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ABSTRACT 

The Timed-Up and Go test (TUG) is a well-known medical test that is used as an 

indicator of mental and physical health. I developed the TUG-Segmenter, an automatic 

segmentation tool that can divide recorded TUG test data into the six main phases of 

the test: Sitting, Standing-Up, Walking-Forward, Turning, Walking-Back, and Sitting-

Down. I created an annotation tool as well that greatly speeds up the creation of ground 

truth from TUG test data. Using both these tools I was able to evaluate the accuracy of 

the TUG-Segmenter in terms of the duration of the segmented phases ( 83.4 % accurate 

) and the start times of the segmented phases ( 83.6 % accurate). Lastly, I found a 0.3 cm 

difference for jitteriness and an 8.5 mm/s difference for speed between healthy elderly 

subjects and healthy young subjects when comparing the features extracted from the 

individual TUG test phases.  
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Introduction 
 

The Timed-Up-and-Go test, also known as the TUG test, is a medical test used to 

assess the health of people with Parkinson’s disease, Alzheimer’s disease, and the 

elderly in general. It can predict several areas of health such as a subject’s risk of falling, 

future cognitive degeneration, and general mobility. During a TUG test the subject 

stands up from a chair and walks to a point three meters away, then they turn around 

and walk back to the chair and sit down. An elderly subject is determined to have a four 

times higher risk of falling in the future if they complete the test in greater than 12.6 

seconds (Kojima 2015). Impaired performance on the TUG test, taking longer than 10 

seconds to complete the test, has also been shown to predict cognitive degeneration for 

patients with Alzheimer’s in the form of dementia (Lee 2018). Completion of the TUG 

test under 12 seconds has been shown to correlate with good mobility in communities 

of elderly women (Bischoff 2003). The TUG test has the ability to predict both physical 

and cognitive issues and its use is widespread. 

I created a tool that automatically segments a subject’s motion during a TUG test 

into the six main phases of the TUG walk cycle. The TUG-Segmenter segments the walk 

cycle into the phases of Sitting, Standing-up, Walking-Forward, Turning, Walking-Back, 

Sitting-Down. Previously the result of the TUG test was a single number: the time it 

takes to complete the whole TUG walking cycle. By breaking the TUG test walk cycle into 
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several phases, the test results can be analyzed in a more detailed way, such as the time 

it takes to complete each phase. The hope is that this TUG-Segmenter will help in future 

research such as studies using the TUG test to predict the progression of Parkinson’s.  

 

 

Previous research done by the Multimodal Understanding Group at MIT was able 

to successfully predict cognitive impairment of subjects with the neurodegenerative 

disease, Alzheimer’s, using the physical motions of a subject drawing a clock (Davis 

2015). Parkinson’s disease is another neurodegenerative disorder, which means it 

similarly affects cognition. One way Parkinson’s disease symptoms manifest is as an 

increased difficulty walking. This equates to slower overall walking in addition to a more 

jittery gait, due to many smaller and irregular steps. Other studies on Parkinson’s have 

shown that when patients are asked to do two movements simultaneously, such as 

extending an arm while squeezing their fingers together, there is a greater slowing 

down than when they do one movement after another (Marsden 1989). The greater the 

Sitting Standing-Up Walking-

Forward 
Turning Walking-

Back 

Sitting-

Down
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cognitive difficulty, the longer it takes to complete the intended movement or 

movements, thus we can use physical metrics such as speed to indicate cognitive 

difficulty. 

Certain phases of walking are more cognitively difficult than others. For example, 

the Standing-Up phase in young individuals can be seen as the execution of several 

overlapping actions needed to go from sitting to walking and therefore is more 

cognitively difficulty in contrast to the single action of sitting. These overlapping actions 

during the Standing-Up phase may be rising from the chair, positioning the feet into a 

walking stance, and propelling the body forward. In younger individuals these separate 

actions often occur in parallel during the Standing-Up phase; as they rise from the chair 

they begin extending their foot for the expected walking motion. In older individuals 

these actions are more sequential, and often the subject is mostly upright before 

moving their foot forward to begin walking. In the TUG walk cycle, physical symptoms 

such as slowing or jitteriness may manifest due to the cognitive difficulty of a particular 

phase of walking. 

An automatic segmentation of the phases of walking might enable better 

analysis of each phase of the walk cycle. I measured two categories of features per 

phase, speed and jitteriness. I found a 0.3 cm difference for jitteriness and an 8.5 mm/s 

difference for speed between elderly and young subjects. 

