ascertain whether MATLAB found a solution

that solved all of the given geometric shape constraints. If MATLAB did find a

solution, then the numerical solver should have found a solution with values for the

vector x such that, ideally, O(x) = 0, or, rather, practically, such that O(x) < ε,

2The system computes the absolute value so that the difference approaches zero. If the sys-
tem were to subtract without the absolute value, it would end up with the minimum difference
approaching negative infinity, with one line much larger than the other.
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where ε is some small error bound. (The system uses ε = .05.)

On the first attempt, the system sets the initial starting values for x to be the

values in the initial drawn shape. Since MATLAB may not find a solution on the

first try, the numerical solver is run several times. The numerical solver is run using

both fminsearch and fmincon, since fmincon uses a different hill climbing algorithm

and may produce different results than fminsearch. (Five is the current maximum

number of times each is tried.) If any solution x, presented by the solver, returns

O(x) < ε, the system halts and returns that solution for x. Otherwise, the system

returns the solution for x that produced the minimum value for O(x), along with the

O(x) value which represents the error. The application then decides whether or not

to use the imperfect solution.
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Appendix D

MATLAB Code to Generate an

Ideal Shape

This appendix describes and provides the MATLAB code used to generate an ideal

shape. Some of the inputs may appear to be strange, as MATLAB places constraints

on input values of the functions fmincon and fminsearch, as well as the format of the

inputs of the objective function. Also, several functions convert values to numerical

form or to matrices in order to speed up MATLAB computations. Because this code

also works with circles and arcs (which is not shown in the code here, in an effort to

make things as easy as possible to understand, and because the handling of them is

still in flux), there are many functions that may appear to perform trivial operations.

These are explained in the text below.

This appendix includes the access function, the objective function, the constraint

functions, which compute the error values for each of the constraints, and some, but

not all of the helper functions. Each of the functions is described in detail for ease of

implementation.
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D.1 Access Function: createshape

The createshape function is the initial function that is called by the Java program

to create a shape.

D.1.1 Inputs

The function takes in:

• x0: a vector of the initial values. x0 is a vector of double values representing

each of the x- and y-values of each of the lines; e.g., for a single lined shape,

x0 = [x1 y1 x2 y2]. For a two-lined shape, x0 = [x1 y1 x2 y2 x3 y3

x4 y4], where x1 and x2 represent the endpoints of the first line, and x3 and

x4 represent the endpoints of the second line. Multiple lines are represented

similarly.

• strConstraints: a vector of the list of the string constraints to be solved.

The elements in the list are in the form parallel line1 line2.

• attempts: the number of times to try to create the shape divided by two. For

each attempt, the function tries to solve the constraints with fminsearch

and fmincon.

• upperb: the upper bound on the values of the x solution vector. This corre-

sponds to the maximum width and height of the screen display.

D.1.2 Outputs

The function returns:

• x: a vector of the solution values of the shape. These values have the same

form as in x0. The solution values are each between 0 and upperb.
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• fval: the error of the solution chosen. This is the value returned from the

objective function.

• exitflag: a flag stating if operation terminated normally. A 1 signifies normal

completion.

• output: a debug output of the results.

D.1.3 Explanation of Internals

The code process is as follows:

1. Translate the constraints into numerical values using the function translate-

Constraints. The code first checks that the constraints have not already been

translated.

2. Sets the display options to display fewer warnings.

3. Creates a vector of the upper upperb and lower 0 bound for each of the values

in the solution matrix, x.

4. Makes a line matrix. Changes x0 from a vector of x- and y-values to a matrix

of lines, where each line is of the form [x1 y1 x2 y2].

5. For each attempt,

(a) if it is the first attempt, then the initial values are as set in x0. Otherwise,

the function sets random initial values within the upper and lower bounds.

(b) the function attempts to solve the constraint list using first fminsearch,

then fmincon. If ever a solution is returned with a error value (fval)

less than .001, then that solution is returned immediately. Otherwise,

all attempts are tried and the function returns the solution with the

smallest error value (fval). The error value is the value returned by the
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objectiveFunction. If the exitFlag is not 1, then it is probable that

the solution is not valid, and does not hold true the constraints.

6. The returned shape is plotted using the function. plotLine

D.1.4 Code

function [x, fval, exitflag, output] = ...

createshape (x0, strConstraints, attempts, upperb)

%translates constraints into numerical values

if isnumeric(strConstraints(1,1))

constraints = strConstraints;

else

constraints = translateConstraints(strConstraints);

end

%sets the debug display options

options = optimset(’LargeScale’,’off’,’Display’,’off’,

’MaxFunEvals’, ...

500, ’MaxIter’, 500); %, ’Display’, ’Iter’);

%sets the upper and lower bound of each of the values

for i = 1 : length(x0)

lb(i) = 0;

ub(i) = upperb;

end

%changes x0 from a vector of x and y values to a

%matrix of lines, where each line is of the form
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%[x1 y1 x2 y2]

lineMatrix = makeLineMatrix(x0);

%initial value so all value are smaller

minfval = 10000;

for i=1:attempts

if i==1

xstart=x0;

else

%upperb should be 500 -

%else created invalid first shape

xstart=upperb*rand(1,length(x0));

end

[x,fval, exitflag, output] = ...

fminsearch(@(x)objectiveFunction(x, lineMatrix, ...

constraints, 0), xstart,options);

if exitflag > 0 && fval < .01

break;

end

if fval < minfval

minfval = fval;

minx = x;

minexit = exitflag;

minoutput = output;

end

[x,fval, exitflag, output, lambda, grad, hessian ] = ...

fmincon(@(x)objectiveFunction(x, lineMatrix, ...

constraints, 0), ...

xstart, [], [], [], [], lb, ub, ...
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@(x)nonlinearinequalities(x, lineMatrix, ...

constraints), options);

if exitflag > 0 && fval < .01

break

end

if fval < minfval

minfval = fval;

minx = x;

minexit = exitflag;

minoutput = output;

end

fval = minfval;

x = minx;

exitflag = minexit;

output = minoutput;

end

%plots the shape created

plotLine(x);

D.2 Objective Function: objectiveFunction

This function computes the error value of the constraints for a particular set of x and

y-values. This is the most important function of the code.

D.2.1 Inputs

• x: A vector of solution values to be tested
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• lineMatrix: A matrix, where each vector contains the x indices pertaining to

a line.

• constraints: A listing of the constraints to be solved in numerical form.

• debug: A flag for debug output.

D.2.2 Output

This function returns the error value for the constraints on that input vector x.

D.2.3 Explanation of Internals

1. The function creates a matrix holding all of the current values for each of the

lines.

2. If any of those lines are shorter than 30 pixels, a penalty is placed by adding to

the variable num which represents the total error of the constraints.

3. If any of the x- or y-values is less than 0, or greater than 500, (i.e., the shape is

off the screen), a penalty is given by adding to the error value, num.

4. For each of the constraints:

(a) Each of the arguments of the constraints is loaded so the values are easy

to access.

(b) The error of the constraint is computed for those argument values, and the

error added to the error value, num.

