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| Ab§t_ractd—_ The pﬁurﬁose ?]f this w?(rk is to (re]nable risillfr-]Iimitirr]]g Power outflow
electricity dispatch through a market mechanism. There has ) e
been a solid body of work on centralized risk-limiting dispatch, Power inflow Tom Storag >

which guarantees that the risk of energy shortage is within
a user-specified bound. The current trading mechanism of a
day-ahead electricity market can be viewed as a market that
deals with the expectation (i.e., the first moment) of future
supply and load. We show in this paper that distributed and
risk-limiting dispatch is enabled by also trading the standard
deviation(i.e., the second moment). In the proposed mechanism,
a dispatchable power provider, such as spinning reserve and
battery, can “sell” the standard deviation in a market by
contributing to absorbing the uncertainty of energy demand
and supply. The market-clearing prices of the mean and 0 6 12 18 24

the standard deviation of electricity are found through the Time [h]

Walrasian auction. This approach allows each power provider

to specify the probability density function (pdf) of the amount of

energy that it has to generate in the future. As a result, a power Fig. 1. An example of absorbing uncertainty of power demand by using
provider can quantitatively limit the risk of power shortage  peaking plant.

by imposing chance constraints in a decentralized manner.
The decentralized risk-limiting dispatch and pricing problem
are solved at each time step with a receding time horizon.
We demonstrate the capabilities of the proposed approach by
simulations using real data.

into storage Peaking plant
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supply-demand imbalance, while each self-interested player
optimizes the quantities of supply and demand to maximize
its own profit at the given the prices.

. INTRODUCTION The primary purpose of employing this market mechanism
is to enable decentralizeahd risk-limiting power dispatch.
More specifically, unlike existing centralized risk-limiting

Among various types of electricity market, futures marapproaches such as [2]-[4], our approach manages the risk
kets, such as a day-ahead market, play a central role in powgpower shortage within a user-specified bound by imposing
dispatch. An existing day-ahead electricity market typicallhance constraints oeach dispatchable power provider.
concerns Only the prediction of the uncertain future energyhis is made possib|e since the proposed approach allows
supply and demand. In other words, although the probabilityach dispatchable power provider to specify the probability
distribution of future energy supply and demand is oftegiensity function (pdf) of the amount of energy that it must
available through a statistical method, existing market meclyrovide in the future. As a result, risk-limiting dispatch is
anisms consider only the mean of the probability distributiorrealized through a market mechanism.

We observe that an electricity market becomes more There are two additional contributions of the proposed ap-
capable in dealing with uncertainty by fully exploiting theproach. First, each dispatchable power provider can optimize
information of the probability distribution. This observationits output by considering the expected cdit/ (G)], instead
leads to our novel market-based power dispatch and pricirg the nominal cost/(E[G]), where.J is a cost function and
approach, namelygontingent power dispatch and pricing ¢ is the amount of future energy production. Second, each
which trades thestandard deviatiorof future power demand dispatchab|e power p|ant can Op“ma”y choose the amount

and supply in a market. A market finds the market-clearingf uncertainty that it commits to absorb by considering
prices of the mean and the standard deviation of the futufge cost of deviating its output. As illustrated in Fig. 1,
electricity by a price-adjusting mechanism called Walrasiaﬁeaking and load-following plants, such as gas and hydro
auction, which is also known astonnement [1]. In Wal- power plants, typically absorb the majority of fluctuation in
rasian auction, a market adjusts prices based on the currgifergy demand, while the output of base-load plants, such as
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A. Overview of Contingent Power Dispatch and Pricing



tricity, within the framework of contingent power dispatchrithm called DYMOND, which is similar to our approach in
and pricing. The existence of storage capacities in a grithat it is built upon dual decomposition and uses a Walrasian
introduces couplings between different points of time. Thereauction-based pricing mechanism. Optimal electricity pric-
fore, instead of considering an optimization problem at &g, which can be viewed as a decentralized power dispatch,
single point of time, we optimize the nominal outputs ofis also a well studied area. For example, [10] considered
dispatchable power plants over multiple time steps in tha Walrasian auction-based pricing mechanism with demand
future. The resulting algorithm is a decentralized stochastiesponse, while [11] proposed a double auction mechanism.
model predictive control, which solves at each time steplowever, these decentralized approaches assume a deter-
a contingent power dispatch and pricing problem over ministic model, which does not allow to consider stochastic
receding finite prediction horizon. security criterion such as chance constraint.
Overall, to the best of our knowledge, ours is the first