Current motion tracking technology is quite cumbersome to wear and deploy, 

generally taking the form of multiple Inertial Measurement Units (IMU) bands that 
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measure the acceleration of specific limbs, or body suits with unique visual markers so 

that limb locations can be inferred from captured video. Dina Katabi’s lab at MIT has 

developed a form of radar using a signal comparable to Wi-Fi that is able to track motion 

without the need for wearables (Hsu 2017). Using this new sensing technology, I 

measured the walk cycle of healthy individuals to establish a reference for the speed 

and jitter for each phase of walking. This can then be used in future research as a 

comparison for individuals with neurodegenerative disorders such as Parkinson’s 

disease. 

Some issues surfaced during the data collection of the walk cycles, such as 

sensor pauses and data discontinuities. I developed strategies and automatic methods 

for determining when these issues occurred. For sensor pauses and data discontinuities 

the TUG-Segmenter looks for displacements between two sequential frames of data in 

which the displacement is greater than what is possible for human motion, and then 

keeps track of which TUG tests contain these invalid sections of data. Other data issues 

required manual fixing such as splicing two walking motions together. This was needed 

when the sensor mistakenly perceived the motion of one person as if two separate 

people had each performed a subsection of the motion.  

I also developed an efficient and fast pipeline for collecting and then annotating 

the walking data. After recording the subject walking, images captured from the TUG 

test are put into a user interface that enables easy traversal of the images and quick 

annotation of specific frames as endpoints of walk cycle phases. This annotation data 

can then be exported, and combined with the walk cycle motion data, yielding the walk 
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cycle ground truth. I used this interface to manually annotate the walk phases 

efficiently. By solving data issues along with annotation of the walk phases I created a 

body of data usable for ground truth.  

Through an automatic segmentation of the walk cycle using the TUG-Segmenter, 

researchers will be able to quickly identify phases of walking for a given subject and also 

determine if the speed or jitteriness of a particular phase is atypical. Additionally, with a 

segmentation tool available, the TUG test results can be more granular and perhaps give 

greater insight into the health of the individual. By understanding typical motion for 

each phase of the walk cycle during the TUG test I hope to help future research more 

easily identify erratic or strange motion in patients with Parkinson’s disease. 
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Related Work 
  

 In prior research, TUG tests have been tracked while subjects wear Inertial 

Measurement Unit (IMU) sensors on specific limbs (Nguyen 2017). Some researchers 

have noted the importance of minimizing the amount of sensors being used in order to 

not interfere with a subjects gait (Reinfelder 2015). The importance of automatic TUG 

test segmentation algorithms have also been because features extracted from individual 

phases can give scientists more detailed and clinically relevant TUG test results 

(Reinfelder 2015). There has also been research done combination of TUG test features 

that improve the discrimination between subjects with a history of falling and those 

with no history of falling (Ponti 2017). 

In one study, twelve elderly subjects diagnosed with an early stage of Parkinson’s 

disease wore a body suit of 17 IMUs while they performed TUG tests over a 10 and 5 

meter distance (Nguyen 2017). In this study the TUG test was segmented into 4 phases. 

The segmentation strategy was to look for several activity peaks in the measured TUG 

test IMU data and then find the nearest minimum and maximum to the right and the 

left of that peak. The result of this study was that the strategy of an algorithm 

developed for segmenting the TUG test data of healthy individuals was transferable to 

TUG test data for patients with Parkinson’s disease.  

 A second study emphasized the importance of creating a tracking system with as 

few sensors as possible due to the interference obtrusive sensors can cause to the 

natural course of motion (Reinfelder 2015). In this study they placed two unobtrusive 
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IMU sensor on the outside of a pair of shoes. Subjects would then perform a standard 3 

meter TUG test using the modified shoes. 121 features were then calculated from the 

TUG test data and used to classify the TUG data into 6 phases. The best classifier 

achieved a classification accuracy of 81.8%. 

 A third study focused on the effect of using various features, such as Euclidean 

distance, Power Spectral Entropy, Power Spectrum Frequency, and others. The best 

result (a sensitivity and specificity of 83%) was found by performing feature fusion, a 

normalized average of all the features, to improve TUG test discrimination between 

subjects with a history of falling and those without a history of falling. 