D.2.4 Code

function num = objectiveFunction(
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x, lineMatrix, constraints, debug)

global m_horizontal m_vertical m_posSlope m_negSlope ...

m_near m_far m_intersects m_bisects_cc m_bisects_c1 ...

m_bisects_c2 m_bisects_1c m_bisects_2c m_connected_11 ...

m_connected_12 m_connected_21 m_connected_22 ...

m_bisects_Lc m_bisects_cL m_meets_L1 m_meets_L2 ...

m_meets_1L m_meets_2L m_sameX m_leftOf m_rightOf ...

m_overlapLeftOf m_overlapRightOf m_sameY m_above ...

m_below m_overlapAbove m_overlapBelow m_parallel ...

m_perpendicular m_slanted m_acuteMeet m_obtuseMeet ...

m_equalArea m_larger m_smaller m_equalAngle m_mapping

num = 0;

%creates a matrix holding all of the current line values

[a,b] = size(lineMatrix);

for i = 1 : a

lines(i,1) = x(lineMatrix(i,1));

lines(i,2) = x(lineMatrix(i,2));

lines(i,3) = x(lineMatrix(i,3));

lines(i,4) = x(lineMatrix(i,4));

line1 = lineToPoints(lines(i,:));

if getLineLength(line1) < 30

num = num + 30 - getLineLength(line1);

end

for j = 1:4

if lines(i, j) < 0

num = num - lines(i,j);

end
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if lines(i,j) > 500

num = num + lines(i, j) - 500;

end

end

end

[a,b] = size(constraints);

for i = 1 : a

row = constraints(i,:);

constraint = row(1);

if row(2) > 0

line1 = lineToPoints(lines(row(2),:));

l1x1 = line1(1,1);

l1y1 = line1(1,2);

l1x2 = line1(2,1);

l1y2 = line1(2,2);

end

if row(3) > 0

line2 = lineToPoints(lines(row(3),:));

l2x1 = line2(1,1);

l2y1 = line2(1,2);

l2x2 = line2(2,1);

l2y2 = line2(2,2);

end

if row{4} > 0

line3 = lineToPoints(lines(row{3}, :));

end

if row{5} > 0

line4 = lineToPoints(lines(row{4}, :));

end
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if constraint == m_horizontal

num = num + abs(l1y1 - l1y2);

%penalty = the difference between the y values

elseif constraint == m_vertical

num = num + abs(l1x1 - l1x2);

%penalty = the difference between the x values

elseif constraint == m_posSlope

num = num + posSlope(line1);

%penalty = the distance from 45

%(unless between 15 and 75)

elseif constraint == m_negSlope

num = num + negSlope(line1);

%penalty = the distance from -45

%(unless between -15 and -75)

elseif constraint == m_equalArea

num = num + abs(getLineLength(line1)

- getLineLength(line2));

%penalty = the difference between the line lengths

elseif constraint == m_larger

num = num + larger(line1, line2);

%penalty equals how much larger line1 must be

%to be more than twice the length of line2

elseif constraint == m_smaller

num = num + larger(line2, line1);

%penalty equals how much larger line2 must be

%to be more than twice the length of line1

elseif constraint == m_sameX
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num = num + abs(l1x1 + l1x2 - l2x1 - l2x2);

%penalty equals the distance between the

%x values of the midpoint

elseif constraint == m_sameY

num = num + abs(l1y1 + l1y2 - l2y1 - l2y2);

%penalty equals the distance between the

%y values of the midpoint

elseif constraint == m_leftOf

num = num + leftOf(line1, line2);

%penalty equals the how much more to the left

%line1 needs to go to be completely

%to the left of line2

elseif constraint == m_rightOf

num = num + leftOf(line2, line2);

%penalty equals the how much more to the right

%line1 needs to go to be completely

%to the right of line2

elseif constraint == m_above

num = num + above(line1, line2);

%penalty equals the how much more up

%line1 needs to go to be completely above line2

elseif constraint == m_below

num = num + above(line2, line1);

%penalty equals the how much more down

%line1 needs to go to be completely below line2

elseif constraint == m_overlapLeftOf

num = num + overlapLeftOf(line1, line2);

%penalty equals how much more to have the center

%of line1 to the left of the center of line2 or

%to have line1’s x-values overlap line2’s x-values
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elseif constraint == m_overlapRightOf

num = num + overlapLeftOf(line2, line1);

%penalty equals how much more to have the center

%of line1 to the right of the center of line2 or

%to have line1’s x-values overlap line2’s x-values

elseif constraint == m_overlapAbove

num = num + overlapAbove(line1, line2);

%penalty equals how much more to have the center

%of line1 above the center of line2 or

%to have line1’s y-values overlap line2’s y-values

elseif constraint == m_overlapBelow

num = num + overlapAbove(line2, line1);

%penalty equals how much more to have the center

%of line1 below the center of line2 or

%to have line1’s y-values overlap line2’s y-values

elseif constraint == m_parallel

[v1x, v1y] = getDirectionVector(line1);

[v2x, v2y] = getDirectionVector(line2);

num = num + abs(v1x - v2x) + abs(v1y - v2y);

%penalty equals the difference in the change in

%x’s, plus the difference in the change in y’s

elseif constraint == m_perpendicular

num = num + perpendicular(line1, line2);

%penalty equals the difference from zero of the

%change in x’s times the change in y’s, using the

%slope formula for perpendicular lines

elseif constraint == m_acuteMeet

num = num + acuteMeet(line1, line2);

%penalty equals the distance between the closest
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%endpoints plus a penalty if they are not

%perceptually acute

elseif constraint == m_obtuseMeet

num = num + obtuseMeet(line1, line2);

%penalty equals the distance between the closest

%endpoints plus a penalty if they are not

%perceptually obtuse

elseif constraint == m_slanted

num = num + slanted(line1, line2);

%penalty equals the minimum of the posSlope and

%negSlope penalties

elseif constraint == m_near

num = num + near(line1, line2);

%penalty equals the distance from the near boundaries

elseif constraint == m_far

num = num + far(line1, line2);

%penalty equals the distance from the far boundary

elseif constraint == m_intersects ||

constraint == m_bisects_cc

num = num + getLineLength([getLineMidpoint(line1); ...

getLineMidpoint(line2)]);

%penalty equals the distance between

%the two line centers

elseif constraint == m_bisects_c1

num = num + getLineLength(

[getLineMidpoint(line1); line2(1,:)]);

%penalty equals the distance between the center of

%line1 and endpoint 1 of line2
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elseif constraint == m_bisects_c2

num = num + getLineLength(

[getLineMidpoint(line1); line2(2,:)]);

%penalty equals the distance between the center of

%line1 and the second endpoint of line2

elseif constraint == m_bisects_1c

num = num + getLineLength(

[getLineMidpoint(line2); line1(1,:)]);

%penalty equals the distance between the first endpoint

%of line1 and the center of line2

elseif constraint == m_bisects_2c

num = num + getLineLength(

[getLineMidpoint(line2); line1(2,:)]);

%penalty equals the distance between the second

%endpoint of line1 and the center of line2

elseif constraint == m_connected_11

num = num + 10*getLineLength([line1(1,:); line2(1,:)]);

