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Abstract

This thesis presents methods for improving sketch understanding, without knowledge
of a domain or the particular symbols being used in the sketch, by recognizing common
sketch primitives. We address two issues that complicate recognition in its early
stages. The first is imprecision and inconsistencies within a single sketch or between
sketches by the same person. This problem is addressed with a graphical model
approach that incorporates limited knowledge of the surrounding area in the sketch
to better decide the intended meaning of a small piece of the sketch. The second
problem, that of variation among sketches with different authors, is addressed by
forming groups from the authors in training set. We apply these methods to the
problem of finding corners, a common sketch primitive, and describe how this can
translate into better recognition of entire sketches. We also describe the collection of
a data set of sketches.
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Chapter 1

Introduction

Consider a collaborative meeting of engineers, designers, scientists, or artists. Take

away the whiteboard, pens, and paper and you will be left with a roomful of unhappy

and unproductive people making frantic and indecipherable gestures. Communication

naturally occurs in different forms, and sketches communicate some information most

effectively, as for example, a complex diagram or map. As computers become more

powerful and more pervasive, we would like both to communicate with them in the

same efficient ways that we communicate with people and to use them to facilitate

interaction and collaboration among people. This desire for more natural human-

computer interaction and for a more effective role for computers in the design process

is one compelling motivation for the development of pen based input for computers.

While tablet computers are currently useful for taking notes and recognizing hand-

writing, much remains to be done before a computer can recognize and understand

unrestricted sketching.

1.1 Sketch Understanding and Early Sketch Pro-

cessing

Ultimate goals for sketch based interfaces presented by [4] and [5] include human-like

understanding, reasoning, and participation. While these are distant goals, a clear
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intermediate step is recognizing what has been drawn, i.e. associating a meaningful

label with a collection of pen strokes. However, recognition is not always straight-

forward and typically requires several layers of processing, with results from early

processing used in later phases.

One approach to early sketch processing is to find and label features, basic el-

ements of a sketch that are important in recognition of high level objects. These

features occur at a variety of scales. Some, like the presence of a corner, describe

a very small area. Some, like whether the shape is closed, describe an entire stroke

or several stokes, and some, like whether a portion of a stroke is straight, arise at

an intermediate scale. Once recognized, such features may then be used to recognize

higher level objects like quadrilaterals, arrows, resistors in a circuit diagram, etc. For

example, a quadrilateral can be detected by testing whether the shape is closed, has

four corners, and the segments between the corners are straight. We take this ap-

proach of hierarchical recognition in order to add new shapes easily and to give the

user the flexibility to use previously undefined shapes in a sketch.

1.2 Difficulties in Early Sketch Processing

Classifying features can be problematic because of ambiguity common in sketches.

This work examines two sources of ambiguity in early sketch processing. First, be-

cause sketches are almost never drawn perfectly, they contain internal inconsistencies,

i.e., the same feature may have a different meaning in different parts of a sketch, even

when drawn by the same person. Second, sketching styles often vary considerably

across users and across domains, making it difficult to construct a general system

capable of correctly classifying all instances of corners, parallel lines, straight lines,

etc., across users and domains.

As a result, no simple function can correctly classify all features, even for a single

sketch. Yet humans usually agree on the intention of a local feature in spite of am-

biguities and, significantly, without extensive domain knowledge or prior knowledge

of an individual’s drawing style. For example, in Figure 1-1, nearly identical partial
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Figure 1-1: An example of local ambiguity. Considered out of context, the segment
shown may equally well be an arc of the ellipse or a corner of the square.

strokes receive different interpretations. We form a different interpretation for the

shapes at the bottom of the figure, even though it is impossible to distinguish be-

tween the side of the ellipse and the corner of the square with only local information,

i.e., examining only the amount of the stroke shown at the top of the figure. This

example illustrates the type of local ambiguity common in even relatively neat draw-

ings. A template-based approach could easily distinguish between the ellipse and the

square, but as we also aim to preserve the adaptability of a more general approach,

a local unconstrained interpretation is preferred.

Figure 1-1 illustrates that identifying corners is important to a higher level un-

derstanding of shapes and, ultimately, entire sketches. Corners occur commonly and

are often ambiguous, as this example demonstrates. As a result, this work focuses

on corners. However, the methods presented here may be applied to other sketch

elements as well.
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1.3 Contributions

This work makes three main contributions: the collection of a data set and the

introduction of two methods for improving early sketch recognition. These methods

are applied to the problem of labeling corners.

Creating a system to recognize or interpret data often requires a data set for

training and testing, and while some sketch data exists, current data sets do not yet

approach the level of those in more established fields, such as speech recognition.

Chapter 2 describes how a data set was created by collecting sketches from many

authors, with each author given several sketching tasks. This data is intended to be

generally useful for answering both those questions addressed in this work and future

research questions.