In the two studies that developed and algorithm for phase segmentation, there 

was an examiner who had to manually mark the frames for the start and end points of 

phases using visual data, either a 3D representation of the subject or images from a 

high-speed camera. This is a common pipeline for validation of the segmentation 

algorithms, and later I will discuss the tools I developed to improve this pipeline. 
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The WiGait Sensor 
 

The WiGait sensor is a motion sensing technology being developed by the Katabi 

lab at MIT CSAIL (Hsu 2017). The sensor uses the reflections of a low frequency Wi-Fi 

signal to track the motion of people. Similar to radar, the sensor emit signals and can 

identify objects in motion based on the time it takes for multiple signals to return to the 

sensor. Using the distance changes calculated from transmitted and received signals, it 

can identify these moving objects. The sensor continuously sends out signals to localize 

all moving objects and once an object stops moving it is no longer able to be tracked 

until it begins moving again. This method of motion tracking is ideal for elderly patients 

because it does not require the subject to wear any heavy or restrictive tracking devices 

such as markers or bodysuits.  

 

Data Format 

The data collected from the sensor is the calculated center of motion at a given 

time. The sensor was programmed to collect data every 0.02 seconds in the form of 

[timestamp: x, y, z]. For all subjects, the sensor was placed at the far end of the room 

across from a chair. The subject would rise from the chair, walk 3 meters toward the 

sensor until reaching the turn point, walk away from the sensor for 3 meters to the 

chair, and then sit back down. Each of the subjects would perform 30 of these TUG tests 

consecutively. The axis between the chair and the sensor is the Y axis. The X axis 

represents the motion perpendicular to the sensor, such as the axis formed by the left 
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and right of a subject. Finally, the Z axis is oriented vertically, along the height of a 

subject.  

 

A length of continuously collected positions from one person is referred to as a 

‘tracklet’ and defines a sequence of motions. The granularity of changes in motion that 

the device can perceive is based on its distance from the subject. At the closest the 

sensor can detect changes on the order of millimeters, such as heartbeats. At the 

farthest it can detect motion on the order of centimeters, such as breathing (Fadel 

2015).  

At the same location as the sensor was a camera that could capture images of 

the scene at 10 frames per second. This camera was recording during the subjects’ TUG 

tests so that I could later determine the ground truth for the start and end of the walk 

phases.  

 

 

 

Y 

X 

Z 

Chair Turn point Sensor 
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Device Specifications 

 Distance from sensor Resolution at distance 

Minimum range of sensor 1 meter radius Millimeter changes  

Maximum range of sensor 8 meters radius Centimeter changes  

 

 Field of View  

Maximum horizontal angle ± 75 degrees 

Maximum vertical angle ± 75 degrees 

 

* The sensor has the ability to simultaneously track multiple people if they are at least a few meters away 

from each other. 

 

Limitations 

The WiGait sensor can capture very small motions but is not specific as to the 

body part that moved. For example, while tracking a person, the sensor may detect a 

large movement to the right but cannot indicate whether that motion is due to a leg, an 

arm, or the whole body moving in that direction. Thus, picking a test with a specified 
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series of motions, such as the TUG test, was critical because it allowed for the motions 

to be more easily categorized into phases. 

Data for the X and Z axis turned out to be particularly noisy, likely because of the 

small difference between the minimum and maximum value for these axes. The X axis 

had a difference of ~0.6 meters and the Z axis had a difference of ~1.5 meters. On these 

axes, motions that are irrelevant to the overall walk cycle manifest on a similar scale to 

meaningful motions, which adds noise to the data. An example of this phenomenon 

would be a body turning around to the right while also moving a hand out to the left 

causing a confusing resulting motion on the X axis.  

Because of this issue with noise, the Y axis, which has a range of ~5 meters, had 

the clearest signal and thus it alone was used to determine the segmentation for the 

phases of walking. 
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The X axis (top), Y axis (middle), and Z axis (bottom) for a series of 6 TUG tests. 
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Data Visualization and Jitter 
 

 

Parallel Data Stream Visualization 

To understand the tracklet data I created a visualization program that takes in 

tracklets and interprets the [timestamp: x, y, z] data as a moving ‘dot’ in a real-time 3D 

simulation. This dot is then overlaid with the video captured during the data collection. 

The result is a video with the WiGait sensor output overlaid on the video of the subject. 