%penalty equals the distance between the first endpoint

%of line1 and the first endpoint of line2

elseif constraint == m_connected_12

num = num + 10 *

getLineLength([line1(1,:); line2(2,:)]);

%penalty equals the distance between the first

%endpoint of line1 and the second endpoint of line2

elseif constraint == m_connected_21

num = num + 10 *

getLineLength([line1(2,:); line2(1,:)]);

%penalty equals the distance between the second

%endpoint of line1 and the first endpoint of line2
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elseif constraint == m_connected_22

num = num + 10 *

getLineLength([line1(2,:); line2(2,:)]);

%penalty equals the distance between the second

%endpoint of line1 and the second endpoint of line2

elseif constraint == m_bisects_Lc

num = num + getDistanceToLine(

getLineMidpoint(line2), line1);

%penalty equals the distance between the line1

%and the center of line2

elseif constraint == m_bisects_cL

num = num + getDistanceToLine(

getLineMidpoint(line1), line2);

%penalty equals the distance between the center of

%line1 and the line2

elseif constraint == m_meets_L1

num = num + getDistanceToLine(line2(1,:), line1);

%penalty equals the distance between line1 and

%the first endpoint of line2

elseif constraint == m_meets_L2

num = num + getDistanceToLine(line2(2,:), line1);

%penalty equals the distance between line1 and

%the second endpoint of line2

elseif constraint == m_meets_1L

num = num + getDistanceToLine(line1(1,:), line2);

%penalty equals the distance between the first

%endpoint of line1 and line2

elseif constraint == m_meets_2L

num = num + getDistanceToLine(line1(2,:), line2);

%penalty equals the distance between the second
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%endpoint of line1 and line2

elseif constraint == m_equalAngle

num = num + abs(abs(getLineAngle(line1) -

getLineAngle(line2)) - ...

abs(getLineAngle(line3) - getLineAngle(line4)));

%penalty equals the difference between the

%difference between the two angles

else

s = [’error can not find ’ constraint]

end

if debug

m_mapping(row(1))

num

end

end

num;

D.3 Constraint Mapping

This file is not a function; it simply assigns numerical values to variables. This also

creates a vector m mapping that contains a listing of all of the string constraints

so that it is easy to go back to the string constraint when necessary. (This is very

helpful in debugging.)
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D.3.1 Code

%mapping file

global m_horizontal m_vertical m_posSlope m_negSlope ...

m_near m_far m_intersects m_bisects_cc m_bisects_c1 ...

m_bisects_c2 m_bisects_1c m_bisects_2c m_connected_11 ...

m_connected_12 m_connected_21 m_connected_22 ...

m_bisects_Lc m_bisects_cL m_meets_L1 m_meets_L2 ...

m_meets_1L m_meets_2L m_sameX m_leftOf m_rightOf ...

m_overlapLeftOf m_overlapRightOf m_sameY m_above ...

m_below m_overlapAbove m_overlapBelow m_parallel ...

m_perpendicular m_slanted m_acuteMeet m_obtuseMeet ...

m_equalArea m_larger m_smaller m_equalAngle m_mapping

m_horizontal = 1;

m_vertical =2;

m_posSlope =3;

m_negSlope =4;

m_intersects =7;

m_bisects_cc =8;

m_bisects_c1 =9;

m_bisects_c2 =10;

m_bisects_1c =11;

m_bisects_2c =12;

m_connected_11 =13;

m_connected_12 =14;

m_connected_21 =15;

m_connected_22 =16;
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m_bisects_Lc =17;

m_bisects_cL =18;

m_meets_L1 =19;

m_meets_L2 =20;

m_meets_1L =21;

m_meets_2L = 22;

m_near =5;

m_far =6;

m_parallel =33;

m_perpendicular =34;

m_slanted =35;

m_acuteMeet =36;

m_obtuseMeet =37;

m_sameX =23;

m_leftOf =24;

m_rightOf =25;

m_overlapLeftOf =26;

m_overlapRightOf = 27;

m_sameY =28;

m_above =29;

m_below =30;

m_overlapAbove =31;

m_overlapBelow =32;

m_equalArea =38;

m_larger =39;

m_smaller =40;

m_equalAngle =41;
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m_mapping{m_horizontal}=’horizontal’;

m_mapping{m_vertical}=’vertical’;

m_mapping{m_posSlope}=’posSlope’;

m_mapping{m_negSlope}=’negSlope’;

m_mapping{m_near}=’near’;

m_mapping{m_far}=’far’;

m_mapping{m_intersects}=’intersects’;

m_mapping{m_bisects_cc}=’bisects_cc’;

m_mapping{m_bisects_c1}=’bisects_c1’;

m_mapping{m_bisects_c2}=’bisects_c2’;

m_mapping{m_bisects_1c}=’bisects_1c’;

m_mapping{m_bisects_2c}=’bisects_2c’;

m_mapping{m_connected_11}=’connected_11’;

m_mapping{m_connected_12}=’connected_12’;

m_mapping{m_connected_21}=’connected_21’;

m_mapping{m_connected_22}=’connected_22’;

m_mapping{m_bisects_Lc}=’bisects_Lc’;

m_mapping{m_bisects_cL}=’bisects_cL’;

m_mapping{m_meets_L1}=’meets_L1’;

m_mapping{m_meets_L2}=’meets_L2’;

m_mapping{m_meets_1L}=’meets_1L’;

m_mapping{m_meets_2L}=’meets_2L’;

m_mapping{m_sameX}=’sameX’;

m_mapping{m_leftOf}=’leftOf’;

m_mapping{m_rightOf}=’rightOf’;

m_mapping{m_overlapLeftOf}=’overlapLeftOf’;

m_mapping{m_overlapRightOf}=’overlapRightOf’;

m_mapping{m_sameY}=’sameY’;

m_mapping{m_above}=’above’;
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m_mapping{m_below}=’below’;

m_mapping{m_overlapAbove}=’overlapAbove’;

m_mapping{m_overlapBelow}=’overlapBelow’;

m_mapping{m_parallel}=’parallel’;

m_mapping{m_perpendicular}=’perpendicular’;

m_mapping{m_slanted}=’slanted’;

m_mapping{m_acuteMeet}=’acuteMeet’;

m_mapping{m_obtuseMeet}=’obtuseMeet’;

m_mapping{m_equalArea}=’equalArea’;

m_mapping{m_larger}=’larger’;

m_mapping{m_smaller}=’smaller’;

m_mapping{m_equalAngle}=’equalAngle’;

D.4 Constraint Function: posSlope

This function returns zero if the angle is between 15 and 75 degrees (or .26 and 1.3

radians). Else, it returns an error relative to the distance from 45 degrees.

D.4.1 Code

function error = posSlope(line1)

angle = getLineAngle(line1);

if angle > .26 && angle < 1.3

error = 0;

else

l1x1 = line1(1,1);

l1y1 = line1(1,2);
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l1x2 = line1(2,1);

l1y2 = line1(2,2);

error = abs((l1x2 - l1x1) - (l1y2 - l1y1));

end

D.5 Constraint Function: negSlope

This function returns zero if the angle is between −15 and −75 degrees (or −.26 and

−1.3 radians). Else, it returns an error relative to the distance from -45 degrees.

