Automatically Generating Sketch Interfaces from Shape Descriptions

Tracy Hammond HAMMOND @CSAIL.MIT.EDU
MIT Computer Science and Atrtificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction describe everything necessary to automatically generate a
based i devi h b sketch interface. To accomplish our goal, we have built
As pen-based input devices have become more commori,) LADDER , a symbolic language to describe how shapes

sketch recognition systems are being developed for many e grawn. displayed, and edited in a domain, 2) a base cus-
hand-drawn diagrammatic domains such as mechanical ej;o

. . . . , omizable multi-domain recognition system, and 3) a code
gineering, GUI design, course of action diagrams, an enerator (Hammond & Davis, 2004) that parses a LAD-
many others. These sketch interfaces 1) allow for morgyep omain description and generates Java and Jess code
natural interaction than a traditional mouse and palette toal; o \;sed by the base customizable recognition system so

by allowing users to hand-sketch the diagram, 2) can autGy, ¢ it can recognize, display and edit domain shapes. Fig-
matically connect to a CAD system preventing the deS|gne[”e 1 shows how all three parts of the system fit together.
from having to enter the same information twice, 3) can

offer realtime design advice from CAD systems, 4) allow
more powerful editing since the shape is recognized as &- LADDER

whole, 5) provide diagram beautification to remove Mes§ ADDER allows interface designers to describe how

and clutter, 6) use display as a trigger to in.form the usershapes in a domain are drawn, displayed, and edited. An
that the shape§_ have been correctly repogr_nzed. Howeyeéxample arrow description is shown on the left-hand side of
sketc_h r_ecognmon systems can b,e q_une'tlme Consumm&igure 1. The domain description is transformed into shape
to '?“"d if they are to handle the |ntr|ca§:|es of each do'recognizers (components and constraints), exhibitors (dis-
main. Also we would prefer that the builder of a SketChﬁJay section), and editors (editing) which are used in con-

recognition syitemhbe an expert in the_donﬁm r?ther tEa nction with a customizable recognition system to create
an expert in sketch recognition at a signal level. Rathet . 'c ot p it oo o

than build each recognition system separately, our group
has been working on a multi-domain recognition systemBefore creating the language, we performed a user study
that can be customized for each domain. where over 30 people described shapes with their natural
. . . vocabulary and with increasing levels of syntactical con-
To build a sketch recognition system for anew dor_na'n’straints in order to ensure an intuitive vocabulary and syn-
a developer would need only write a domain descr|pt|ont§lx_ We chose a hierarchical symbolic shape-based lan-
u

which describes how shapes are drawn, displayed an age as we found it to be more intuitive to describe shapes

edited in the domain, removing the need for sketch recognig, is manner, making descriptions easier to create, un-

tion e>_<pertise. This dqmain description V_'O'“'Id the_n_ be aUgerstand, and correct. We also noticed that not only are
tomf'mcally translated |nt<_) _shape recognizers, editing reTcéhape—based geometrical properties more intuitive (since
ognizers, and shape exhibitors for use ,W'th the C_UStom'Zéhape is the salient feature used in human recognition) than
able base domain independent recognition creating a dcféature-based properties such as those used by (Rubine,

main specific sketch interface that recognizes the shapes 91; Long, 2001), but since the features (and thus recog-
the domain, displaying them and allowing them to be editeqlfiion) are not based on drawing style, sketchers are able
as specified in the description. The inspiration for such §, .oy a5 they do naturally, with no constraints on stroke
framework stems from work in speech recognition, whichnumber order. or direction.

has been using this approach with some success. ’ ’

. : . Display and editing are important parts of a sketch inter-
This work describes an implemented prototype system th"’\°tace, and are different in each domain. The display gives

proves that such a framework 1S possible; that we can albpe yser feedback that an object was recognized and beau-
tomatically generate a sketch interface for a domain fron.lification can be used to remove the diagram of clutter. Be-
only a domain description. This work also serves to show

h d .) bl cause the objects are recognized we can define more pow-
that LADDER (Hammond & Davis, 2003) is an accepta €erful and intuitive editing gestures, consisting of a trigger