 

 I performed seven tests in order to get a general sense of the sensor sensitivity. I 

recorded myself: 

 Sitting in a chair making no large motions.  

 Holding a glass as a physical load while sitting. 

 Counting backwards in my head by units of 7 as a cognitive load while sitting. 

 Making motions only with my legs. 

Early screenshots of the visualizer program. X is left/right, Y is up/down, Z is front/back. 
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 Making motions only with my arms. 

 Making motions with my right and then left the sides of my body and then full 

motion. 

 Doing a TUG test for walking motions. 

 All of these tests were run through the visualizer to gain clarity on the amount of 

motion present in various types of movements and to find insights about fluctuation 

patterns in the data. 

I quickly discovered that the sensor output was not necessarily the position of 

the center of the body, because the movement of limbs caused large shifts in the 

output. For example, the output position might follow an arm extended out to the right 

even while the person remained in the chair. Even small flicks of the wrist or ankles 

could cause the sensor data location to shift away from the body. The visualizer allowed 

me to understand that the WiGait sensor could be very sensitive to these small motions. 

Identifying what phenomena were causing perturbations and changes in the data gave 

an intuitive sense for how the WiGait behaves and tracks motion.  
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One of the metrics I used to understand the motion of a person and noise of the 

sensor is ‘jitter’, which I defined as the difference between a motion and a smoothed 

version of that motion. For example, if one shakes heavily while rising from the chair or 

walks forward using small irregular steps the jitteriness will be higher than a fluid rising 

motion or walking motion. I smoothed the motion by applying a Gaussian filter to the 

sensor output on the Y axis with σ = 0.65. Jitteriness is computed as the pointwise 

absolute difference the smoothed motion and its corresponding point in the original 

motion.  

𝐽(𝑂) =  
1

𝑛
∑ 𝑎𝑏𝑠(𝑂𝑖 − 𝐺𝑎𝑢𝑠𝑠(𝑂)𝑖)

𝑛

𝑖=0

 

 

Images from the jitter tests. 
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I used jitter to evaluate two types of motion tests, unmoving and moving. The 

unmoving tests consist of three sitting tests:  

 Quiet sitting  

 Sitting with physical load (holding a glass of water) 

 Sitting with cognitive load (counting backwards by units of 7) 

The moving tests consist of three sitting tests and one walking test: 

 Sitting with leg movement 

 Sitting with arm movement 

 Sitting with sides and full movement 

 A TUG test 

The rounded average jitter amount for the unmoving tests was 1.8 cm and the 

rounded average jitter for the moving tests was 4.5 cm. 

 

 



22 
 

 

 

 

  

 

 

 

 

 

Moving Tests Jitter (meters) Distance from MIN to 
MAX value(meters) 
 

Legs test: 
(along Z) 
 

0.025 X: 0.37 
Y: 0.62 
Z: 0.96 

Arms test: 
(along X and Y) 
 

0.059 X: 0.33 
Y: 1.03 
Z: 1.00 

Sides test: 0.026 X: 0.42 
Y: 0.53 
Z: 0.45 

TUG walk test: 
 
 

0.069 X: 0.58 
Y: 3.51 
Z: 0.99 

 

 

 

 

 

 

Unmoving Tests Jitter (meters) Distance from MIN to 
MAX value (meters) 
 

Quiet sit test: 
 
 

0.041 X: 0.43 
Y: 0.89 
Z: 0.69 

Physical load sit test: 0.011 
 

X: 0.39 
Y: 0.62 
Z: 0.99 

Cognitive load sit test: 0.003 X: 0.28 
Y: 0.44 
Z: 1.62 
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Data Collection Methods 
 

I collected 30 TUG tests from 4 male subjects, two of which were young and two 

of which were elderly. I asked the subjects to rise from a chair and walk at a comfortable 

pace to a point 3 meters away and then walk back to the chair and sit. In between each 

TUG test I would wait 15 seconds before giving them the indication to begin the next 

TUG test. The WiGait sensor tracked the subjects’ motion while the camera captured 

images of them performing the TUG tests. 

 By taking a look at a subject’s walk cycle frame by frame from the images, I 

determined ground truth for the segmentation points for each phase of walking. Here 

are the definitions I used while manually annotating the data: 

 End of Sitting: the frame before a subject moved in anticipation of standing up, 

this was typically an arm movement. 