B. Related Work decentralized dispatch algorithm with chance constraints. De-

There is a solid body of literature in risk-limiting power centralized chance-constrained dispatch is difficult because,
dispatch, as well as in decentralized power dispatch aralthough the probability distribution of the futuretload is
pricing. The main contribution of this work is to achievetypically available, the probability distribution of the amount
both in a unified framework. power thateachelectricity provider must supply in the future

A need for risk-limiting power dispatch arises from rapidlycannot be specified in a conventional market mechanism
growing penetration of intermittent wind and solar generasince it only deals with the mean (i.e., expectation) of the
tions, which significantly increases the uncertainty in energgrobability distributions. The proposed market mechanism
supply. Moreover, several recent incidents, most notably tt@/ercomes this challenge by trading the meamd the
Northeast blackout of 2003, showed that the traditioNal standard deviation of the probability distributions.
1 security criterion is vulnerable to “hidden” failures that The rest of this paper is organized as follows. In Sec-
occur probabilistically [5]. Recently, an alternative securitytion 1, we intuitively explain the concept of contingent
criterion for power dispatch, called risk-based security opower dispatch. In Section I, we formulate the contingent
stochastic security, has emerged [2], [5], [6]. Although itower dispatch problem. Section IV presents a decentralized
definition varies, it seems to be a consensus that the ris&gformulation of the contingent power dispatch problem,
of a blackout needs to be managed quantitatively baseshd proposes a decentralized stochastic MPC algorithm that
on a stochastic model of the power grid. For example, [Rolves the problem at every time step. Finally, Section IV
developed a power dispatch method that guarantees mdemonstrates the proposed method by simulations.
ket clearing under uncertainty. Their approach is “scenario
based” in a sense that the continuous probability distribution
of wind generation is approximated by a discrete one with In this section, we intuitively explain the concept of
a finite number of “slices”, on each of which a market-contingent power dispatch and pricing using an example.
clearing constraint is imposed at all time steps. An issukor the sake of simplicity, we only consider a dispatching
of this approach is that the computational cost increas@gsoblem at a single time step in this section.
exponentially with the number of slices and the number of In our proposed approach, two types of power are traded
time steps. A similar approach is presented by [8], whicin a market: nominal power antbntingent powerNominal
employs scenario-based stochastic model predictive contqmbwer represents the expected demand and supply of power,
(SMPC) that randomly samples from the distribution. Thisvhile contingent power represents the deviation from the
approach is “market-based” in a sense that a market specifie@minal. The key idea is to determine thercentageof the
the dual variable (i.e., a shadow price) of the optimal dispatatontingent power that each power provider covers through a
problem, but the optimization is conducted in a centralizetharket mechanism.
manner. Recently, [2] has proposed a risk-limiting dispatch For example, consider a power grid with three dispatchable
approach that explicitly imposes a chance constraint on tligenerators, as shown in Fig. 2. Plant 1 is a base-load plant,
overall supply-demand balance. [3] proposed a probabilistiehich produces nominal power with the lowest cost, but
extension to theéV — 1 security criterion as well as a power requires the largest cost to deviate the output (i.e., to produce
dispatch algorithm that satisfies the probabilistic criterioncontingent power) from the constant level. Plane 2 is a load-
However, these power dispatch methods are centralized. following plant, which has moderate cost to produce both

In general, a decentralized power dispatch has two practiominal and contingent power. Plant 3 is a peaking plant,
cal advantages over centralized ones. First, it can be readvich has the highest cost of nominal power production, but
applied to existing deregulated electricity markets, wherthe output can be easily adjusted with the least cost.
the quantity of generation and consumption of each self- We consider a day-ahead market that deals with the net
interested player is determined through a competitive markktad, which is the total demand minus the total renewable
mechanism. Second, it can scale to a real-world power grjztoduction. In Fig. 2 we assume that the predicted net load
system, which consists of thousands of components. Varioas 8:00 p.m., January 2nd, 300 MWh. Hence, on the
decentralized dispatch approaches have been proposed. piaceding day, January 1st, at 8:00 p.m., 300 MWh nominal
example, [9] developed a distributed power dispatch alggower is sold to the three plants in the day-ahead market.

