
Chapter 4
Action Datasets and MHI

Abstract There are a number of benchmark datasets for action, activity, gesture, and
gait recognition. In this chapter, we present mainly those which are used to evaluate
the MHI or its variants.

4.1 Various Datasets

There are a good number of datasets for various purposes. Although the dimensions
and perspective vary from one to other, these datasets become known to the com-
munity. However, for the MHI, only few of those are exploited. In this section, we
mention the names of various datasets. For detailed explanation on these, one may
read the Chap. 6 from [36]. Various datasets are,

• KTH dataset [651]
• Weizmann dataset [601]
• INRIA IXMAS dataset [531]
• CASIA action dataset [131, 133]
• UMD dataset [103]
• ICS Action database [137]
• Korea University Gesture (KUG) database [136, 262]
• Wearable Action Recognition Database (WARD) [135]
• Biological Motion Library (BML) [130]
• HDM05 (Hochschule der Medien) Motion Capture database [129]
• Cambridge Gesture dataset [636]
• Naval Air Training and Operating Procedures Standardization (NATOPS) dataset

[128]
• Keck gesture dataset [640]
• YouTube dataset [126]
• YouTube Video dataset [124]
• Hollywood2 Human Action (HOHA) dataset [660]
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• UCF sport action dataset [445]
• Soccer dataset [493]
• Figure-skating dataset—Caltech dataset [176]
• ADL—Assisted Daily Living dataset [139]
• Kisses/Slaps dataset [445]
• UIUC action dataset [104]
• Still image action dataset [172, 173]
• Nursing-home dataset [169]
• Collective Activity dataset [20]
• Coffee and Cigarettes dataset [150]
• People Playing Musical Instrument (PPMI) [175]
• DARPA’s Mind’s Eye Program [18]
• VIRAT video dataset [125]
• UMN Dataset: Unusual Crowd Activity [165]
• Web dataset [165, 166]
• HumanEva-I/II dataset [108]
• Interaction Dataset for High-level Human Interaction Recognition Challenge [19]
• Aerial-view for Aerial View Activity Classification Challenge [17]
• Wide-area Activity for Wide-Area Activity Search and Recognition Challenge [16]
• Dynamic Hand Posture database [46]
• Humanid Gait Challenge dataset [265]
• TREC Video Retrieval Evaluation: TRECVID [15]
• ChaLearn Gesture Challenge dataset [14]
• MSR Action Dataset of 63 actions [114]
• CMU motion capture database [13]
• Human Motion Database (HMD) at University of Texas at Arlington [123]
• Interactive Emotional Dyadic MoCo (IEMOCAP) database [122]
• Multi-camera Human Action Video dataset [121]
• Manually Annotated Silhouette Data from the MuHAVi dataset [121]
• Virtual Human Action Silhouette (ViHASi) dataset [119, 120, 324]
• POETICON Enacted Scenario Corpus [118]
• TMU Kitchen dataset [117]
• Carnegie Mellon University Multimodal Activity (CMUMMAC) database [116]
• i3DPost Multi-view dataset [115]
• CHIL 2007 Evaluation dataset [113]
• OpenDoor and SitDown-StandUp dataset [112]
• Several databases by Visual Geometry Gr. [111]
• Yilmaz and Shah’s dataset [110]
• PETS benchmark dataset—e.g., PETS2006, PETS2007 [109]
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Fig. 4.1 Some sample images for KTH dataset. Six actions are sequentially presented from
Column1 through Column6 as walking, jogging, running, boxing, hand waving, and hand
clapping

4.2 Datasets Employed in MHI

From the above enlisted datasets, only few datasets are tried with the MHI method
and its variants. The question may arise—why! In fact, no single method on action
recognition is tried with many datasets. Most of the approaches are mainly used by
the originators or their groups and in a very few cases, by others. In this regard,
the MHI gets much more attention and is explored in various datasets. Apart from
the following datasets, it is experimented under various datasets developed by the
authors, which are not open for others to use and compare. Therefore, we explore
here only the publicly available and well-known datasets that are used in the MHI or
its variants.

4.2.1 KTH Dataset

It is the most well-known and compared dataset! The KTH dataset is developed by
[651] where only six different actions from a single person are taken by using a
single camera. There is a slight camera movement in terms of panning and slight
movement—but overall it is a difficult dataset. It has both indoor and outdoor actions
of walking, running, jogging, boxing, hand waving, and hand clapping taken from
25 subjects. It has variability in terms of illumination, heights, clothing, directions
of motions, presence of shadows, poor lighting, indoor-outdoor, panning of camera,
camera movement, varied image depth, and so on. These are taken in four sets.