 End of Standing-Up: the frame where the shoulders reached their maximum 

height. In addition, both feet had to be planted on the ground or one foot could 

be extended toward the first step of a walking motion. 

 End of Walking-Forward: the frame where the subject’s chest was no longer 

fully parallel to the sensor, typically this initiation of turning was paired with a 

leg crossing over another leg. 

 End of Turning: the frame where the subject’s back was parallel to the sensor. 

 End of Walking-Back: the frame where the subject’s back was no longer parallel 

to the sensor, typically this was paired with one extended foot planted 
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perpendicular to the walking direction to assist with the turning required to sit 

down in the chair. 

 End of Sitting-Down: the frame where the subject’s back was against the chair 

and were no longer moving around in the chair. 

 

Annotation User Interface 
 

 To efficiently and quickly create ground truth from the dataset I developed a 

user interface that streamlined the annotation process. It prompts users for the end 

point of each phase in the order they appear in the TUG. The interface allows users to 

easily traverse the frames, either one by one or at a particular framerate. Once a frame 

is selected for an end point, the interface automatically fills out the start point of that 

phase based on the end of previous phase. Previously annotated phases appear in a 

chart with their associated timestamp. This chart can also be edited in case a frame was 

mistakenly selected. During edit mode the interface displays a preview of the frame at 

the segmentation point being edited. This chart, containing the ground truth 

annotation, can then be copied and exported into a separate file for use by a researcher.  
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      A screenshot of the annotation UI. 

Without the interface it took me 40+ hours to annotate 80 TUG tests, about 30 

minutes each. Using the interface to annotate the 120 TUGs from the 4 subjects it took 

me 10 hours to annotate all the data, about 5 minutes each, a significant speed up.  
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Annotated ground truth for three TUG tests. (top-to-bottom) X axis, Y axis, Z axis. 
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TUG-Segmenter Implementation 
 

The TUG-Segmenter automatically segments the data via a two stage process, 

segmentation of core phases and then segmentation of transition phases. The core 

phases of the TUG are the phases where no height change takes place: Sitting, Walking-

Forward, Turning, and Walking-Back. The transition phases are the phases that connect 

a phase at standing height to the phase at sitting height: Standing-Up and Sitting-Down. 

A two stage process is used in order to segment the phases that are more 

straightforward to segment, the core phases, before segmenting the more difficult 

phases, the transition phases. The core phases provide a useful start or end point for the 

segmentation of the transition phases. During the stages of segmentation the TUG-

Segmenter uses only the Y-axis data, the subject’s distance from the sensor. 

 

Stage-One: Core Phases 

 The core phases are segmented based on distance thresholds from two 

locations, the sit-threshold and turn-threshold. The sit-threshold is the distance from 

the chair at which a person is determined to have just exited or entered the vicinity of 

the chair to either walk away or begin sitting down. The turn-threshold is the distance 

from the turn point at which a person is determined to have just started or finished 

their turning motion. The sit-threshold has a value of 0.315 meters and the turn-

threshold has a value of 0.565 meters. Both of these values were determined by 
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calculating the average Y-position at the beginning and end of all Walking-Forward 

ground truth phases, for the sit-threshold and turn threshold respectively.   

The distance from the sensor to the chair and turn point are measured before 

data collection. The end frame of a Sitting phase is determined by the TUG-Segmenter 

when a subject’s distance from the chair exceeds the sit-threshold value.  Then from 

that frame until the frame where the subject’s distance to the turn point is less than the 

turn-threshold value is the Walking-Forward phase. The end frame of the Turning phase 

is then determined when a subject’s distance from the turn point exceeds the turn-

threshold value. Then from that frame until the frame where the subject’s distance to 

the chair is less than the sit-threshold value is the Walking-Back phase. The following 

phase is a Sitting phase and the process repeats until all the data has been segmented 

into a phase. Once this segmentation occurs, the result is a series of TUGs, each 

segmented into four phases: Sitting, Walking-Forward, Turning, and then Walking-Back. 

 

 

 

Y 

Chair Turn point Sensor 

Sit-threshold Turn-threshold 
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Stage-Two: Transition Phases 

 The transition phases are segmented from the Sitting phase determined in the 

previous stage of the TUG-Segmenter. The sit-threshold value is purposefully large 

enough such that the Sitting phase from the previous stage includes the beginning of 

the Sitting-Down phase and the end of the Standing-Up phase. Therefore each stage-

one Sitting phase is composed like so: 

 

The first stage-one Sitting phase does not contain a Sitting-Down phase because there is 

no previous TUG. 