Chapter 3 proposes using limited context, i.e. a small surrounding area of the

sketch, to improve recognition of a localized feature. Results demonstrate that ac-

curacy in recognizing a corner may be improved by incorporating knowledge about

other possible corners that are nearby. We present a method based on belief propa-

gation that has an accuracy of 86% in recognizing corners, improving over a baseline

classifier that has an accuracy of 71%.

Chapter 4 discusses variation in drawing styles and presents results on improving

corner recognition by considering differences and similarities among sketch authors.

Results suggest that grouping similar authors in the training set can improve recogni-

tion for a previously unseen author. Applied independently of the method presented

in Chapter 3, the method presented in this chapter achieves a corner classification

rate of 85% with a sufficiently large training set divided into two groups, while a

Support Vector Machine classifier applied to one group has a classification rate of

80%.
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Chapter 2

Data Collection

This thesis describes methods to improve recognition of sketch primitives, which are

often ambiguous, and applies these methods to the problem of recognizing corners.

Creating a system to recognize or interpret noisy input often requires a large data set

for training and testing. Although others have collected sketch data and made the

data sets available, and there has been work to create a larger collection of sketch

data from multiple sources by [7], sketch data sets have not yet reached the size and

scope of standard data sets in other more established fields such as text understanding

and speech recognition. Thus, there is still a need for the collection of data, both to

investigate specific techniques, such as the ones in this thesis, and to form a general

corpus. In this chapter we discuss the data collection that was conducted as part of

this work. Training and test sets referred to in later chapters are drawn from the

data set described here.

2.1 Objectives

This data was collected with several objectives. The first was to collect data from

many authors in order to assemble a sample large enough to capture variations in

drawing style and differences among authors. Our second objective was to collect

data from multiple domains, since this work examines corners, a primitive that occurs

in many domains. Existing sketch data includes several domains, but was collected
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from different authors under different conditions, i.e. with different pen input devices

and with different instructions. We have collected sketches from many authors each

sketching in several domains under the same conditions. Finally we sought to collect

data that would be useful for answering future research questions as part of a larger

corpus.

2.2 Sketch Collection Methods

Sketches were collected on an Acer Tablet PC and stored as collections of strokes.

Strokes were represented as a series of points consisting of a screen position (x and y

coordinates) and a time. The sketching interface was similar to a pen on paper, in the

sense that the subjects could not erase but could scratch out mistakes or start over

if they wished. To allow for a larger drawing area without distraction, instructions

for each task were provided separately on paper, giving the subjects an essentially

blank screen to draw on. Authors were allowed as much time as they wished to

become familiar with the Tablet PC before beginning, and were given the option of

completing the sketches in two sessions, since completing all the sketches took one

and a half hours on average.

2.3 Sketching Tasks and Instructions

Each author was given four sets of instructions, corresponding to four domains: family

trees, flow charts, floor plans, and maps. These domains were chosen because they

are either familiar or easy to learn, and do not require any specialized knowledge.

This allowed us to collect sketches from authors with diverse backgrounds rather

than focus on one group, such as artists or engineers.

The four domains can be divided into two groups: symbolic (family trees and

flow charts) and iconic (floor plans and maps). Figure 2-1 contains two examples

of symbolic sketches and Figure 2-2 contains two examples of iconic sketches. In a

symbolic domain, sketches are composed of a fixed number of predefined symbols. For
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People

Male

Female

Relationships

Marriage or Partnership

Divorce

Parent/Child

Table 2.1: Symbols for the family tree domain.

example, the symbols used in flow chart and family tree sketches are given in Table 2.1

and Table 2.2. Authors were shown these symbols and instructed to use them in their

sketches. We define an iconic domain as one where the things drawn resemble the

objects they are intended to indicate. Iconic domains do not necessarily have a

predefined set of symbols. For these domains, authors were asked to use any symbols

or drawing style they felt were appropriate to complete the tasks. Authors were

also asked to make some labeled and some unlabeled sketches. Examples of labeled

sketches are in Figure 2-3. These sketches were collected for future investigations into

combining handwriting recognition and sketch recognition.

Authors were asked to make three sketches in each domain:

• Family Trees

– Given a textual description of a family, draw the corresponding family tree.

– Draw the family tree for your family or one that you have made up.

– Redraw the previous sketch, this time including labels for people.

• Floor Plans

18



Start or End This symbol is used to indi-
cate the starting and ending
points of the process.

Action or Step in a Process This symbol represents a sin-
gle step or action in the pro-
cess.

Decision This symbol occurs when
there is a decision to be
made. There will be two
or more possible outcomes
(branches).

Connector This is an optional symbol
used to indicate that the
flowchart continues elsewhere
(at the matching symbol). If
necessary, use this symbol to
avoid running out of room.

Flow Line This symbol connects the
steps in the process and in-
dicates their order.