Il. WALK-THROUGH EXAMPLE



Our proposed contingent power dispatch mechanism is I1l. PROBLEM FORMULATION

different from regular electricity market in that the percent- |, this section we formulate the contingent power dispatch
age of the contingent power covered by each plant is alggyg pricing problem introduced above into a decentralized
allocated by a market mechanism. For example, in Fig. Znance-constrained programming. After presenting the prob-
plants 1, 2, and 3 commit to provide 20%, 30%, and 50%m setups in Sections III-A, 111-B, and I11-C, we first present
of contingent power, respectively. Each plant sells such @ centralized formulation of the contingent power dispatch
commitment at a price specified by the market. The markefoplem in I11-D. Then, we reformulate it into a decentralized

adjusts the price so that the total percentage of commitme@‘gtimizaﬂon problem using dual decomposition in IlI-E.
is equal to 100%. o )
A. Definitions of Load, Generation, and Storage

Then, 24 hours later, the actual net load turns out to be 320\y.a <onsider a power grid system consisting of non-
:\/'V\éh' resulting in |20 dMV\r/]h EXCess Ioadl. V\ée. caII”the e>((jcesaispatchable renewable generators, dispatchable power
oa haslcontlngentdioa T ehcolntlngljentf oad Is a ocate topants, batteries, and consumers. In our formulation, wind
each plant according to the levels of commitment agreeg,y oo\ generations, which are non-dispatchable and inter-

in the day-ahead market. As a result, plants 1, 2, and \iyeny are considered as negative load. We use therietm
produce 4 MWh, 6 MWh, and 10 MWh of contingent POWET}5ad to mean the total energy demand minus the wind and

respectively. Hence, the total power produced by each plag, . generations. The net load at tirhés represented by
is 154 MWh, 106 MWh, and 60 MWh. These sum up 10 32Q, 15qom variable.(k), which is assumed to have a known

MWh, which matches the actual load. probability distribution. We decomposk(k) into its mean

The advantage of this contingent power dispatch approa@id the deviation from the mean as follows:
is that each plant can know priori the probability distribu- L(k) = L(k) + or(k) X (k), 1)
tion of the amount of power that it has to generate, given theyhere X(k) is a zero-mean random variable with its
probability distribution of the future net load. As a result,standard deviation being one. Note thatand o7, in (1)
each plant can quantitatively bound the risk of exceedingre deterministic parameters representing the mean and
capacity, and statistically evaluate the expected cost of powgfe standard deviation of the predicted load. We call the
generation. first term in (1), L(k), as nominal load at timé:, while

In the example in Fig. 2, consider the future net load harseferring to the second terra (k)X (k), as contingent load.

a known probability distribution with a standard deviation .
of 10 MW. Then, the probability distributions of the power Wwe assume that the_re arg, dlspatchgple generator§ and
generation of the three plants have the same shape with ha batteries in t_he grid. In the electrlmt_y market, tlzida
standard deviation: 2 MW, 3 MW, and 5 MW, respectively.gener"’ltor commits t? produce the following amount:
Therefore, an allocation of the percentage of contingent Gi(k) = Gi(k) + 04, (k)X (k), 2
power can be viewed as an allocation of standard deviationwhere X is the same random variable as (3; is the

In the following section, we formulate the contingent powenominal power production of the generator. Similarly, the
dispatch problem as an optimal allocation problem of theth battery commits to discharge the following amount:

meanand standard deviation of future net load. R;(k) = R; (k) + o, (k)X (k), 3)

where R; is the nominal power outflow from the bat-
tery, which is positive when discharging and negative when
charging. We assume a lossless battery dynamics, which is
commonly assumed in existing literature such as [4]:
Bj(k) = Bj(k —1) + R;(k), 4)
where B; is the storage level of thgth battery. We note

January 2, 8 pm

24 hours later

Actual net load at 8 pm on Jan 2:

L=320MW (X=2)

January 1, 8 pm

Predicted net load at 8 pm on Jan 2:

L =300MW, o, =10MW

Bids:
a

B G =150MW, 5, =2MW
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|
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Fig. 2. Walk-through example of contingent power dispatch for a grid with
three dispatchable power plants.

> G, =320MW

that the loss of energy storage can also be considered in the
proposed contingent power dispatch and pricing framework
by replacing (4). Such an extension is beyond the scope
of this paper. The second term in (2) and (3) represents
contingent power productiorSince they shar& with (1),
theith generator angtth battery are committed to provide the
fixed portion of the contingent load representeddyy/or,
ando,, /or.