 

Sitting-Down 

To determine the endpoint of the Sitting-Down phase I use the gradient of the 

smoothed stage-one Sitting phase Y-position data with respect to time. The TUG-

Segmenter scans from the start time of the stage-one Sitting phase data until it finds the 

Sitting-Down 

phase of 

previous TUG 

Sitting phase 

(Trimmed) 

Standing-Up 

phase of 

current TUG 

Sitting phase 

time 

Stage-One: 

Stage-Two: 
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first point where the motion toward the chair plateaus, indicated by the speed being 

less than or equal to 50 cm/s. When this point is found, the Sitting-Down phase is 

determined to be all the frames between the first frame of stage-one Sitting and the 

point found with the speed less than or equal to 50 cm/s. The gradient of the stage-one 

Sitting phase data is taken using an approximation by central differences, which 

approximates the derivative using a point sampled from equal distances on its left and 

right. The smoothing is done by a Gaussian filter with σ = 0.65.  

 

Standing-Up 

To determine a point as the start point of Standing-Up the TUG-Segmenter 

considers each point from the end point of the Sitting-Down phase to the end of stage-

one Sitting, until it finds the first point that satisfies several conditions: 

 There must be at least a 2 second motionless sitting period between the 

end of Sitting-Down and the start of Standing-Up. This is to prevent the 

start of Standing-Up occurring immediately after the end of Sitting-Down, 

yielding an empty Sitting phase. Motionlessness is determined by a 

sequence of points where all the speeds are under 50 cm/s. 

 A large movement detected in the unsmoothed data in combination with 

an overall motion toward the sensor in the subsequent points. This is 

characteristic of someone rustling in the chair as they begin to get up, 

and then rising. The large movement is determined by a rate of 
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displacement less than or equal to -10 m/s in the unsmoothed data. The 

overall motion is determined by taking the average rate of displacement 

over the next 0.2 seconds and 2 seconds, if both are less than or equal to 

-10 m/s the motion is considered to be moving toward the sensor. 

 There is no motionless after the large movement that would indicate a 

false start Standing-Up, such as rustling in the chair but then remaining 

sitting. 

If all these conditions are satisfied then the start point of Standing-Up has been 

determined. The TUG-Segmenter then marks the interval from the found point until the 

end of the stage-one Sitting as the Standing-Up phase. If these conditions cannot be 

satisfied, a more lenient condition is used to find the start point (considering each point 

from the end of Sitting-Down): 

 An overall motion toward the sensor in the subsequent 4 seconds after 

the point being considered.  

If this condition cannot be satisfied, then a constant value of 0.1 seconds is used to 

determine the duration of the Standing-Up phase. The last 0.1 seconds of stage-one 

Sitting is then determined to be the Standing-Up phase. The end point of the Sitting 

phase is appropriately modified. 

 Once this last stage segmentation occurs, the result is a series of TUGS, each 

segmented into six phases: Sitting, Standing-Up, Walking-Forward, Turning, Sitting-

Down, and then Walking-Back. 
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Data Issues 
 

 Several categories of issues arose with the data due to the WiGait sensor: 

extreme oscillation, discontinuities, and tracklet fracturing. Each of these issues 

required a different solution to allow the TUG-Segmenter to process the collected data. 

 

Extreme Oscillation 

At times the sensor would seem to stop and then attempt to recover tracking.  

This would result in the sensor outputting data indicating that the motion of a subject 

was greater than ~2.5 meters between two frames, usually showing this type of motion 

multiple times within a single second. This is unlikely behavior as the average walking 

speed of a human is 1.4 m/s (Browning 2006). To detect extreme oscillations the TUG-

Segmenter would look at each two adjacent frames in the data and if the absolute 

difference between the Y-positions of the two frames was greater than 2.5 meters then 

that TUG test was marked as invalid.  

I do not make use of this phenomenon, but it is interesting to note that the 

sensor stopping before the occurrence of an extreme oscillation appears as a value that 

doesn’t change until the oscillation occurs. This manifests as a horizontal line and then 

an oscillation with a high frequency and large amplitude as shown by the graph below. 
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Discontinuities  

Discontinuities in the data likely occurred as a secondary effect of extreme 

oscillation. They were removed by applying a Gaussian filter to correct the missing 

points.  