Table 2.2: Symbols for the flow chart domain.

– Draw the floor plan for your house or apartment.

– Draw the floor plan for another space you visit often.

– Redraw the previous sketch, this time including labels for rooms and ob-

jects.

• Flow Charts

– Given a textual description of a process, sketch the corresponding flow

chart.

– Draw a flow chart that describes your morning routine or any other process

19



you are familiar with.

– Redraw the previous sketch, this time including labels for steps in the

process.

• Maps

– Sketch a map of the route you take from home to work or school.

– Sketch a map of another route you take frequently.

– Redraw the previous sketch, this time including labels for roads and build-

ings.

Finally, authors were asked to make sketches that they might normally make as

part of their work, hobbies, or school work. This task was optional and its purpose

was twofold: to explore possible applications for a sketch interface and to collect

sketches from domains with which the authors were very familiar. This will be useful

for future exploration into the impact that the author’s familiarity with the task has

on a drawing.

2.4 Data Set

Sketches were collected from nineteen authors who were mostly unfamiliar with pen

based computing. Only two authors reported that they had a lot of experience with

pen input devices; most had no experience with such devices. We collected two

hundred and fifty sketches divided equally among the four domains and used these

to build the data set. (Including mistakes, warm-up sketches, and optional sketches,

a total of nearly five hundred sketches were collected.) Examples referred to earlier

in Figures 2-1, 2-2, and 2-3 are part of the data set.
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Figure 2-1: Examples of symbolic sketches: a family tree and a flow chart.
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Figure 2-2: Examples of iconic sketches: a floor plan and a map.
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Figure 2-3: Examples of labeled sketches: a floor plan and a flow chart.
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Chapter 3

Using Limited Spatial Context to

Improve Recognition

The example presented earlier and reproduced in Figure 3-1 illustrates local ambigu-

ity. While this ambiguity can sometimes be resolved by examining the entire shape,

it is useful to be able to resolve these ambiguities without knowledge of the shape

being drawn. This not only allows us to use the features to recognize the sketched

object, it also enables processing of new symbols. This chapter presents a method

for disambiguation by incorporating some spatial context, i.e. a part of the sketch

surrounding the ambiguous area, without resorting to examining the entire shape.

Our method involves an application of Markov random fields (undirected graphical

models) and belief propagation (an inference algorithm based on message passing),

in which rough, initial interpretations of local features are improved with evidence

from nearby areas. While we report here on the application of this approach to the

problem of locating corners, we believe the approach may also be useful in resolving

other ambiguous elements in sketches.

Markov random fields (MRFs) with belief propagation have been applied to prob-

lems in vision, such as locating text and shapes in images [12], [3], and for identifying

relationships and entities in text understanding [8].

In our model, each stroke in a sketch is represented as an MRF, with each node

in the MRF representing an area identified as a possible corner or an area in between
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Figure 3-1: An example of local ambiguity. Considered out of context, the segment
shown may equally well be the side of the ellipse and the corner of the square.

two possible corners. Connections between nodes establish the context for an area.

Inference involves functions that represent the compatibility of the evidence associ-

ated with a single node or set of nodes and a particular labeling. We define these

compatibilities based on qualitative principles. The results of this inference are beliefs

for each node, which are used to determine a likely labeling for each possible corner.

3.1 Finding Possible Corners

As a first step, possible corners are located with a very weak classifier that finds

all areas along the stroke with a direction change above a threshold. In the stroke

in Figure 3-2, the possible corners are labeled c1, c2, and c2. Given a low enough

threshold, this method will find all corners, but generally also returns as many false

positives as true corners.
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c1
c2 c3

s4

s3
s2

s1

Figure 3-2: An example of a stroke with the possible corners labeled c1, c2, and c2.
Segments between possible corners are labeled by s1, s2, s3, and s4. Possible corners
are found by selecting areas of the stroke with a direction change above a threshold.

s3

s2

c2

c3

s4

c1

s1

Figure 3-3: The graph associated with the stroke in Figure 3-2. Possible corners and
the segments between them correspond to nodes. Edges connect possible corners and
segments that are near each other.

3.2 Constructing the Graphical Representation of

a Sketch

Each stroke is represented separately as an MRF. Figure 3-3 shows the graph asso-

ciated with the stroke in Figure 3-2. Each possible corner is represented as a node

with an associated random variable, which may have one of two labels, corner or

not corner. The segments of the stroke between the possible corners are also repre-

sented as nodes.

Nodes are connected according to the following rules:

1. all n nodes of the same type are connected, forming a complete subgraph of

order n

26



2. a node is connected to the closest nodes of different types

We define the closest nodes as those representing adjacent areas in the same stroke.