An electricity market must balance the load and genera-
tion. Hence,

®)



This can be achieved by ensuring that the nominal and copg = 1, p; = 0, andus = 1. Then,
tingent power productions from all dispatchable generators

N n
and batteries are equal to the net nominal and contingentJ(@i7Ugi) =E[J(G;)] = Zanz (”) wGr ot
load, respectively: = i\l '
- No Ny where () is a binomial coefficient. Note that the expected
L(k) = ZGi(k) +ZRj(k) (6) cost of energy production of each power plant cannot be
i=1 j=1 evaluated in a existing market mechanism that only concerns
Ny Ny Gl
op(k) = > ogk)+ > on (k). @) b) Cost of Output DeviationThe second observation is
i=1 j=1 that our objective function formulation allows us to consider

: . . . the cost of deviating the output of a generator in real time.
Hence, instead of directly balancing a random guantity ecall that the contingent power generation, represented b
in (5), the market seeks to balance two quantities: nomina gent p 9 » "ep y

o : a4, (k)X (k) in (2), means the deviation from the expected
power and standard deviation, as in (6) and (7). power output,GG;(k). The amount of contingent power that

The or d mechanism is similar to the th venti na power plant must supply is unknown until the moment of
€ proposed mechanism 1S simrar to the the conventio |spatch. Therefore, its standard deviatior, (k), can be

balancing market in that each participating generator hol ﬁterpreted as the expected deviation of power output.

regulating reserve on top of the expected outpR(k). A certain type of power plant can change its output easily

The dif_f(_aren_ce .is that the proposed approach also gives tW?ﬂIe others cannot. For example, gas and hydro power
probability distribution of the amount of energy that needs t lants are typically operated as peaking and load-following

be prowdgd l?y ea(_:h generator. As a result, each genera fhnts since their output can be varied easily. On the other
can qyantltz;tlvely 'I|m|t the risk of the ;hortage of reserv and, it is typically hard to quickly change the output of a
CapaC'.ty by imposing a chance constraint, as we explain Klclear power plant, which is operated as a base-load plant.
detail in Section II-C. With the contingent power dispatch and pricing framework,
we can explicitly consider the degree of difficulty in changing
the output of each power plant since the cost is a function of
In our problem formulation, the step cost function of eacl@—gi(k)_ In other words, each p|ant can Optimize the degree

plant and battery is a function of the supply of nominal powegf the variation in its output by setting the cost of deviation
and standard deviation, denoted Wy, (G;(k),o,,(k)) and  appropriately.

Jr;(R;(k), o, (k)). In this subsection, we omit the argument _

k for simplicity of notation. This formulation is justified by - Constraints

the following two observations. We assume that each generator and battery has a genera-
a) Expected Cost:The first observation is that this tion and storage capacitg;* and BY*, which is a positive

formulation allows us to explicitly represent the expectedeal constant:

B. Cost Function

cost of future energy generation and storage. Note that the 0< . (k X (k) < QM 10
expectation of any function of/; is a function ofG; and < Gil )+Ugj£ JX(k) < G (10)
og,. Likewise, the expectation of any function &; is a 0< B;(k) < Bj". (11)

function of R; and o,,. Recall that the probability density Moreover, we assume that each battery has bounds on its

function of X is assumed to be known. Therefore, charging and discharging rate:
+00 _ _ d D c
E[J(G:)] = / @) (i + ogx)de = J(Gi,04), Ry < (k) + on, (k)X (k) < Rj. (12)
e ®) Note that, whenX has an unbounded probability distribu-
tion, it is impossible in general to guarantee the satisfaction
where f is a probability density function ok of constraint (10) and (12). This means that there is a risk

The integral in (8) is obtained in a closed-form in manyof power shortage when unexpectedly large net electricity
cases. For example, whefi(G;) is a quadratic function, demand exceeds generation and discharging capacity of
J'(G;) = a1G; + a2G?, we have: plants and batteries. In order to manage such a risk, we

impose following chance constraints:

Pr [Gz(k) + 04, (k)X (k) < G;”] >1—¢ (13)
More generally, consider a polynomial function given by: Pr[R;(k) + o, (k)X (k) < RS] > 1 —¢,,, (14)
Tj =l = Tj

J(Gi7ggi) :E[J/(Gz)} :aléi—l—ag(é?—&—o;i). (9)