D.5.1 Code

function error = negSlope(line1)

angle = getLineAngle(line1);

if angle > -1.3 && angle < -.26

error = 0;

else

error = abs(angle - .76)*10;

end

D.6 Constraint Function: larger

This function returns 0 if line1 is more than twice the length of the line2, else, it

returns a penalty stating how much longer the line1 must be to be twice the length

of the line2.
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D.6.1 Code

function error = larger(line1, line2)

len1 = getLineLength(line1);

len2 = getLineLength(line2);

if len1 > 2 * len2

error = 0;

else

error = 2*getLineLength(line2) - getLineLength(line1);

end

D.7 Constraint Function: leftOf

If all of line1 is to the left of all of line2, this function returns 0. Otherwise,

this function returns the difference between the maximum x-value of line1 and the

minimum x-value of line2.

D.7.1 Code

function error = leftOf(line1, line2)

line1Max = getLineMaxX(line1);

line2Min = getLineMinX(line2);

error = max(0,line1Max - line2Min);
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D.8 Constraint Function: above

If all of line1 is above all of line2, this function returns 0. Otherwise, this function

returns the difference between the maximum y-value of line1 and the minimum

y-value of line2.

D.8.1 Code

function error = above(line1, line2)

line1Min = getLineMinY(line1);

line2Max = getLineMaxY(line2);

error = max(0,line2Max - line1Min);

D.9 Constraint Function: overlapLeftOf

If the center of line1 is to the right of the center of line2, then this returns the

difference between the x-values of the two centers. If this line1 is completely to the

left of line2, (i.e., their bounding boxes do not overlap), then this function returns

the difference between the maximum x-value of line1 and the minimum x-value of

line2. Otherwise, this function returns 0 because the two x-values overlap, but the

center of line1 is to the left of the center of line2.

D.9.1 Code

function error = overlapLeftOf(line1, line2)

point1 = getLineMidpoint(line1);

point2 = getLineMidpoint(line2);
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leftCenter = point1(1);

rightCenter = point2(1);

leftMax = getLineMaxX(line1);

rightMin = getLineMinX(line2);

if leftMax < rightMin

error = rightMin - leftMax;

elseif rightCenter < leftCenter

error = leftCenter - rightCenter;

else

error = 0;

end

D.10 Constraint Function: overlapAbove

If the center of line1 is above the center of line2, then this returns the difference

between the y-values of the two centers. If this line1 is completely above line2, (i.e.,

their bounding boxes do not overlap), then this function returns the difference between

the maximum y-value of line1 and the minimum y-value of line2. Otherwise, this

function returns 0 because the two y-values overlap, but the center of line1 is above

the center of line2.

D.10.1 Code

function error = overlapAbove(line1, line2)

point1 = getLineMidpoint(line1);

point2 = getLineMidpoint(line2);
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topCenter = point1(2);

bottomCenter =point2(2);

topMax = getLineMaxY(line1);

bottomMin = getLineMinY(line2);

if topMax < bottomMin

error = bottomMin - topMax;

elseif topCenter < bottomCenter

error = bottomCenter - topCenter;

else

error = 0;

end

D.11 Constraint Function: perpendicular

This function returns an error value based on how far away the two lines are from

perpendicular. It uses the equality, m1 == −1/m2, which implies that dy1/dx1 ==

−dx2/dy2, to compute the error.

D.11.1 Code

function error = perpendicular(line1, line2)

%m1 = -1/m2

%dy1/dx1 = -1/(dy2/dx2)

%dy1/dx1 = -dx2/dy2

%dy1*dy2 = -dx2*dx1;

[dx1, dy1] = getDirectionVector(line1);

[dx2, dy2] = getDirectionVector(line2);

error = (dx2*dx1 + dy2*dy1)^2;
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D.12 Constraint Function: acuteMeet

This function finds the distance between each of the endpoints. It finds the distance

between the two closest endpoints. This value is part of the returned error penalty.

It then compute how far away the other two points are. The distance between the

other two points should be less than the length of the longest line, as the three points

of an acute angle form a triangle. The function also ensures that the angle is not

0 degrees, such that the two lines lie flat on each other. In this case, the function

requires that the sum of the shortest lines of the triangle formed by the points acute

angle are longer than the longest line of this triangle.

D.12.1 Code

function error = acuteMeet(line1, line2)

distance11 = getLineLength([line1(1,:); line2(1,:)]);

distance12 = getLineLength([line1(1,:); line2(2,:)]);

distance21 = getLineLength([line1(2,:); line2(1,:)]);

distance22 = getLineLength([line1(2,:); line2(2,:)]);

distance = getLineEndpointDistance(line1, line2);

%distanceLong = getLongEndpointDistance(line1, line2);

maxlen = max(getLineLength(line1),getLineLength(line2));

minlen = min(getLineLength(line1),getLineLength(line2));

if distance == distance11

otherdist = distance22;

elseif distance == distance12

otherdist = distance21;

elseif distance == distance21
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otherdist = distance12;

else

otherdist = distance11;

end

if otherdist + minlen < maxlen * 1.1

error = maxlen * 1.1 - otherdist - minlen;

elseif otherdist > maxlen + 1;

error = otherdist - maxlen - 1;

else

error = 0;

end

error = error + distance;

D.13 Constraint Function: obtuseMeet

This function finds the distance between each of the endpoints. It finds the distance

between the two closest endpoints. This value is part of the returned error penalty.

It then compute how far away the other two points are. In the case of the triangle

formed by an obtuse angle, the longest line of the triangle is abstract line connecting

the two endpoints of the angle. This function ensures that distance between the

two endpoints is longer than the maximum of the two input lines, and returns an

appropriate error penalty if they are not. This function also ensures that the distance

between the two lines is not equal to the sum of the two lines, in which case the two

lines would be flat, and it returns the appropriate penalty if they are.
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D.13.1 Code

function error = obtuseMeet(line1, line2)

distance11 = getLineLength([line1(1,:); line2(1,:)]);

distance12 = getLineLength([line1(1,:); line2(2,:)]);

distance21 = getLineLength([line1(2,:); line2(1,:)]);

distance22 = getLineLength([line1(2,:); line2(2,:)]);

distance = getLineEndpointDistance(line1, line2);

%distanceLong = getLongEndpointDistance(line1, line2);

maxlen = getLineLength(line1) + getLineLength(line2);

minlen = sqrt(getLineLength(line1)^2 +

getLineLength(line2)^2);

if distance == distance11

otherdist = distance22;

elseif distance == distance12

otherdist = distance21;

elseif distance == distance21

otherdist = distance12;

else

otherdist = distance11;

end

if otherdist < minlen * 1.1

error = minlen*1.1 - otherdist;

elseif otherdist > maxlen * .9

error = otherdist - maxlen*.9;

else
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error = 0;

end

error = error + distance;

D.14 Constraint Function: slanted

This function computes the angle between the two lines modulus 90 degrees. If the

angle is between 15 and 75 degrees, it returns 0, else it returns the distance to 45

degrees.