Using this approach for the problem of detecting corners, all nodes representing pos-

sible corners are connected to each other, all nodes representing segments between

possible corners are connected to each other, and a node representing a possible cor-

ner is connected to the nodes for the segments on either side of it. For example, in

Figure 3-3, corner c1 is connected to the other possible corners, c2 and c3, and to

adjacent segments, s1 and s2. The neighbors of a node in the graph directly influence

its interpretation and may be thought of as the context for the node.

Markov random fields are most commonly used as pairwise MRFs, meaning that

the largest clique is of size two. In our representation, however, the graph will have

cliques with size equal to the number of each type of feature. Inference on such a

graph is more complicated and time consuming. We found, however, that due to the

restricted size and structure of the graphs in our formulation, approximate inference

may still be performed in real time. The benefit we find from using more connected

(rather than pairwise) graphs is that we can define the compatibility functions more

intuitively, defining functions that describe the relationship of a group of nodes, rather

than only pairwise interactions. The work in [12] makes a similar argument for the

use of higher order models.

3.3 Compatibility Functions

We define compatibility functions for each clique in the graph and for each individual

node. The functions are a measure of compatibility between a particular labeling and

the underlying data, and may be thought of as a measure of certainty for a particular

labeling of a single node or a set of nodes. For a single node that has two possible

labelings, e.g. corner or not corner, we compute a compatibility between each label

and the observations made of the data: distance between the endpoints, arc length,

direction change, and speed. For a group of nodes forming a clique, we compute a

compatibility for all possible labelings of the group. (While there are an exponential
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number of such labelings, the set size is small in practice, so the computation is

still feasible.) These multi-node functions convey context; nodes within a group may

influence each other, but nodes that do not occur together in a group do not.

In our model for finding corners, we define four functions: one for single nodes,

one for all the nodes of the same type, one for a corner and its surrounding segments,

and one for a segment and its surrounding corners.1

3.3.1 Single node functions

The single node function is computed as a weighted combination of the measurements

noted above, with the weights for each measurement determined by performing logistic

regression on a small labeled data set. The single node function is defined by:

ψci
(xci

, yci
) = (1 + exp(−(w0 +

∑
j

wjfj(xci
))(2− yci

)))−1

where ψci
is the compatibility between a label yci

and an observation xci
. The wj’s

are weights, fj(xci
) is the jth measurement, and a label yci

is zero or one. This creates

a soft step function that approaches zero and one asymptotically. Intuitively, labels,

which may have values zero or one, are never assigned with complete certainty; this

allows the labels and certainties to be updated based on other functions described

below. For segments, ψsi
(xsi

, ysi
) is defined similarly and represents compatibility

with the labels straight and not straight.

These functions can be used alone to determine a labeling for the features, inde-

pendent of context; we use them later as a baseline for comparison.

3.3.2 Functions of the same node type

We next define a compatibility for a labeling of all the possible corners and a compat-

ibility for a labeling of all the connecting segments. Intuitively, similar things should

1This is not defined for segments at the ends of a stroke.
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be given the same label, and different things different labels. The group compatibility

function conveys this heuristic. The group is split according to the labeling under

consideration. For example, to find the compatibility of the possible corners in Fig-

ure 3-3 with the labeling {c1 = corner, c2 = not corner, c3 = corner} subgroups {c2}

and {c1, c3} are formed. Then the distance between the subgroups and the average

distance from the mean in each subgroup are compared. This is defined by:

ψc1...cn(xc1 , ..., xcn , yc1 , ..., ycn) =(
1 + exp

(
w0 + w1d(m0,m1) +

w2

|G0|
∑

ycj εG0

d(m0, xcj
) +

w3

|G1|
∑

ycj εG1

d(m1, xcj
)
))−1

where ψc1...cn is a compatibility between the labels yci
and observations xci

. G0 is one

subgroup with a common label, having mean m0, and G1 is the other subgroup with

a common label, having mean m1. d is a distance measure between observations,

which we define as a simple Euclidean distance. The constants w0, w1, w2,and w3 are

determined by hand. ψs1...sn(xs1 , ..., xsn , ys1 , ..., ysn) is defined similarly.

Note that this function is symmetric in that a labeling and the opposite labeling

will have the same value, e.g. {corner, not corner, not corner} will have the same

value as {not corner, corner, corner}.

