
Automatically Generating Sketch Interfaces from Shape Descriptions

Tracy Hammond HAMMOND @CSAIL.MIT.EDU

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge MA, 02139 USA

1. Introduction

As pen-based input devices have become more common,
sketch recognition systems are being developed for many
hand-drawn diagrammatic domains such as mechanical en-
gineering, GUI design, course of action diagrams, and
many others. These sketch interfaces 1) allow for more
natural interaction than a traditional mouse and palette tool
by allowing users to hand-sketch the diagram, 2) can auto-
matically connect to a CAD system preventing the designer
from having to enter the same information twice, 3) can
offer realtime design advice from CAD systems, 4) allow
more powerful editing since the shape is recognized as a
whole, 5) provide diagram beautification to remove mess
and clutter, 6) use display as a trigger to inform the user
that the shapes have been correctly recognized. However,
sketch recognition systems can be quite time consuming
to build if they are to handle the intricacies of each do-
main. Also we would prefer that the builder of a sketch
recognition system be an expert in the domain rather than
an expert in sketch recognition at a signal level. Rather
than build each recognition system separately, our group
has been working on a multi-domain recognition system
that can be customized for each domain.

To build a sketch recognition system for a new domain,
a developer would need only write a domain description
which describes how shapes are drawn, displayed and
edited in the domain, removing the need for sketch recogni-
tion expertise. This domain description would then be au-
tomatically translated into shape recognizers, editing rec-
ognizers, and shape exhibitors for use with the customiz-
able base domain independent recognition creating a do-
main specific sketch interface that recognizes the shapes in
the domain, displaying them and allowing them to be edited
as specified in the description. The inspiration for such a
framework stems from work in speech recognition, which
has been using this approach with some success.

This work describes an implemented prototype system that
proves that such a framework is possible; that we can au-
tomatically generate a sketch interface for a domain from
only a domain description. This work also serves to show
that LADDER (Hammond & Davis, 2003) is an acceptable
language for describing sketch interfaces and enables us to

describe everything necessary to automatically generate a
sketch interface. To accomplish our goal, we have built
1) LADDER , a symbolic language to describe how shapes
are drawn, displayed, and edited in a domain, 2) a base cus-
tomizable multi-domain recognition system, and 3) a code
generator (Hammond & Davis, 2004) that parses a LAD-
DER domain description and generates Java and Jess code
to be used by the base customizable recognition system so
that it can recognize, display and edit domain shapes. Fig-
ure 1 shows how all three parts of the system fit together.

2. LADDER

LADDER allows interface designers to describe how
shapes in a domain are drawn, displayed, and edited. An
example arrow description is shown on the left-hand side of
Figure 1. The domain description is transformed into shape
recognizers (components and constraints), exhibitors (dis-
play section), and editors (editing) which are used in con-
junction with a customizable recognition system to create
a domain sketch interface.

Before creating the language, we performed a user study
where over 30 people described shapes with their natural
vocabulary and with increasing levels of syntactical con-
straints in order to ensure an intuitive vocabulary and syn-
tax. We chose a hierarchical symbolic shape-based lan-
guage as we found it to be more intuitive to describe shapes
in this manner, making descriptions easier to create, un-
derstand, and correct. We also noticed that not only are
shape-based geometrical properties more intuitive (since
shape is the salient feature used in human recognition) than
feature-based properties such as those used by (Rubine,
1991; Long, 2001), but since the features (and thus recog-
nition) are not based on drawing style, sketchers are able
to draw as they do naturally, with no constraints on stroke
number, order, or direction.

Display and editing are important parts of a sketch inter-
face, and are different in each domain. The display gives
the user feedback that an object was recognized and beau-
tification can be used to remove the diagram of clutter. Be-
cause the objects are recognized we can define more pow-
erful and intuitive editing gestures, consisting of a trigger



Figure 1. System Framework

and action, for each shape. For instance, we may choose a
link to be able to be dragged by its head an tail in rubber-
band fashion, but a wheel to be moved as a whole no mat-
ter where you drag from within the wheel’s bounding box.
LADDER is the first language that not only talks about
how shapes are to be recognized, but also talks about how
shapes are displayed and edited.

3. Customizable Base Multi-Domain
Recognition System

The customizable base recognition system is shown on the
right side of Figure 1. Before the higher level recogniz-
ers, exhibitors, and editors are automatically generated, the
recognition system contains domain independent modules
for recognizing, exhibiting, and editing all of the primi-
tive shapes defined in LADDER. The domain independent
modules of the recognition system are the shaded boxes
without their inner white domain modules.

Recognition is a series of bottom up opportunistic data
driven triggers where the recognized shapes in the draw-
ing represent the facts about the world. When a stroke is
drawn, the system checks if it is an editing gesture, if not
it is assumed to be a drawing stroke, and domain indepen-
dent recognizers preprocess the stroke into some combina-

tion of primitive shapes (Ellipse, Line, Curve, Arc, Point)
using techniques by (Sezgin, 2001). It is possible that more
than one interpretation is possible, in which case we choose
both interpretations giving them the same unique identifier
so we know they come from a single stroke.