D.14.1 Code

function error = slanted(line1, line2)

angle1 = getLineAngle(line1);

angle2 = getLineAngle(line2);

dif = angle1 - angle2;

mpi = mod(dif, pi/2);

if mpi > .38 && mpi < 1.18

error = 0;

else

error = mod(dif, .78);

end

error = error + notConnected(line1, line2);
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D.15 Constraint Function: near

In order for two lines to be considered near, they must be at least 10 pixels apart,

and at least a quarter of the length of the shortest line away from each other. They

must also be a maximum of 40 pixels apart, and the distance between them must

be less than the length of the shortest line. If within these boundaries, the function

returns 0; else, the function returns the distance to these boundaries.

D.15.1 Code

function error = near(line1, line2)

distance = getLineDistance(line1, line2);

len1 = getLineLength(line1);

len2 = getLineLength(line2);

mindistance = max(10, min(len1/4,len2/4));

maxdistance = max(40, min(len1, len2));

if distance < mindistance

error = mindistance - distance;

elseif distance > maxdistance;

error = distance - maxdistance;

else

error = 0;

end

410



D.16 Constraint Function: far

In order for two lines to be considered far apart, the distance between them must

be greater than 40 pixels, or it must be greater than the length of the minimum

line length. If this is not the case, than the system returns the distance from these

boundaries.

D.16.1 Code

function error = far(line1, line2)

distance = getLineDistance(line1, line2);

mindistance = max(40, min(getLineLength(line1),

getLineLength(line2)));

if distance > mindistance

error = 0;

else

error = mindistance - distance;

end

D.17 Helper Function: translateConstraints

This function translates a vector of string constraints, such as parallel 1 2 (where 1

and 2 represent the order of the incoming lines), into a matrix of numerical constraints.

Each constraint has a numerical value, and each line of the returned numerical con-

straints contains the value and the argument numbers (e.g., 33 1 2).
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D.17.1 Inputs

The input is the matrix of string constraints. Each line of the matrix is a vector repre-

senting one constraint. The vector representing the constraint contains the constraint,

followed by the argument numbers. For example, a line could consist of [parallel

1 2] which means that the lines 1 and 2 (in the order they are listed in the x and X0

vectors) are parallel.

D.17.2 Outputs

The output is a matrix of numerical constraints. Each constraint string is translated

to its numerical representation as specified by the mapping function. For example,

in the mapping function, parallel is represented by the number 33, and thus the

line in the input matrix displaying [parallel 1 2] will be translated to [33 1 2].

D.17.3 Explanation of Internals

The mapping function is first called to set all of the internal numerical values for

each of the constraints. Then each string constraint name is replaced one by one with

the numerical value representing that constraint.

D.17.4 Code

function constraints = translateConstraints(strConstraints)

mapping;

global m_horizontal m_vertical m_posSlope m_negSlope ...

m_near m_far m_intersects m_bisects_cc ...

412



m_bisects_c1 m_bisects_c2 m_bisects_1c ...

m_bisects_2c m_connected_11 m_connected_12 ...

m_connected_21 m_connected_22 m_bisects_Lc m_bisects_cL ...

m_meets_L1 m_meets_L2 m_meets_1L m_meets_2L m_sameX ...

m_leftOf m_rightOf m_overlapLeftOf m_overlapRightOf ...

m_sameY m_above m_below m_overlapAbove m_overlapBelow ...

m_parallel m_perpendicular m_slanted m_acuteMeet ...

m_obtuseMeet m_equalArea m_larger m_smaller ...

m_equalAngle m_mapping

[a,b] = size(strConstraints); for i = 1 : a

constraints(i,1) = 0;

row = strConstraints(i,:)

for c = 1 : length(m_mapping)

if strcmp(row(1), m_mapping(c))

constraints(i,1) = c;

end

end

if constraints(i,1) == 0

[’ERROR! ’ row(1) ’ not found!’]

end

constraints(i,2) = row{2};

constraints(i,3) = row{3};

end

D.18 Helper Function: makeLineMatrix

This function takes makes a line matrix for easy access to each of the lines. It changes

x0 from a vector of x- and y-values to a matrix of lines that specify the index of the x
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solution vector that the value pertains to. For example, [x1 y1 x2 y2 x3 y3 x4 y4]

is changed to [1 2 3 4, 5 6 7 8]. This may seem trivial, but is important when other

values are included in the matrix, such as circles, which contain a different number

of properties, and other constraints.

D.18.1 Input

This function takes, as input, x0, a vector of the initial values. x0 is a vector of

double values representing each of the x- and y-values of each of the lines; e.g., for a

single lined shape, x0 = [x1 y1 x2 y2]. For a two-lined shape, x0 = [x1 y1 x2

y2 x3 y3 x4 y4], where x1 and x2 represent the endpoints of the first line, and

x3 and x4 represent the endpoints of the second line. Multiple lines are represented

similarly.

D.18.2 Output

This function returns, as output, a line matrix representing the index of the line x

or y-value in the x solution vector. For example, [x1 y1 x2 y2 x3 y3 x4 y4] is

changed to [1 2 3 4; 5 6 7 8].

D.18.3 Code

function lineMatrix = makeLineMatrix(x0)

lineMatrix = 0;

count = 1;

for i = 1 : length(x0) / 4

lineMatrix(i, 1) = count;

count = count+ 1;
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lineMatrix(i, 2) = count;

count = count + 1;

lineMatrix(i, 3) = count;

count = count + 1;

lineMatrix(i, 4) = count;

count = count + 1;

end

D.19 Helper Function: lineToPoints

This function converts a vector of point values of a line, such as [1 2 3 4], to a matrix

representation of a line, with the points separated, such as [1 2; 3 4].

D.19.1 Code

function points = lineToPoints(line)

points(1,:) = line(1:2);

points(2,:) = line(3:4);

D.20 Helper Function: getLineLength

This function computes the length of a line of the form [x1 y1 ; x2 y2].

D.20.1 Code

function l = getLineLength(line)

x1 = line(1,1);
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y1 = line(1,2);

x2 = line(2,1);

y2 = line(2,2);

l = norm([x2-x1, y2-y1]);

D.21 Helper Function: getDistanceToLine

This function takes in a point and a line and computes the distance between the point

and the line segment.

D.21.1 Explanation of Internals

1. The function checks if the point is on the line segment, using isPointOnLine.

If it is, the function returns a distance of 0.

2. The function checks if the point is on the line extended to infinity, using dist-

ToHPlane. If so, it returns the distance to the closest endpoint.

3. It create a line that is perpendicular to this line that passes through the point,

using getPerpendicularLine.

4. It converts both the original line and the perpendicular line to the form of

Ax + By = C.

5. It finds the intersection point of the original line and the perpendicular line,

using getLineAxByC.

6. If the intersection point is on the line segment, it returns the distance from the

point to the intersection point.