Figure 4.1 shows some sample frames of this dataset. The most difficult part of this
dataset is the walking versus jogging versus running actions—as they overlap more
than other actions. Some comparative recognition results are presented in Table 4.1.
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Fig. 4.2 Some sample images for Weizmann dataset. Actions are (in top-row) run, gallop sideways,
skip, jump forward on two legs, jumping in one place on two legs, (in bottom-row) bend, jumping
jack, walk, waving one hand, and waving both hands

Table 4.1 Average action
recognition rate by various
methods in KTH dataset

Recognition
approach

Average recogni-
tion rate (in %)

[60] 97.40
[632] 97.00
[642] 97.00
[146] 95.10
[636] 95.00
[637] 94.50
[140] 94.50
[638] 91.80
[658] 91.40
[452] 90.50
[649] 89.30
[145] 87.70
[646] 86.60
[643] 81.50
[473] 80.99
[651] 71.72

4.2.2 Weizmann Dataset

This is another well-known dataset based on single subject from a static camera.
The Weizmann dataset [601] has 90 low-resolution (180 × 144) videos from nine
different subjects, for 10 action classes. These are bend, jumping jack, jump forward,
jump in place, run, gallop sideways, skip, walk, wave one hand, and wave both
hands. Compared to the KTH dataset, it is very simple, and hence widely exploited.
Figure 4.2 presents few images for each action. Some recognition results are shown
in Table 4.2.
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Table 4.2 Average action recognition rate by various methods in Weizmann dataset

Recognition approach Average recognition rate (in %)

[2] 100.00
[602] 99.61
[1] 98.8
[146] 97.50
[147] 95.33
[145] 94.74
[12] 94.7
[4] 94.40
[3] 72.8

Table 4.3 Average recognition rate for INRIA IXMAS multi-view action dataset

Recognition
approach

Average recognition rate (in %)

[531] 93.3
[743] 75.3
[11] 91.11
[444] 80.6
[324] 77.27

4.2.3 IXMAS Dataset

Above two datasets are based on a single camera. The INRIA IXMAS multi-view
action dataset is taken from five synchronized and calibrated cameras, and hence
this dataset can be used for view-invariant approaches. The IXMAS dataset [531]
has 11 actors, each performing 13 actions with three repetitions. The actions are
check watch, cross arms, scratch head, sit down, get up, turn around, walk, wave,
punch, kick, point, pick up, and throw. Figure 4.3 shows some frames of this dataset.
Table 4.3 shows some results. However, [11] recognize the actions per camera basis
and the average recognition results are—65.4, 70.0, 54.3, 66.0, and 33.6 % from
camera 1 to 5.

4.2.4 CASIA Gait Database

There is a CASIA action database and CASIA gait database by the Institute of
Automation, Chinese Academy of Sciences (CASIA). The CASIA action dataset is
a collection of sequences of human activities captured by multi-camera in outdoor
environment [131, 133]. Like the above datasets, it has a single person in view for
each of the eight actions. Actions are conducted by 24 subjects. The actions are—
walk, run, bend, jump, crouch, faint, wander, and punching a car. The dataset also
has interactions of two persons for seven different situations. These are—rob, fight,
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Fig. 4.3 Some sample images for INRIA IXMAS multi-view action dataset

Fig. 4.4 Some sample images for CASIA gait dataset. Last two frames are from CASIA dataset C
(infra-red dataset) and others are from set A and set B

follow, follow and gather, meet and part, meet and gather, overtake [132]. On the
other hand, in the CASIA gait database there are three different datasets: Dataset A,
Dataset B (multi-view dataset), and Dataset C (infrared dataset). Figure 4.4 shows
some sample images [131].

However, the CASIA gait dataset is an indoor gait database and comprises 124
subjects. For each subject, there are 10 walking sequences consisting of six normal
walking sequences where the subject does not carry a bag or wear a bulky coat
(CASIA set A), two carrying bag sequences (CASIA set B) and two wearing coat
sequences (CASIA set C) [5]. Each sequence contains multiple gait cycles. Of these
sets, set A is simpler than the other two sets. For set A, the result is 99.4 % using the
Gait Energy Image (GEI) [297] and 98.3 % using the Gait Entropy Image (GEnI)
[5]. This is shown in Table 4.4.