language for describing sketch interfaces and enables us to

Input Stroke

Sketch .-—9
Recognition

Domain Description Translation Q2YStem
Shape Definition of Arrow o
- Recognition Editing
(define shape Arrow) * Primitive Shapes .
(comment "An arrow with an open head ") i p Primitive Actions
(components Primitive Constraints * Primitive Triggers
(Line shaft) * Domain Shapes * Primitive Behaviors
(Line head1) p .
(Line headz generating head1.p2 * Domain Behaviors
(constraints shape a <90 head p1
(coincident shaft.p1 head1.p1) recognizers,_ shaft.p2 Y shaft.p1
(coincident shaft.p1 head2.p1) it a<90 head.p1
(equalLength head1 head2) - head2 p2
(acuteMeet head1 shaft) A
(acuteMeet shaft head2)) Drawn Shapes)
(aliases
{Point head shaft.p2) Database I
{Point tail shaft.p1)) generating
(ediiting editing k |
({trigger (holdDrag head))
(action (rubber-band this tail head)) _rerﬂgnl_zeri H — = - —T . - — l
({trigaer (holdDrag tail)) n
(action (rubber-band this head tail)) Display
({trigger (holdDrag this)) * Primitive Exhibitors
(di‘;ﬁ;:” (move this))) o | | = Domain Exhibitors
generating

(original-strokes shaft) | original stroke “sstraight line
(cleaned-strokes head1 head2) __ A L shape "ﬁ
(color red)) exhibitors straight line

)

‘ Output Screen ‘

Figure 1. System Framework

and action, for each shape. For instance, we may choosetion of primitive shapes (Ellipse, Line, Curve, Arc, Point)
link to be able to be dragged by its head an tail in rubber-using techniques by (Sezgin, 2001). It is possible that more
band fashion, but a wheel to be moved as a whole no mathan one interpretation is possible, in which case we choose
ter where you drag from within the wheel’s bounding box. both interpretations giving them the same unique identifier
LADDER is the first language that not only talks about so we know they come from a single stroke.

how shapes are to be recognized, but also talks about ho

shapes are displayed and edited. W|gher level recognition is then performed by the Jess rule

based system. Jess first performs higher level clean up on
the shapes, such as merging lines together. Jess then tries to
3. Customizable Base Multi-Domain form higher level shapes based on domain shape rules auto-
Recognition System matically generated during the code generation process by
. . i searching through all possible combination of subshapes
The customizable base recognition system is shown on thg testing the constraints between them. When choos-
right S|d_e.of Figure 1.. Before the hlgher level recogniz-ing hetween competing higher level shapes we use Okhams
ers, exhibitors, and editors are automatically generated, th[%|e, choosing the higher level shape that accounts for more
recognition §ystem c'o.n'tains domaip'independent m(')dl.“eéf the underlying data. If two choices are equivalent, we
for recognizing, exhibiting, and editing all of the primi- 5556 the shape created first, assuming that users prefer
tive shapes defined in LADDER. The domain independenty,qir shapes to remain constant on the screen. We have also

modules of the recognition system are the shaded boxgg,plemented a greedy algorithm that removes lower level
without their inner white domain modules. shapes from general processing to improve efficiency and

Recognition is a series of bottom up opportunistic datal0 ensure that the application continues to perform in real
driven triggers where the recognized shapes in the drawtime.

ing represent the facts about the world. When a stroke is

drawn, the system checks if it is an editing gesture, if not

it is assumed to be a drawing stroke, and domain indepen-

dent recognizers preprocess the stroke into some combina-

Mechanical Engineering Finite State Machines

Hodibo@X%O%

Gravity Polygon Pin Joint Wheel Anchor Ermpty Transition Empty State Transion ~ State
Flowcharts
> O []1<> == e
Transiton Empty Start Empty Action Empty Decision Start Action Transition Descision Decision
UML Class Diagrams

s - -5 0 O ® =]

Interface Relation Dependency Inheritance Aggregation Dotted Arrow Ermpty Interface Empty Class |perface Class

Course of Action

C 1o - 7 X[

Unit Armor Air Defense Airborne Calvary Reconnaissance Infantry

Air AssaltUnit Ajr Defence Unit

O <] [~] [B] [o=] [

Armored Unit Armored Calvary Air Aszalt Infantry Public Affairs Mortuary Affaires Mortar Mechanized Infantry

ERpeSIC] N [~]]

2] i ; Airb Unit Airborne Infantr
Miitary Intelligence Self Propelied Artilery 17" POt LightInfanty o Modia Gentar ¥

Figure 2. Variety of shapes and domains described and auto-generated.