7. Otherwise, it returns the distance from the point to the closest endpoint.
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D.21.2 Code

function theDistance = getDistanceToLine(point, line)

if isPointOnLine(point, line)

theDistance = 0;

else

if distToHPlane(line, point) < .001

dist(1) = getLineLength([line(1,:); point]);

dist(2) = getLineLength([line(2,:); point]);

theDistance = min(dist);

else

if length(line) == 3

array1 = line;

else

array1 = getLineAxByC(line);

end

perpline = getPerpendicularLine(line, point);

array2 = getLineAxByC(perpline);

A = [array1(1), array1(2); array2(1), array2(2)];

b = [array1(3); array2(3)];

intersectsPoint = linsolve(A, b)’;

if isPointOnLine(intersectsPoint, line)

theDistance = getLineLength([intersectsPoint; point]);

else

dist(1) = getLineLength([line(1,:); point]);

dist(2) = getLineLength([line(2,:); point]);

theDistance = min(dist);
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end

end

end

D.22 Helper Function: isPointOnLine

This function checks if the point is on the line segment. It returns 1 if the point is

on the line segment; otherwise, it returns 0.

D.22.1 Explanation of Internals

1. The function checks to see if the point is within the bounding box of the line.

If not, the function returns 0.

2. The function computes the distance from the point to the line extended to

infinity using distToHPlane. If the distance is 0, the point is on the line,

and the function returns 1. Otherwise, the function returns 0.

D.22.2 Code

function bool = isPointOnLine(point, line)

x = point(1);

y = point(2);

x1 = line(1,1);

y1 = line(1,2);

x2 = line(2,1);

y2 = line(2,2);
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if x > x1 && x > x2

bool = 0;

elseif x < x1 && x < x2

bool = 0;

elseif y > y1 && y > y2

bool = 0;

elseif y < y1 && y < y2

bool = 0;

elseif distToHPlane(line, point) < .001

bool = 1;

else

bool = 0;

end

D.23 Helper Function: distToHPlane

This function finds the distance from a point, z, to a hyperplane, hplanePts.

D.23.1 Code

function theDistance = distToHPlane(hplanePts,z)

%this function assumes the hyperplane is given by hplanePts

%you want to find the distance from point z to this

%hyperplane

%form hplane equation a’x=k

a = computeNormal(hplanePts);
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k = a’*hplanePts(1,:)’; %use any point on hplane to get rhs k

if norm(a) == 0

theDistance = Inf;

else

theDistance = abs((dot(a,z)-k)/norm(a));

end

D.24 Helper Function: getLineABCArray

The function takes a line and puts it into the form [abc], where ax+ by = c represents

the formula of the line.

D.24.1 Code

function array = getLineAxByC(line)

% puts the formula into the form [a b c], where ax + by = c

% y = mx + b => - mx + y = b ...

x1 = line(1,1);

y1 = line(1,2);

x2 = line(2,1);

y2 = line(2,2);

if abs(x2-x1) < .001

y_val = 0;

x_val = 1;

c_val = x1;

elseif abs(y2-y1) < .001
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y_val = 1;

x_val = 0;

c_val = y1;

else

y_val = 1;

x_val = -getLineSlope(line);

c_val = getLineYIntercept(line);

end

array = [x_val, y_val, c_val];

D.25 Helper Function: getPerpendicularLine

This function computes the perpendicular line, perpline, perpendicular to the input

line and passing through a point. The output line, perpline, is the same length

as the input line, line.

D.25.1 Code

function perpline = getPerpendicularLine(line, point)

if length(line) == 3

line = ABCLineToSegment(line);

end

angle = getLineAngle(line);

len = getLineLength(line);

newangle = angle + pi/2;

p1 = point;
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p2 = [p1(1) + cos(newangle) * len, p1(2)

+ sin(newangle) * len];

perpline = [p1;p2];

D.26 Helper Function: getLineDistance

This function computes the distance between the two lines. If the two lines intersect,

then the distance is returned as zero. Otherwise, the distance from each endpoint to

the other line is computed, and the shortest distance is returned.

D.26.1 Code

function theDistance = getLineDistance(line1, line2)

if isLineIntersecting(line1, line2)

theDistance = 0;

else

dist(1) = getDistanceToLine(line2(1,:), line1);

dist(2) = getDistanceToLine(line2(2,:), line1);

dist(3) = getDistanceToLine(line1(1,:), line2);

dist(4) = getDistanceToLine(line1(2,:), line2);

theDistance = min(dist);

end

D.27 Helper Function: isLineIntersecting

This function determines if two line segments are intersecting. It does this by first

determining if the two lines overlap (i.e., lie on top of each other with the same slope).

422



If they do not, if finds out if there exists an intersection point that lies on both line

segments.

D.27.1 Code

function bool = isLineIntersecting(line1, line2)

if isLineOverlapping(line1, line2)

bool = 1;

else

point = getInfLineIntersectingPoint(line1, line2);

if isPointOnLine(point, line1) &&

isPointOnLine(point, line2)

bool = 1;

else

bool = 0;

end

end

D.28 Helper Function: getInfLineIntersectingPoint

This function computes the intersection point of the two lines when extended to

infinity. It does this by converting both lines to the form Ax + By = C, and solving

the linear equation to find the point (x, y) that solves both equations.

D.28.1 Code

function point = getInfLineIntersectingPoint(line1, line2)
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if length(line1) == 3

array1 = line1;

else

array1 = getLineAxByC(line1);

end

if length(line2) == 3

array2 = line2;

else

array2 = getLineAxByC(line2);

end

A = [array1(1), array1(2); array2(1), array2(2)];

b = [array1(3); array2(3)];

[X, R] = linsolve(A, b);

point = X’;

D.29 Helper Function: isLineOverlapping

This function determines if two lines are overlapping, i.e., they intersect and share the

same slope. We check for this condition separately since this case causes difficulties

when solving linear constraints.

D.29.1 Code

function bool = isLineOverlapping(line1, line2)

if isInfLineOverlapping(line1, line2) == 0

bool = 0;
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elseif isLineBoundingBoxOverlapping(line1, line2)

bool = 1;

else

bool = 0;

end

D.30 Helper Function: isInfLineOverlapping

This function checks to see if the two lines when extended to infinity overlapping, i.e.,

they have the same slope and y-intercept.

D.30.1 Code

function bool = isInfLineOverlapping(line1, line2)

point = getInfLineIntersectingPoint(line1, line2);

if isnan(point(1,1)) %&& isnan(point(1,2))

bool = 1;

else

bool = 0;

end

D.31 Helper Function: isLineBoundingBoxOver-

lapping

This function checks that the bounding boxes of the two lines do not overlap.
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D.31.1 Code

function bool = isLineBoundingBoxOverlapping(line1, line2)

if getLineMinX(line1) > getLineMaxX(line2)

bool = 0;

elseif getLineMaxX(line1) < getLineMinX(line2)

bool = 0;

elseif getLineMinY(line1) > getLineMaxY(line2)

bool = 0;

elseif getLineMaxY(line1) < getLineMinY(line2)

bool = 0;

else

bool = 1;

end

D.32 Helper Function: getLineAngle

This function returns the angle of the line in radians, returning a value between 0

and 2 ∗ pi.