, N " where e are risk boundsthat are specified by users. Note

J(Gi) = Z anGy that we do not bound the probability of violating the lower
n=0 bounds of (10) and (12). This is because we assume that
We assume that th&'th moment of X exists. Forn > 1, excessive production of energy does not pose a risk since the
we denote by, thenth raw moment ofX. By assumption, output of renewable generation can be arbitrarily reduced, by



employing the pitch control of the blades of wind turbineswhereH is a prediction horizon. The decision variab?e:Nq

for example. consists of the nominal power output all power plants at
We next convert the chance-constraints in (13) and (14l time steps in the horizon, defined as follows:

into deterministic constraints. Lefx (-) be the cumulative a (OO

distribution function of X. We also denote by";'(¢) the L:Ng = { T N-z}

inverse function of the cumulative distribution function: Gi ={Gi()- - Gi(t + H - 1)}.

Fx(y) =¢ <= Fx'(¢) =y. The other decision variablesy,  , Ry.n,, and Oryn, s A€
. _ ) _ likewise defined. ' '
Using these notations, the chance constraint (13) is trans-

formed into an equivalent deterministic constraint as followsE- Decentralized Formulation of Contingent Power Dispatch

_ and Pricing
Pr[Gi(k) + q-‘”(k)X(k) <SGl z1-¢, The advantage of our problem formulation, Problem 1, is
o Fy (ng — Gi(k)) >1— e that it can be reformulated into a decentralized optimization
g, (k) - . problem by using dual decomposition [12]. The resulting
& G =Gilk) = 04, (W)Fx (1 —€y,). decentralized formulation consists of two parts. In the first

) . . part (Problem 2), each self-interested power provider max-
The last equivalence is derived from the fact that a cumulas,izes its own profit by optimizing the supply quantity of

tive distribution function is alwqysanon-d_ecreasing f“”‘ftif”‘_nominal and contingent power, given their prices. Chance
(14) can also be transformed into an equivalent deterministig)straints are imposed on each individual power provider
constraint in the same manner. in order to limit the risk of power shortage. In the second
D. Centralized Contingent Power Dispatch part of the decentralized optimization (Problem 3), the prices

We now present the overall formulation of the contingen?]c ?he. mean and the standard deviation of electricity are
power dispatch problem. Present in this subsection is 0£t|m|zed _by a ma’k‘?t: It turns out that the market-clearing
centralized formulation, which does not involve pricing sincem'f;S ach]:;ev:n?e ml;mg]e?r':;lg\ijeur::l\/cz;?;bles for (16) and
the allocation of electricity generation is optimized by P ( ). Po (k) . (16) )
centralized process instead of a market. The pricing probI:%n’ respectively. The dual variables correspond to the prices

is introduced in the decentralized formulation presented i nommql power and.standard deviation. Given thg prl_ces,
Section III-E. the following problem is solved by each power provider:

The objective of contingent power dispatch is to ﬁmgroblem 2: Decentralized Contingent Power Dispatch

the optimal allocation of nominal and contingent power or ith generator

to dispatchable power providers so that the overall cost —~  7{H! _

over a finite time horizon is minimized. After applying ~ 1in > {Jy (Gi(k), 04, (k)
k=1

the deterministic transformation described above to chance- Girtai B

constraints (13) and (14), we now formulate the contin- — (o (B)Gi(k) + po(k)og, (k) } (1)
gent power dispatch problem as a finite-horizon chance-

constrained optimal control problem, as below: sit. Gi(k) < G — agi(k)Fgl(l — ) (22)

Problem 1: Centralized Contingent Power Dispatch

r+H-1 [ Ny For jth battery

_, in Jg.(Gi(k), og, (k) T .
Gl:Ng7Ug1;Nga I;— 7=Zl ’ len Z {Jh (Rj(k/’),a'rj (k))
B, 39T k=g
Rin,, 0.0 _
e — (pn (K)R;(8) + o (K)o, (F) ) (23)
Ny
+> J.(Ri(k),o. (k 15 _
; (5(k). v, (K)) (13) st Rj(k) <Rj— a,,j(k)Fgl(l —€r;) (24)
0 < Bj(k) < Bj". (25)
Ng Nb . . . . . .
Fooa ~ 5 Note that this optimization problem only involve variables of
st Lik) = — Galk) + Zl B (k) (16) a single power plant or a battery. Hence, it can be solved in a
lfN ! *N decentralized manner. Also note that, in (243.G; + psoy,
g b