4.2 Datasets Employed in MHI 83

Table 4.4 Average recognition rate with CASIA dataset

Set Recognition approach Average recognition rate (in %)

CASIA set A [297] 99.4
CASIA set A [5] 98.3
CASIA set B [297] 60.2
CASIA set B [5] 80.1
CASIA set C [297] 30.0
CASIA set C [5] 33.5

Table 4.5 Some recognition
rates with ViHASi dataset

Recognition approach Average recognition rate (in %)

[119] 98.68
[324] 98.48
[12] 97.6

4.2.5 Virtual Human Action Silhouette (ViHASi) Dataset

The ViHASi—Virtual Human Action Silhouette Dataset is developed for the
evaluation of silhouette-based action recognition methods and the evaluation of
silhouette-based pose recovery methods [119, 120, 324]. Figure 4.5 shows some
sample silhouettes from this dataset.

It consists of 20 action classes from nine actors and up to 40 synchronized per-
spective camera views. This dataset provides accurate silhouette images, which is
usually extracted from raw video sequences, and hence if the silhouettes’ extraction
are erroneous—then the recognition method will not demonstrate the expected accu-
rate results. Therefore, this dataset is the one to mitigate this problem. They achieve
98.68 % average recognition rate with this dataset. Some comparative recognition
results are shown in Table 4.5. Note that these are not the exact rates because, different
groups considered different combinations for camera settings, number of subjects,
or actions. We put reasonably approximate recognition results in this table. How-
ever, using different combinations of cameras, actions, and subjects—the recognition
results vary slightly.

4.2.6 CMU MoBo Dataset

The Carnegie Mellon University (CMU) Motion of Body (MoBo) Database [10]
is a well-known dataset for gait analysis. It contains 25 individuals walking on a
treadmill, for each of four gait types—slow walk, fast walk, ball walk, and inclined
walk. The MoBo database is suitable for checking the performance of the shape
variation cue compared to the previous shape-only cues. The number of walking
cycles is large. The clustered-based Dominant Energy Image (DEI) [302] exploits
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Fig. 4.5 Some sample silhouettes from ViHASi dataset. It demonstrates the diversity of this dataset

the CMU Mobo Gait Database and achieved 82 % recognition accuracy. With Gallery
data versus Probe data—various combinations produce different results. Using SVB
frieze, average recognition of 84.67 % is achieved for all combinations [9].

4.2.7 USF HumanID Dataset

The USF (University of South Florida) Human ID Gait Challenge Problem [6, 7, 8,
265, 740] consists of a large data set—about 1.2 TB of data related to 1870 sequences
from 122 subjects spanning five covariates. The dataset consists of persons walking in
elliptical paths in front of the camera(s). Each person walked multiple (≥ 5) circuits
around an ellipse, out of which the last circuit forms the dataset. The five covariates
for each person are,

• Two different shoe types (A and B)
• Two different carrying conditions (with or without a briefcase)
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• On two different surface types (grass and concrete)
• From two different viewpoints (left or right) and
• Some at two different time instants

The baseline algorithm involves silhouette estimation by background subtraction
and similarity computation by temporal correlation of the silhouettes. The instruc-
tions to get the gait data, the source code of the baseline algorithm, and scripts used
to run the challenge experiment are available in there website.

4.2.8 Marcel’s Dynamic Hand Poster and Gesture
Dataset

A dynamic hand posture and gesture dataset is developed by Marcel [46]. The dataset
consists of 15 video sequences for each of the four dynamic hand gestures, which
are—Click, No, StopGraspOk, and Rotate. Reference [292] use the MHI with the
Fisher Discriminant Analysis (FDA) in this dataset.

4.2.9 TRECVID Dataset

This dataset (TRECVID) is maintained by USA Government for over a decade.
Video shot classification is done by considering Edge Motion History Image (EMHI)
[311, 316]. They choose 60 min CNN video from the TRECVID’05 dataset to esti-
mate all the GMMs in layer 1 and layer 2. Classification topics of video shots are
based on the TRECVID’03 dataset, where randomly extracted 100 video shots are
considered. Six different classes: indoor, outdoor, news person, news subject, sport,
and weather are tested [316]. There is no video shot contains more than one topic.
There is no training data and test data are extracted from the same video in each topic
[316].

4.3 Conclusion

This chapter is about databases related to action, gesture, and gait recognition. All
good datasets are mentioned here. We detail only those datasets that are exploited by
the MHI and its variants. However, most of the methods exploit their own datasets
and these are not available for researchers to explore and compare. And this chapter
concludes this book.
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