D.32.1 Code

function angle = getLineAngle(line)

x1 = line(1,1);

y1 = line(1,2);

x2 = line(2,1);

y2 = line(2,2);
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%soh cah toa

angle = atan2((y2-y1),(x2-x1));

D.33 Helper Function: getLineSlope

This function computes the slope of a line.

function m = getLineSlope(line)

%computes the slope of a line.

x1 = line(1,1);

y1 = line(1,2);

x2 = line(2,1);

y2 = line(2,2);

m = (y2-y1)/(x2-x1);

D.34 Helper Function: getLineYIntercept

This function returns the y-intercept of a line.

D.34.1 Code

function b = getLineYIntercept(line)

% returns the yIntercept b

% y = mx + b

% b = y - mx

% if line is vertical, returns NaN
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x1 = line(1,1);

y1 = line(1,2);

if isLineVertical(line)

b = NaN;

else

b = y1 - getLineSlope(line) * x1;

end
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Appendix E

Indexing Data

E.1 Indexing of a Line

This section shows the indexing data after a line and all related created data have

been indexed. (Point data lists x, y, and time.)

E.1.1 Name Index

This lists all of the possible components for each shape name.

Shape Names:

line:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

Subshape Names:

boundRight:

RLine line32 RPoint p1 (277, 323, 1170046782831)
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RPoint p2 (277, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

boundTopRight:

RPoint point36 (277, 323, 1170046782831)

RPoint point85 (277, 323, 1170046782846)

p2:

RPoint p2 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

boundBottomRight:

RPoint point38 (277, 408, 1170046782831)

RPoint point87 (277, 408, 1170046782846)

p1:

RPoint p1 (177, 408, 1170046781488)

RPoint p1 (277, 323, 1170046781706)

boundTop:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

boundBottomMiddle:

RPoint point50 (227, 408, 1170046782831)

RPoint point99 (227, 408, 1170046782846)

boundTopMiddle:

RPoint point44 (227, 323, 1170046782831)

RPoint point93 (227, 323, 1170046782846)

boundLeft:

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)
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RPoint p2 (177, 408, 1170046782831)

boundRightMiddle:

RPoint point62 (277, 365, 1170046782831)

RPoint point111 (277, 365, 1170046782846)

boundBottomLeft:

RPoint point37 (177, 408, 1170046782831)

RPoint point86 (177, 408, 1170046782846)

center:

RPoint point14 (227, 365, 1170046782815)

RPoint point63 (227, 365, 1170046782815)

boundLeftMiddle:

RPoint point56 (177, 365, 1170046782831)

RPoint point105 (177, 365, 1170046782846)

boundBottom:

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

boundTopLeft:

RPoint point35 (177, 323, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

pos:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

neg: hor: ver: angle:

40.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)
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RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

E.1.2 Type Index

This lists all of the accessible components for each type.

Main Types: Total = 4

LAC:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

Shape:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

DrawnShape:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

Line:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

Subshape Types: Total = 5

LAC:
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RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

Shape:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)
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RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

DrawnShape:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RLine line17 RPoint p1 (177, 323, 1170046782815)
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RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)
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RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

Line:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

Point:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)
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RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

E.1.3 X Index

This section lists accessible values at particular x values.

x Shapes:

227.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

x Subshapes:

177.0:

RPoint p1 (177, 408, 1170046781488)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)
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RPoint point35 (177, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

227.0:

RPoint point14 (227, 365, 1170046782815)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point63 (227, 365, 1170046782815)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

277.0:

RPoint p2 (277, 323, 1170046781706)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point38 (277, 408, 1170046782831)
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RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point85 (277, 323, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

E.1.4 Y Index

y Shapes:

365.5:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

y Subshapes:

323.0:

RPoint p2 (277, 323, 1170046781706)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point93 (227, 323, 1170046782846)
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365.5:

RPoint point14 (227, 365, 1170046782815)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint point63 (227, 365, 1170046782815)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

408.0:

RPoint p1 (177, 408, 1170046781488)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point99 (227, 408, 1170046782846)
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E.1.5 MinX Index

minX Shapes:

177.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

minX Subshapes:

177.0:

RPoint p1 (177, 408, 1170046781488)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RPoint point35 (177, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)
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227.0:

RPoint point14 (227, 365, 1170046782815)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point63 (227, 365, 1170046782815)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

277.0:

RPoint p2 (277, 323, 1170046781706)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point85 (277, 323, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

E.1.6 MinY Index

minY Shapes:

323.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

minY Subshapes:
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323.0:

RPoint p2 (277, 323, 1170046781706)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

365.5:

RPoint point14 (227, 365, 1170046782815)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint point63 (227, 365, 1170046782815)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

408.0:

RPoint p1 (177, 408, 1170046781488)
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RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

maxX Shapes:

277.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

E.1.7 MaxX Index

maxX Subshapes:

177.0:

RPoint p1 (177, 408, 1170046781488)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RPoint point35 (177, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line76 RPoint p1 (177, 323, 1170046782831)
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RPoint p2 (177, 408, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

227.0:

RPoint point14 (227, 365, 1170046782815)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point63 (227, 365, 1170046782815)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

277.0:

RPoint p2 (277, 323, 1170046781706)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point85 (277, 323, 1170046782846)
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RPoint point87 (277, 408, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

E.1.8 MaxY Index

maxY Shapes:

408.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

maxY Subshapes:

323.0:

RPoint p2 (277, 323, 1170046781706)

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

365.5:

RPoint point14 (227, 365, 1170046782815)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint point63 (227, 365, 1170046782815)
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RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

408.0:

RPoint p1 (177, 408, 1170046781488)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint p2 (177, 408, 1170046781488)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

E.1.9 Area Index

area Shapes:

131.24404748406687:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)
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RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

area Subshapes:

1.0:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

85.0:

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)
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RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

100.0:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

E.1.10 Width Index

width Shapes:

100.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

width Subshapes:

0.0:

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)
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RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

1.0:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)

RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

100.0:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)
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RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

E.1.11 Height Index

height Shapes:

85.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

height Subshapes:

0.0:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

1.0:

RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RPoint point14 (227, 365, 1170046782815)

RPoint point35 (177, 323, 1170046782831)

RPoint point36 (277, 323, 1170046782831)
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RPoint point37 (177, 408, 1170046782831)

RPoint point38 (277, 408, 1170046782831)

RPoint point44 (227, 323, 1170046782831)

RPoint point50 (227, 408, 1170046782831)

RPoint point56 (177, 365, 1170046782831)

RPoint point62 (277, 365, 1170046782831)

RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

RPoint point63 (227, 365, 1170046782815)

RPoint point84 (177, 323, 1170046782846)

RPoint point85 (277, 323, 1170046782846)

RPoint point86 (177, 408, 1170046782846)

RPoint point87 (277, 408, 1170046782846)

RPoint point93 (227, 323, 1170046782846)

RPoint point99 (227, 408, 1170046782846)

RPoint point105 (177, 365, 1170046782846)

RPoint point111 (277, 365, 1170046782846)

85.0:

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

E.1.12 Length Index

length Shapes:
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131.24404748406687:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine line11 RPoint p1 (277, 323, 1170046781706)

RPoint p2 (177, 408, 1170046781488)

length Subshapes:

85.0:

RLine line27 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line32 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line76 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (177, 408, 1170046782831)

RLine line81 RPoint p1 (277, 323, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

100.0:

RLine line17 RPoint p1 (177, 323, 1170046782815)

RPoint p2 (277, 323, 1170046782815)

RLine line22 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

RLine line66 RPoint p1 (177, 323, 1170046782831)

RPoint p2 (277, 323, 1170046782831)

RLine line71 RPoint p1 (177, 408, 1170046782831)

RPoint p2 (277, 408, 1170046782831)

E.2 Indexing of an Arrow

This section shows the indexing values for after an arrow and all of its accessible

components have been indexed.
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E.2.1 Name Index

Shape Names:

arrow_1:

arrow553 Arrow

line:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine line186 RPoint p1 (224, 319, 1170046787925)

RPoint p2 (276, 321, 1170046787675)

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine line358 RPoint p1 (273, 354, 1170046788753)

RPoint p2 (278, 321, 1170046788519)

Subshape Names:

boundRight:

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

boundTopRight:

RPoint point608 (278, 319, 1170046789081)

boundBottomRight:

RPoint point610 (278, 408, 1170046789081)

boundBottomMiddle:

RPoint point622 (227, 408, 1170046789081)

boundTop:

RLine line589 RPoint p1 (177, 319, 1170046789081)
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RPoint p2 (278, 319, 1170046789081)

boundTopMiddle:

RPoint point616 (227, 319, 1170046789081)

boundLeft:

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

head1:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

boundRightMiddle:

RPoint point634 (278, 363, 1170046789081)

boundBottomLeft:

RPoint point609 (177, 408, 1170046789081)

head2:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

tail:

RPoint tail (177, 408, 1170046781488)

shaft:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

center:

RPoint point586 (227, 363, 1170046789065)

boundLeftMiddle:

RPoint point628 (177, 363, 1170046789081)

boundBottom:

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

boundTopLeft:

RPoint point607 (177, 319, 1170046789081)
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head:

RPoint head (277, 323, 1170046781706)

pos: neg: hor: ver: angle:

40.0:

RLine line8 RPoint p1 (177, 408, 1170046781488)

RPoint p2 (277, 323, 1170046781706)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

81.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine line358 RPoint p1 (273, 354, 1170046788753)

RPoint p2 (278, 321, 1170046788519)

177.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine line186 RPoint p1 (224, 319, 1170046787925)

RPoint p2 (276, 321, 1170046787675)

E.2.2 Type Index

Shape:

arrow553 Arrow

DrawnShape:

arrow553 Arrow

Arrow:

arrow553 Arrow

Subshape Types: Total = 5

LAC:

RLine head1 RPoint p1 (278, 321, 1170046788519)
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RPoint p2 (273, 354, 1170046788753)

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

Shape:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)
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RPoint p2 (278, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

DrawnShape:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)
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RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

Line:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

Point:

RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)
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RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

E.2.3 X Index

x Shapes:

227.5:

arrow553 Arrow

x Subshapes:

177.0:

RPoint tail (177, 408, 1170046781488)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

227.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

227.5:

RPoint point586 (227, 363, 1170046789065)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

250.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)
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275.5:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

277.0:

RPoint head (277, 323, 1170046781706)

278.0:

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

E.2.4 Y Index

y Shapes:

363.5:

arrow553 Arrow

y Subshapes:

319.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

320.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

323.0:

RPoint head (277, 323, 1170046781706)

337.5:
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RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

363.5:

RPoint point586 (227, 363, 1170046789065)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

365.5:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

408.0:

RPoint tail (177, 408, 1170046781488)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

E.2.5 minX Index

minX Shapes:

177.0:

arrow553 Arrow

minX Subshapes:

177.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)
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RPoint tail (177, 408, 1170046781488)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

224.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

227.5:

RPoint point586 (227, 363, 1170046789065)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

273.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

277.0:

RPoint head (277, 323, 1170046781706)

278.0:

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point634 (278, 363, 1170046789081)
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E.2.6 MinY Index

minY Shapes:

319.0:

arrow553 Arrow

minY Subshapes:

319.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

321.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

323.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint head (277, 323, 1170046781706)

363.5:

RPoint point586 (227, 363, 1170046789065)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

408.0:

464



RPoint tail (177, 408, 1170046781488)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

E.2.7 MaxX Index

maxX Shapes:

278.0:

arrow553 Arrow

maxX Subshapes:

177.0:

RPoint tail (177, 408, 1170046781488)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

227.5:

RPoint point586 (227, 363, 1170046789065)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

276.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

277.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)
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RPoint head (277, 323, 1170046781706)

278.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

E.2.8 MaxY Index

maxY Shapes:

408.0:

arrow553 Arrow

maxY Subshapes:

319.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

321.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

323.0:
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RPoint head (277, 323, 1170046781706)

354.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

363.5:

RPoint point586 (227, 363, 1170046789065)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

408.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint tail (177, 408, 1170046781488)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

E.2.9 Area Index

area Shapes:

8989.0:

arrow553 Arrow

area Subshapes:

1.0:

RPoint head (277, 323, 1170046781706)

467



RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

33.37663853655727:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

52.03844732503075:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

89.0:

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

101.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

131.24404748406687:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)
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E.2.10 Width Index

width Shapes:

101.0:

arrow553 Arrow

width Subshapes:

0.0:

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

1.0:

RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)

RPoint point634 (278, 363, 1170046789081)

5.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

52.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

100.0:
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RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

101.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

E.2.11 Height Index

height Shapes:

89.0:

arrow553 Arrow

height Subshapes:

0.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

1.0:

RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

RPoint point586 (227, 363, 1170046789065)

RPoint point607 (177, 319, 1170046789081)

RPoint point608 (278, 319, 1170046789081)

RPoint point609 (177, 408, 1170046789081)

RPoint point610 (278, 408, 1170046789081)

RPoint point616 (227, 319, 1170046789081)

RPoint point622 (227, 408, 1170046789081)

RPoint point628 (177, 363, 1170046789081)
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RPoint point634 (278, 363, 1170046789081)

2.0:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

33.0:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

85.0:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)

89.0:

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

E.2.12 Length Index

length Shapes: length Subshapes:

33.37663853655727:

RLine head1 RPoint p1 (278, 321, 1170046788519)

RPoint p2 (273, 354, 1170046788753)

52.03844732503075:

RLine head2 RPoint p1 (276, 321, 1170046787675)

RPoint p2 (224, 319, 1170046787925)

89.0:

RLine line599 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (177, 408, 1170046789081)

RLine line604 RPoint p1 (278, 319, 1170046789081)

RPoint p2 (278, 408, 1170046789081)
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101.0:

RLine line589 RPoint p1 (177, 319, 1170046789081)

RPoint p2 (278, 319, 1170046789081)

RLine line594 RPoint p1 (177, 408, 1170046789081)

RPoint p2 (278, 408, 1170046789081)

131.24404748406687:

RLine shaft RPoint head (277, 323, 1170046781706)

RPoint tail (177, 408, 1170046781488)
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