3.3.3 Functions of different node types

Finally, compatibility among adjacent nodes of different types is defined. These

functions are specific to the types of features being considered. For detecting corners,

two functions are defined, each with three arguments. The first function takes one

possible corner and two surrounding segments; the other takes one segment and two

surrounding possible corners. In both cases the function is based on the intuition that

a corner should have a larger direction change than the surrounding area, and that a

corner should be relatively short (a large direction change over a very long distance
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c1 c2 c3 c1 s1 s2 c2 s2 s3 c3 s3 s4c1 c2 s2 c2 c3 s3 s1 s2 s3 s4

c1 c2 s3 s4s2 s3s1 s2c2 c3 c2 s3c1 s2c3 s3c2 s2

c1 s4s3s2c2 s1c3

Figure 3-4: The region hierarchy for the graph shown in Figure 3-3. Messages are
passed from a region to its subregions. Each line connecting two rectangles represents
a message.

generally does not look like a corner). This function is defined by:

ψsicisi+1
(xsi

, xci
, xsi+1

ysi
yci
ysi+1

) = (1+exp(w0+w1f1(si, ci, si+1)+w2f2(si, ci, si+1)))
−1

where f1 is a function comparing direction change of each piece, si, ci, si+1, of the

stroke and f2 is a function comparing their arc length. ψcisici+1
is defined similarly.

3.4 Determining a Labeling

Given a graph as described in the previous section, we want to find an assignment of

labels to random variables that has maximum likelihood. Because a distribution over

an undirected graph may be factored as a product of the potential functions of the

maximal cliques, this likelihood can be written as:

p(x) = 1
Z

∏
C ψC(xC)

∏
j ψj(xj)

where Z is a normalization constant, xC are all the nodes in clique C, and ψ is as

defined previously. Dependence on the observations is omitted from the equation for

simplicity.

Belief propagation is a commonly used method for solving approximate infer-

ence problems on graphs; such algorithms work by passing local messages until the
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messages converge. Beliefs at each node (the certainty of a given label) are then

computed as the product of the messages to the node and evidence at the node. A

message from a to b maybe thought of as how certain a is that b has a particular

labeling. Belief propagation is only well defined and guaranteed to converge for trees

(acyclic graphs). However, it has been shown empirically that when applied to loopy

graphs, belief propagation usually performs well [6].

In ordinary belief propagation, messages are exchanged between single nodes.

Yedidia, Freeman, and Weiss outline generalized belief propagation, in which messages

pass between groups of nodes, called regions [10], [11]. Messages pass from regions to

their direct subregions, which are defined by the intersection of regions. Regions and

subregions form a hierarchy; Figure 3-4 shows the hierarchy of regions of the graph

in Figure 3-3. Rectangles represent regions and subregions; messages are passed from

a region to one of its subregions where two rectangles are connected. In Figure 3-4,

the rectangle containing c1, c2, c3 is a region with direct subregions c1, c2 and c2, c3.

The belief of a region is based on evidence from within the region and messages going

into that region from outside.

We apply a variation of generalized belief propagation to the inference problem

formulated above. The maximal cliques in the graphs are selected as the regions.

We omit functions among nodes that form non-maximal cliques for simplicity and

because this information is already expressed by the larger functions we have defined.

Consider the region containing c2 and c3 and its subregion containing only c2.

For each, the belief for that region is the product of the evidence within the region

(the output of the functions described above) and the messages entering the region

(but not messages passed within the region). The beliefs of these two regions are

expressed as:

bc2c3(xc2xc3) = ψc2(xc2)ψc3(xc3)mc1→c2c3ms3→c2c3 · · ·

mc1→c2ms2→c2ms3→c2ms3→c3
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and

bc2(xc2) = ψc2(xc2)mc1→c2mc3→c2ms2→c2ms3→c2

where mi→j represents a message from i to j. We may now find an expression for the

message from c3 to c2, since

bc2(xc2) =
∑
xc3

bc2c3(xc2xc3)

Here we have summed over all possible labels for c3. Solving for mc3→c2 gives:

mc3→c2 =
∑
xc3

ψc3(xc3)ms3→c2c3mc1→c2c3ms3→c3

Expressions for all the messages may be found similarly, and because the structure

of the graphs does not vary, calculations of messages may be simplified because their

compositions also do not change, i.e. we do not need to solve for every message

as shown for mc3→c2 above. First messages are initialized and updated iteratively,

then the beliefs for the individual nodes representing possible corners are computed.

These beliefs represent the certainty of a given label (corner or not corner) taking

into account some context, indicated by edges in the graph.

3.5 Results

We have tested the approach presented above with the data set described in Chapter 2.

Results are presented for family tree and flow chart sketches. These sketches were

selected because these domains use symbols and can be labeled more easily by hand

to obtain ground truth. The family tree sketches include 698 possible corners in

19 sketches, and the flow chart sketches include 485 possible corners in 18 sketches.

Possible corners are areas of the sketch with a direction change above a threshold;

they are classified as either corner or not corner.

We use the single node function described in Section 3.3.1 as a baseline. This

function uses only local information and does not include information about the areas

surrounding possible corners. Outputs from both the baseline function and the belief
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without context with context

correct possible corner label 837 (71%) 1014 (86%)
(out of 1183)

all possible corners in a shape labeled correctly 262 (43%) 418 (69%)
(out of 610)

Table 3.1: Possible corner classification rates with and without context for family tree
and flow chart sketches.

propagation are values between 0 and 1. A higher value indicates more certainty that

the segment is a corner and a lower value indicates more certainty that the segment

is not a corner. A possible corner with a value greater than .5 is regarded as a corner.