Higher level recognition is then performed by the Jess rule
based system. Jess first performs higher level clean up on
the shapes, such as merging lines together. Jess then tries to
form higher level shapes based on domain shape rules auto-
matically generated during the code generation process by
searching through all possible combination of subshapes
and testing the constraints between them. When choos-
ing between competing higher level shapes we use Okhams
rule, choosing the higher level shape that accounts for more
of the underlying data. If two choices are equivalent, we
choose the shape created first, assuming that users prefer
their shapes to remain constant on the screen. We have also
implemented a greedy algorithm that removes lower level
shapes from general processing to improve efficiency and
to ensure that the application continues to perform in real
time.



Figure 2. Variety of shapes and domains described and auto-generated.

4. Code Generation

The components and constraints sections of a shape de-
scription are automatically translated into a Jess rule defin-
ing how to recognize that shape. The Jess rule created first
searches for the appropriate combination of subshapes, and
then tests the constraints between them. We have made the
customizable base recognition system as complete as pos-
sible, including hand-coding each of the constraints within
it, to keep the translation process simple.

If a shape consists of a variable number of components such
as a polyline (as opposed to an arrow which is composed
of a fixed -3- number of components), the shape descrip-
tion is translated into two Jess rules, one recognizing the
base case (a polyline composed of 2 lines) and the other
recognizing the recursive case (a polyline composed of a
line and a polyline).

A shape exhibitor is automatically generated as a Java paint
method for the shape, which calls functions in the base
recognition system defined to work for any shape. A shape
can be displayed by one or more of the following: its origi-
nal strokes, its best-fit primitives, its best-fit primitives with
the constraints solved, a collection of Java swing shapes, a
bitmap image.

A shape editor is automatically generated defining which
triggers are turned on for the shape or its subshapes. If the
trigger is turned on, then the actions to occur are then de-
fined in an automatically generated edit method. All of the
triggers and actions are hard-coded in the base recognition

system to work for any shapes.

5. Evaluation

We have have written a LADDER domain description for
the following domains: UML class diagrams, mechanical
engineering, finite state machines, flowcharts, and a simpli-
fied version of course of action diagrams (Figure 2. Using
the system presented in this paper, the descriptions have
been automatically translated into a sketch interface which
recognizes, displays, and allows editing in realtime as spec-
ified by the domain description. These descriptions in-
clude over one hundred varying shapes, with some shapes
containing text, which can be entered using handwriting
recognition software provided with all tablet PCs. Fig-
ures 3 shows the unrecognized and recognized strokes from
a drawing made in an automatically generated mechanical
engineering, flowchart, and finite state machine sketch in-
terfaces.

6. Future Work

We would like to continue to test our system on more do-
mains and would like to continue to improve the three sec-
tions of our framework. We are building a GUI to help
debug descriptions and looking for ways to make the lan-
guage more intuitive and easier to describe shapes. We are
in the process of building an API to allow the designer
to connect to a CAD system to build more sophisticated
sketch systems. (Alvarado, 2004) is working on a multi-



Figure 3. Auto-generated mechanical engineering, flowchart, and finite state machine interfaces

domain sketch recognition system that uses probabilities
and context to perform top down recognition to allow for
messier sketching. We would like to integrate techniques
being developed by (Sezgin, 2003) to build more efficient
recognizers.

7. Contributions

We have developed a framework in which users can write
just a LADDER domain description, and a sketch interface
for that domain will be automatically generated. We have
implemented a prototype system and tested our framework
by writing descriptions for several domains and automat-
ically generating sketch interfaces for these domains. To
accomplish our goal, we have created 1) LADDER, a sym-
bolic domain description language, 2) a customizable base
recognition system, which performs the domain indepen-
dent parts of recognition usable for many domains, and 3)
a code generator that translates a domain description into
higher level domain specific recognition code to be used
by the customizable base recognition system.

Acknowledgements

I would like to thank Olya Veselova for her help and sup-
port in creating this document while at AAAI; I am sure
she would have been happier spending more of her time
in San Jose outside of the hotel room rather than helping
me edit and I appreciate her time and effort. I would like
to thank my advisor Randy Davis and my group members

Mike Oltmans, Jacob Eisenstein, Aaron Adler, Metin Sez-
gin, Christine Alvarado, and Sonya Cates for all of their
help in hashing out the ideas presented in this paper. I ap-
preciate the work of Vineet Sinha for organizing the SOW
conference and the program members for all of their won-
derful comments on the paper. This work is supported in
part by the MIT/Microsoft iCampus initiative and in part
by MIT’s Project Oxygen.

References
Alvarado, C. (2004).Multi-domain sketch understanding. Doc-

toral dissertation, Massachusetts Institute of Technology. To be
published, August 2004.

Hammond, T., & Davis, R. (2003). LADDER: A language to de-
scribe drawing, display, and editing in sketch recognition.Pro-
ceedings of the 2003 Internaltional Joint Conference on Artifi-
cial Intelligence (IJCAI).

Hammond, T., & Davis, R. (2004). Automatically transforming
symbolic shape descriptions for use in sketch recognition.Pro-
ceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04).

Long, A. C. (2001). Quill: a gesture design tool for pen-based
user interfaces. Eecs department, computer science division,
U.C. Berkeley, Berkeley, California.

Rubine, D. (1991). Specifying gestures by example.Computer
Graphics(pp. 329–337).

Sezgin, T. M. (2001). Feature point detection and curve approx-
imation for early processing in sketch recognition. Master’s
thesis, Massachusetts Institute of Technology.

Sezgin, T. M. (2003). Recognition efficiency issues for freehand
sketches.Proceedings of the 3nd Annual MIT Student Oxygen
Workshop.