 

The middle graph shows an example of extreme oscillation between 15:30:18 and 15:30:20. 
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Tracklet Fracturing 

Tracklet fracturing occurred in two forms, split tracklets and overlapping 

tracklets. Both of these issues occurred when the sensor determined certain parts of 

one sequence of motion belonged to more than one individual. Tracklets are called split 

if the data has been partitioned into more than one separate tracklet by being 

partitioned at a single point. Fixing this requires merging the two tracklets. 

 

The blue, pink, yellow, and green tracklets show an example of split tracklets. 
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Overlapping tracklets result from the sensor interpreting one motion as two 

distinct motions occurring at the same time and belonging to two moving subjects. This 

phenomenon requires more effort in order to fix. In this case the tracklet is divided in 

the middle of a motion and two tracklets together must be spliced together at the 

correct point to preserve the correct TUG test motion. In the example below, the pink 

tracklet contains the correct TUG test data until partially through the upward curve of 

the Walking-Back phase, after which point the yellow tracklet contains the correct data. 

These two parts spliced together form a full TUG test tracklet. This issue can only be 

fixed by manually finding the correct splice points in the two tracklets. 

 

Results 
 

 The accuracy of the TUG-Segmenter was evaluated based on two metrics, 

durations and start points.  

Duration accuracy is the percent difference between segmented phase durations 

and ground truth phase durations. For example, if a Sitting phase lasts from t=1 until 

An example of overlapping tracklets that spliced together yield the correct TUG test data. 
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t=11 (10 seconds total) and the TUG-Segmenter marks that Sitting phase as occurring 

from t=1 until t=10 (9 seconds total) then there is a 10% difference from the ground 

truth phase duration. 

Start point accuracy is the percent early or late a segmented start point is 

compared to its corresponding ground truth start point based on the proceeding phase 

duration. The full results can be found below. For example, if a Sitting phase lasts from 

t=1 until t=11 (10 seconds total) and the TUG-Segmenter marks that Sitting phase starts 

at t=2 then the start point is a 10% off from the following ground truth phase duration. 
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Ground Truth Durations  

 

 

  

 

 

 

 

 

 

 

 

  

Subject 1 

 

Duration 

(seconds) 

Sitting 16.986 

Standing-Up 1.533 

Walking-Forward 2.41 

Turning 1.598 

Walking-Back 1.973 

Sitting-Down 2.347 

Subject 2 

 

Duration 

(seconds) 

Sitting 17.248 

Standing-Up 1.91 

Walking-Forward 2.569 

Turning 2.224 

Walking-Back 2.195 

Sitting-Down 2.659 

Subject 3 

 

Duration 

(seconds) 

Sitting 16.354 

Standing-Up 1.677 

Walking-Forward 2.745 

Turning 1.827 

Walking-Back 2.59 

Sitting-Down 2.913 

Subject 4 

 

Duration 

(seconds) 

Sitting 17.34 

Standing-Up 1.785 

Walking-Forward 1.586 

Turning 1.741 

Walking-Back 1.577 

Sitting-Down 2.133 
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Durations  

 

 

 

  

 

 

 

Phase durations 25.7% inaccurate.         Phase durations 14.5% inaccurate.  

 

 

 

 

 

 

 

 

Phase durations 20.2% inaccurate.         Phase durations 5.95% inaccurate.  

  

Subject 1 % difference 

Sitting 4.5%  

Standing-Up 88.8% 

Walking-Forward 29.7% 

Turning 26.9% 

Walking-Back 2.5% 

Sitting-Down 1.7% 

Full TUG Test 2.6% 

Subject 2 % difference 

Sitting 2.3% 

Standing-Up 5.4% 

Walking-Forward 13.6% 

Turning 22.4% 

Walking-Back 24.1% 

Sitting-Down 19.1% 

Full TUG Test 0.7% 

Subject 4 % difference 

Sitting 3.4% 

Standing-Up 5.3% 

Walking-Forward 1.3% 

Turning 4.8% 

Walking-Back 11.6% 

Sitting-Down 9.3% 

Full TUG Test 0.4% 

Subject 3 % difference 

Sitting 12.8% 

Standing-Up 16.1% 

Walking-Forward 8.0% 

Turning 7.3% 

Walking-Back 23.7% 

Sitting-Down 53.2% 

Full TUG Test 2.0% 
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Start Points 

* Negative values indicate the start point was early by that percent. 