Table 3.1 presents classification rates for possible corners. “Correct possible cor-

ners” indicates the number of possible corners that were given the correct label (this

includes those that were correctly labeled as not corner). “Correct shapes” indi-

cates the number of shapes, e.g. ellipses and rectangles, in which all of the possible

corners were labeled correctly. Results for the baseline function are listed in the col-

umn “without context” for comparison. Our results demonstrate that incorporating

a small amount of context improves corner detection noticeably over a reasonable

baseline.

Figure 3-5 contains two areas taken from larger sketches. These cropped areas

show the output from our system more explicitly. Certainties without context (col-

umn 1) and with context (column 2) are listed in the tables beside each sketch.

In Figure 3-5a, the corners in the rectangle (A and B) were correctly identified

initially; however, their certainties were raised by the belief propagation, particularly

in the case of A, which had a weak initial label. The upper ellipse containing pos-

sible corners E and F is similar: an initially correct labeling is strengthened. In

nearly all cases where all of the possible corners were labeled correctly initially, belief

propagation strengthens the initial guess.

In the lower ellipse of Figure 3-5a, both possible corners (C andD) were incorrectly

assigned high values by the single node compatibility function. Although both values

were lowered after belief propagation because of the influence of adjacent curved areas
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1 2
A .56 .90
B .98 .99
C .84 .61
D .76 .54
E .20 .03
F .31 .16

a

1 2
A .99 .99
B .99 .99
C .75 .96
D .59 .24
E .08 .05
F .17 .10
G .06 .04
H .35 .48
I .42 .75
J .84 .96
K .90 .97
L .22 .07
M .24 .11

b

Figure 3-5: Cropped areas of sketches from two different subjects. Tables to the
right of each sketch give certainty values for each possible corner. The first column
of numbers is before belief propagation; the second is after.
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in the sketch, a shape with very strong but incorrect initial certainties can generally

not be corrected.

In Figure 3-5b, the upper left ellipse has one possible corner, D, that was initially

misclassified. However, the correct labeling of the other possible corner and influences

from the areas between the possible corners, which are clearly curved, fix the initial

errors.

Figure 3-5b also contains a case where belief propagation performed worse than

the single node function by strengthening an incorrect label. Possible corner C was

not intended as a corner. We assume this partly because we prefer to interpret the

shape as a rectangle rather than as a concave pentagon with one very short side. In

this case, higher level domain knowledge is needed to correct the mistake.

These examples demonstrate instances in which the method proposed in this chap-

ter improves corner recognition and instances in which it does not. While the im-

provement in classification rate is significant, some ambiguities cannot be corrected

with the limited context applied here and may require knowledge of the sketch lexicon

or domain.
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Chapter 4

Applying Author Groups to

Recognition

Chapter 3 examined the application of spatial context to recognition; in this chapter

we consider a different element of context, that of who drew the sketch. We have

observed that some of the ambiguity present in sketches is due to variations in dif-

ferent authors’ drawing styles. These individual variations make creating a system

that accurately recognizes all sketching styles challenging. This chapter addresses

the problem of accommodating many different drawing styles in a single recognition

system.

Figure 4-1 presents four cropped areas of sketches from four different authors.

These sketches were all drawn as part of the same task (constructing a family tree),

yet differences due to the authorship of the sketches are evident among the sketches.

Sketches 1 and 2 especially demonstrate the value of author context in recognition.

In each of those two sketches two stroke segments are circled: a corner and a partial

stroke that might be mistaken for a corner in the absence of shape or context knowl-

edge. The mistaken slip of the pen in Segment C closely resembles the sharp corner

in A that is typical of the corners in sketch 1 but much less common in sketch 2. The

pointed end of the ellipse in B looks similar to segment D, one of the more rounded

corners typical in sketch 2 but not in sketch 1. Even with very little information

about the surroundings of these highlighted segments, knowledge of the drawing style
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1 2

3 4

Figure 4-1: Partial sketches from four different authors with different drawing styles.
Circled areas in sketches 1 and 2 highlight sources of ambiguity: similar looking areas
in different drawings (segments A and C and segments B and D) require different
interpretations. Knowledge about the authors’ drawing style may help resolve these
ambiguities.
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of their authors may help disambiguate them.

One solution to the recognition problems created by differences in drawing styles

among authors would be to create separate recognition systems for each user. This

would require each new author to submit training data, and the amount of data

required might be undesirable or even prohibitive for some applications. Ideally,

we would like to take advantage of differences in drawing styles we have observed

without requiring an extensive training phase from each new user. One solution is to

create groups or clusters of authors with similar styles and base recognition on models

trained separately for each group. This approach has been applied to unconstrained,

writer independent handwriting recognition in [9].