4. Code Generation system to work for any shapes.

The components and constraints sections of a shape de- .
scription are automatically translated into a Jess rule defino- Evaluation

ing how to recognize tha.t shape. T_he t]ess rule created firWe have have written a LADDER domain description for
searches for the apprqprlate combination of subshapes, ang, following domains: UML class diagrams, mechanical
then tes_ts the constraints b_e_tween them. We have made tlé?\gineering, finite state machines, flowcharts, and a simpli-
cgstor_mzabl_e base recognition system as comp_lete as POfad version of course of action diagrams (Figure 2. Using
.S'ble’ including hand—godlng each qf the constraints W'th'nthe system presented in this paper, the descriptions have
it, to keep the translation process simple. been automatically translated into a sketch interface which
If a shape consists of a variable number of components sudigcognizes, displays, and allows editing in realtime as spec-
as a polyline (as opposed to an arrow which is composeified by the domain description. These descriptions in-
of a fixed -3- number of components), the shape descripclude over one hundred varying shapes, with some shapes
tion is translated into two Jess rules, one recognizing th&ontaining text, which can be entered using handwriting
base case (a polyline composed of 2 lines) and the othggcognition software provided with all tablet PCs. Fig-
recognizing the recursive case (a polyline composed of &res 3 shows the unrecognized and recognized strokes from
line and a polyline). a drawing made in an automatically generated mechanical

o . _engineering, flowchart, and finite state machine sketch in-
A shape exhibitor is automatically generated as a Java paink - e

method for the shape, which calls functions in the base
recognition system defined to work for any shape. A shape
can be displayed by one or more of the following: its origi- 6- Future Work

nal strokes, its best-fit primitives, its best-fit primitives with We would like to continue to test our system on more do-

the constraints solved, a collection of Java swing shapes, @ 5ing and would like to continue to improve the three sec-

bitmap image. tions of our framework. We are building a GUI to help

A shape editor is automatically generated defining whichdebug descriptions and looking for ways to make the lan-
triggers are turned on for the shape or its subshapes. If thguage more intuitive and easier to describe shapes. We are
trigger is turned on, then the actions to occur are then dein the process of building an API to allow the designer
fined in an automatically generated edit method. All of theto connect to a CAD system to build more sophisticated
triggers and actions are hard-coded in the base recognitiggketch systems. (Alvarado, 2004) is working on a multi-

720X LADDER aaset Aromaticaty Gosorsed Fncogton ysta for e o |
e

Fie_tindo View.

%\A\‘@

Figure 3. Auto-generated mechanical engineering, flowchart, and finite state machine interfaces

domain sketch recognition system that uses probabilitiedike Oltmans, Jacob Eisenstein, Aaron Adler, Metin Sez-
and context to perform top down recognition to allow for gin, Christine Alvarado, and Sonya Cates for all of their
messier sketching. We would like to integrate techniqueshelp in hashing out the ideas presented in this paper. | ap-
being developed by (Sezgin, 2003) to build more efficientpreciate the work of Vineet Sinha for organizing the SOW

recognizers. conference and the program members for all of their won-
derful comments on the paper. This work is supported in
7. Contributions part by the MIT/Microsoft iCampus initiative and in part

by MIT’s Project Oxygen.
We have developed a framework in which users can write
just a LADDER domain description, and a sketch inten‘aceReferenCeS

for that domain will be automatically generated. We h""VeAIvarado, C. (2004).Multi-domain sketch understandindpoc-
implemented a prototype system and tested our framework toral dissertation, Massachusetts Institute of Technology. To be
by writing descriptions for several domains and automat- published, August 2004.

ically generating sketch interfaces for these domains. Tdlammond, T., & Davis, R. (2003). LADDER: A language to de-
accomplish our goal, we have created 1) LADDER, a sym- scribe drawing, display, and editing in sketch recognitiera-

- . - . ceedings of the 2003 Internaltional Joint Conference on Artifi-
bolic domain description language, 2) a customizable base cial Intelligence (IJCAI)

recognition system, which performs the domain indepen—Hammond’ T., & Davis, R. (2004). Automatically transforming
dent parts of recognition usable for many domains, and 3) symbolic shape descriptions for use in sketch recogniguo:

a code generator that translates a domain description into ceedings of the Nineteenth National Conference on Artificial
higher level domain specific recognition code to be used Intelligence (AAAI-04)

by the customizable base recognition system. Long, A C. (2001). Quill: a gesture design tool for pen-k_)a_S(_ad
user interfaces Eecs department, computer science division,

U.C. Berkeley, Berkeley, California.
Acknowledgements Rubine, D. (1991). Specifying gestures by exampBamputer
Graphics(pp. 329-337).
I would like to thank Olya Veselova for her help and sup- sezgin, T. M. (2001). Feature point detection and curve approx-
port in creating this document while at AAAI; | am sure imation for early processing in sketch recognition. Master's
she would have been happier spending more of her time thesis, Massachusetts Institute of Technology.
in San Jose outside of the hotel room rather than helping€zgin, T. M. (2003). Recognition efficiency issues for freehand
me edit and | appreciate her time and effort. | would like sketchesProceedings of the 3nd Annual MIT Student Oxygen

. . Worksh
to thank my advisor Randy Davis and my group members orshop