 

 

 

  

 

 

Start points off by 11.9% on average.       Start points off by 17.7% on average. 

 

 

 

 

 

 

 

 

 

 

 

 

Start points off by 23.6% on average.       Start points off by 12.4% on average. 

  

Subject 1 % late 

Sitting -8.3% 

Standing-Up 1.7% 

Walking-Forward 25.3% 

Turning -18.1% 

Walking-Back 10.1% 

Sitting-Down 7.9% 

Subject 2 % late 

Sitting -0.4% 

Standing-Up 43.2% 

Walking-Forward 29.3% 

Turning 15.6% 

Walking-Back -4.6% 

Sitting-Down 13.0% 

Subject 3 % late 

Sitting -10.3% 

Standing-Up 54.6% 

Walking-Forward 22.0% 

Turning 18.0% 

Walking-Back 9.1% 

Sitting-Down 27.4% 

Subject 4 % late 

Sitting 2.8% 

Standing-Up 21.7% 

Walking-Forward 11.7% 

Turning 8.2% 

Walking-Back 13.0% 

Sitting-Down 17.2% 
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Using the ground truth phases, I calculated speed and jitter for each phase and 

averaged them per subject. Speed was calculated using the 3D distance between sensor 

location every 1 second, and the duration from the end of Sitting until the end of Sitting-

Down. 3D location was used to more accurately get the speeds for phases that involve 

vertical motion, namely Standing-Up and Sitting-Down. The results of these features can 

be seen below.  

 Age Average Speed Average Jitter 

Subject 1 Young 2.981 m/s 6.9 cm 

Subject 2 Elderly 2.37 m/s 6.2 cm 

Subject 3 Young 2.477 m/s 6.8 cm 

Subject 4 Elderly 3.105 m/s 6.9 cm 
* Young = mid 20’s, Elderly = 60+ 

 

Results Summary 

Overall, the automatically segmented phase durations were 83.4% accurate 

compared to their ground truth durations, and segmented start points were off by 

16.4% of the duration of their proceeding ground truth phase. Standing-Up was the 

least accurate in both duration and start point. Sitting-Down had the second worst 

accuracy in the duration category. One of the main causes for the inaccuracy of 

Standing-Up is due to many false oscillations on the Y axis before the person stands up 

caused by their hands, feet, or shifting in the chair. This is the reason the TUG-

Segmenter contains many conditions that must be satisfied when segmenting the 

Standing-Up phase, in order to rule out some of the false Standing-Up movements from 
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the correct start of Standing-Up. The second reason is that it is one of the shorter 

phases (1.5 seconds on average) and thus start point lateness compared to its phase 

time will be large a percent.  

Lastly, when comparing elderly and young subjects, there was a 0.3 cm 

difference for jitteriness and an 8.5 mm/s difference for speed when these features 

were averaged over all phases. However, the number of subjects was small and more 

subjects would be needed in order to generalize these results and see if there is any 

significant difference between elderly and young subjects. 
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Conclusions 
 

 Overall the TUG-Segmenter can segment TUG test WiGait data with 83.5% 

accuracy (duarations and start points). Using the TUG-Segmenter and annotation 

interface, the pipeline has been established for analyzing individual phases of walk 

cycles. By examining these phases it appears healthy individuals have similar speeds and 

jitter regardless of age. Using the TUG-Segmenter and annotation interface, one can be 

more granular with the analysis of the TUG test, an already useful diagnostic test. 

 

Future Work 
 

 I used only the Y axis when developing the TUG-Segmenter due to noise on the X 

and Z axes, however, in the future I think finding methods to clear up the signals on 

those axes would prove very useful in a more accurate segmentation of the transition 

phases. Currently these phases are the most inaccurate but with the ability to utilize the 

Z axis one should be able to more faithfully predict when the rising action out of the 

chair or the descent into the chair is beginning.  One strategy may be to use multiple 

WiGait sensors to create better estimates of the motion on the Z axis. Another strategy 

might be to use a camera to track the center of the body in addition to the center of 

motion from the WiGait.  
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Lastly, one area I am very interested in is using the TUG-Segmenter to segment 

the walk cycle of patients with Parkinson’s. I think there is much more to be gained in 

looking at the individual walk cycle phases of those exhibiting erratic movement due to 

cognitive impairment, than from simply looking at the overall performance on the TUG 

test.  
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