This chapter presents a similar method for using differences in drawing style to

improve recognition with very little data from each new author. We have created

author groups, i.e. groups that consist of authors with similar drawing styles. These

groups are determined using a scoring function that clusters authors in a training set.

Classifiers are then constructed for each group. When a new author is encountered,

the most similar group is selected based on a few examples from the new author,

and the classifier trained with that training set group is used on the new author’s

sketches.

4.1 Determining Author Groups

For a given training set consisting of many sketches from each of n authors, we would

like to find a division of the authors into m groups such that the similarity among

authors within each group is maximized. This could be expressed as:

G′ =
argmax

G (
∑

g∈G
(S(g)))

Where G is a grouping which consists of groups (g1, g2, ..., gm) and S is a scoring

function which returns a measure of similarity for a group of authors g.
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4.1.1 Scoring Function

The formula above suggests one way to create a grouping, but even within that

framework many scoring functions would be possible. Since our goal in constructing

author groups is to make groups that are useful for classification, we tie the scoring

function to the type of classifier that will be used later. We use Support Vector

Machines (SVMs) in this chapter and describe a related scoring function.

SVMs are a method for supervised learning. Data is classified by finding the sepa-

rating hyperplane which maximizes the margin (the distance between the hyperplane

and the data points) while minimizing the training error, often by using a non-linear

mapping into a feature space. The work in [2] provides a more detailed descriptions

of SVMs. Here we are mostly interested in the output of training.

Given a training set X consisting of data points x with corresponding labels y,

the result of training an SVM is a decision function of the form:

f(x) =< w, φ(x) > +b =
∑
i
αiyiK(xi, x) + b

Where w and b determine the hyperplane and φ is the mapping to the feature

space. The kernel, K, is the inner product in the feature space (this avoids the

calculation of the mapping, φ ). We use a standard Radial Basis Function (RBF)

in this chapter. The sum is over the support vectors, which are indexed by i, with

weights αi and labels yi.

This decision function, f , is used for classification by taking the sign as a hypoth-

esis, h, for what the label should be.

h = sign(f(x))

Using standard numerical methods, we find this decision function for each group

g in a grouping G and then define a scoring function, S:

S(g) =
∑

x∈Xg

f(x) · y

The product f(x) · y will be negative if h (the hypothesized label) and y (the

actual label) do not agree, and positive if they do agree. The magnitude of f(x) · y
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indicates the distance from the margin. Xg is the collection of data corresponding to

the authors in group g.

The score for a grouping is the sum of the group scores:

S(G) =
∑

g∈G
S(g)

The argmax from above is now:

G′ =
argmax

G (
∑

g∈G
(S(g)))

=
argmax

G (
∑

g∈G
(

∑
x∈Xg

f(x) · y))

=
argmax

G
∑

g∈G
(

∑
x∈Xg

(
∑
i
αiyiK(xi, x) + b) · y)

This determines an optimal grouping, G′, for the authors in the training set. Our

current work solves this exhaustively because this is part of a one time training phase,

but other, faster approaches would also be possible.

4.1.2 Application to Corners

As in Chapter 3, we first find possible corners using a low threshold that also finds

many false positives. We construct a vector for each possible corner, consisting of

arc length, Euclidean distance between end points, maximum speed, minimum speed,

average speed, direction change, direction change per unit length, total time, maxi-

mum curvature, minimum curvature, average curvature, and curvature variance. This

vector corresponds to x, the data points, in Section 4.1.1 above. Each possible corner

also has a label y ∈ {−1, 1} where -1 indicates not corner and 1 indicates corner. We

determine a grouping of the training set as described above and compute a classifier

(SVM) for each group.

4.2 Encountering a New Author

When a new author is encountered, we need to select the best classifier for this

author’s sketches. Though this requires some labeled training data from each new
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author, a good choice may be made with very few examples. We have used five

examples, including both positive and negative examples. This is the equivalent of

drawing one square and one ellipse in most of the sketches in Figure 4-1.

We use the scoring function described in Section 4.1.1. For each new author a

and group g we compute:

S(a, g) =
∑

x∈Xa

(
∑
gi

αgi
ygi
K(xgi

, x) + bg) · y

Where Xa are the training examples from the new author. A score is computed

for each group, g, and the classifier corresponding to the group with the largest score

is selected.

4.3 Results

This section presents the results of applying this method to the family tree and flow

chart data discussed earlier. We use data from 18 authors and randomly select a

training set of n authors, leaving 18 − n authors to form a test set. We then divide

the training set into groups to form a grouping, G′, as described in Section 4.1.1.

Since the results are dependent on the particular division of authors into the test and

training sets, we perform multiple trials and find the average performance.

Figure 4-2 presents results for one, two, three, and n groups. Results for one group

(line D) may be regarded as a baseline. In this case the training set is not divided,

and data from authors in the test set is classified based on a model trained with all

the available data. For the two group result (line C), training data is divided into

two groups based on the scoring function described above. The three group case (line

B) is similar. For the n group case (line A), each author in the training set is taken

to be a separate group. For each division of the training set, authors in the test set

are assigned to a group in the training set with the scoring function in Section 4.2.

Data from each test set author is classified with an SVM trained only with data from

that group. Results are averaged over 25 trials with training and test sets randomly

selected for each trial.
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Figure 4-2: Classification rates for possible corners averaged over 25 trials for a train-
ing set divided into 1, 2, 3, and n groups. Training and test sets combined consist of
18 authors.
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These results demonstrate that recognition of low level sketch elements may be

improved by taking into account the drawing style of the authors if there are a suffi-

cient number of distinct authors in the training set. With ten authors in the training

set divided into two groups, our method had an accuracy of 85%, which improves

over the baseline rate of 80%. We note that the slope of the lines decrease as more

authors are added and we speculate that increasing the size of the training set or

the number of authors in the training set will yield little additional improvement,

particularly for the best cases of two groups and one group. Resolving the remaining

error may require greater knowledge of what is being drawn.

Up to the point where domain knowledge is required for improvement, accuracy is

limited by the size of the training set and the minimum number of people in a group.

One possible extrapolation from these results is that the case of three groups (and

possibly four or more groups) would approach and exceed the results for two groups.

However, it is also possible that for the task of classifying corners, two groups is

optimal and increasing the number of groups, even with a very large training set, will

not yield better results. Further experiments and additional data would be required to

resolve this question. Specifically, one would need to collect data from more authors in

order to divide the training set into more groups while keeping the number of people

in each group constant. More experiments would also be required to determine the

optimal number of groups when sketch elements other than corners are included.
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Chapter 5

Future Work

This chapter describes several directions for future work: combining the two ap-

proaches presented in this thesis to improve recognition further, expanding the meth-

ods presented here to include sketch primitives other than corners, and combining

these methods with a higher level recognition system.

5.1 Combining Approaches

The two approaches presented here both seek to improve recognition of early sketch

primitives. Both approaches use context, the sketch context and the author context,

to disambiguate confusing parts of a sketch; however, we have applied the approaches

separately. We speculate that recognition could be further improved by combining

these methods and context sources. For example, multiple versions of the compati-

bility functions described in Section 3.3 could be used, similar to the way multiple

Support Vector Machines are used to create group classifiers in Chapter 4.

5.2 Recognizing Other Primitives

This thesis focuses on the problem of finding and identifying corners. We have ob-

served that corners present a particular problem in sketch recognition because they

occur frequently and are often ambiguous. However, other basic elements of sketches
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Figure 5-1: Another example of local ambiguity. Considered out of context, the two
segments at the top could be separate lines or part of one longer line.

are also important for accurate recognition.

Figure 5-1 shows a different example of ambiguity. Depending on the surrounding

area of the sketch the two partial strokes may be interpreted as either one continuous

line or two adjacent lines. The method presented here for incorporating limited spatial

context could also be applied to the recognition of this basic sketch element as well as

others. For example, in the case of an ambiguous junction or gap, as in Figure 5-1 the

graphical representation could have nodes corresponding to segments and to blank

areas at the ends of segments and edges corresponding to distances within the sketch

as before.

5.3 Combining with Higher Level Recognition

We have described how to improve recognition of corners; however, that is only a small

part of recognizing an entire sketch. This work can be seen as part of the first stage of
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a complete recognition system. Its initial classifications could be used by later stages

to produce more accurate interpretations for entire sketches. For example, systems

such as [1] rely partly on the accuracy of initial recognition stages.
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Chapter 6

Conclusion

This work focuses on improving the classification of primitive elements in sketches

by resolving ambiguities. We present two methods for using context to improve

recognition of sketch primitives and apply these methods to the problem of recognizing

corners. The context includes information about the area surrounding a localized

feature and information about the sketch’s author. We chose to focus on corners

because they occur frequently, are often critical to understanding, and are a common

source of error. This thesis also describes a data set that was collected as part of the

research.

The methods presented here focus on resolving ambiguities with limited contextual

information, even though these ambiguities might be resolved using more knowledge,

for example knowledge of the graphical lexicon used in the sketch domain. We have

taken this approach because we believe that making local interpretations of small

areas of a sketch is a fundamental capability and an important step towards accurate

and unrestricted sketch understanding. The local classification we produce may be

useful as a part of an early stage in a larger recognition system, where results from

early stages are used as input to later stages that then incorporate shape and do-

main knowledge. These methods also provide a means to improve accuracy when no

shape or domain knowledge is available, as for example when a new symbol or new

domain is encountered as a result they are an appropriate focus of study for sketch

understanding.
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