_ corresponds to the revenue of tita generator obtained by
or(k) = Z oo (k) + 3 on (k) (A7) sellingG; of nominal power and,, of standard deviation in
the market. Hence, minimizing the objective function in (21)
m 1 and (23) means maximizing the benefit of tile generator
= Gic ~ s (k)Ffl (1—€) (18) and thejth battery. )
(k) S R — o (R)Fx (1 —er)) A9 Let Gi(kipn,po), of, (kipNn,po), Ri(kipn,pos), and
0 < Bj(k) < B (20) U;fj(k:;pN,pg) be the optimal solutions to (21)-(25) given



the pricespy := {pn(7)---pn(T+ H — 1)} andp, :=

Algorithm 1 Finite-Horizon Contingent Power Dispatch and

{ps(7) - ps(T+H —1)}. The market finds market-clearing Pricing

prices by solving the following root-finding problem:
Problem 3: Contingent Power Pricing
Fork=r7---7+ H —1, find [py (k), ps (k)] such that:

N, N, 4:
L(k) =) Gi(kipn.po) + Y Rj(kipn.ps)  (26)
i=1 j=1

Ny Ny
oL(k) =Y o5 (kipn.po) + > or (kipn.pos).  (27)
i=1 j=1

The above equalities correspond to the stationary condition
for the dual of Problem 1. Since the dual objective function
is guaranteed to be concave, it is a sufficient condition
for optimality. Therefore, with our formulation, the market- 7.
clearing prices achieve the dual optimality. Jf, and J;.,

are convex functions, the dual solution has no duality gap.
Therefore, an optimal solution to Problems 2 and 3 is
guaranteed to be an optimal solution to Problem 1. Althoughg-
the decentralized optimization with nonconvex cost functions
may result in a suboptimal solution, an upper bound on the®:

duality gap can be evaluated posteriori. 10:

IV. MARKET-BASED SOLUTION METHOD TO

1: function FiniteHorizonContingentPowerDispatéh(~, po)
2: a+ ap andX € (0,1)
3: while |ex(k:k+ H —1,k)| >y~ V

leo(k : k+ H —1,k)| > - do
The market announces the prices(k : k + H — 1,k),
ps(k: k+ H —1,k) to plants and batteries.
Each power provider computés (k : k+H—1,k), oy, (k
k+H—1,k), Rj(k:k+H—1,k), oy (k:k+H—1k)
by solving Problem 2.

NJ
en(k:k+H—1,k) « Lk:k+H—-1)-> Gi(k:
=1

Ny
k+H—1k)+> Rj(k:k+H—1k)

j=1
eolk:k+H—-1,k)« op(k:k+H—-1)—

Ny
k+H=1,k)+> oy (k:k+H-1k)

=1
pn(k:k+H—1,k)< pn(k:k+H—1,k)+aen(k:
k+H-1,k)
po(k:k+H—1,k)« po(k:k+H—1,k)+ ac(k :
k+H-1,k)
a4+ A

11: end while

CONTINGENT POWER DISPATCH AND PRICING

The goal of this section is to develop a decentralize!g0rithm 2 Receding Horizon Algorithm

solution algorithm to Problems 2 and 3 that can be readilyl: Initialize p (1 : H,1) andp, (1 : H,1).

2:

used in a market. To this end, we build our algorithm upon
Walrasian auction, where the prices are iteratively update
by a market while each power provider responds to thes:
price signals by adjusting the supply of nominal power and5:

for k=1,2,--- do

FiniteHorizonContingentPowerDispatéh(pn (k, k + H —
1,k), po(k,k+ H — 1,k))

pn(k+1: k+H, k+1) < [pN(k+1: k+H—1,k), pn,init]
po(k+1:k+H, k+1) < [ps(k+1: k+H—1,k), Do, init)

standard deviation. At each time step, Problems 2 and 3 aré: end for
solved with a finite prediction horizon. Hence, the resulting
algorithm can be viewed as a decentralized stochastic model
predictive control. pn(0: H—1,0) andp,(0 : H —1,0) (Line 1). The step
. i ) ) .. size of the subgradient method, diminishes throughout

A. Finite Horizon Contingent Power Dispatch and Pricing jieration with a discount factoi € (0,1) (Line 10). The

In this subsection we develop a finite-horizon optimizatiorinitial step size and the discount factdrare also initialized
algorithm that finds optimal solutions to Problems 2 and 3appropriately (Line 2). In each iteration, each power provider
Given the pricepy, p,, in each iteration, each self-interestedsolves Problem 2 to find the optimal supply levels of nominal
power providers solves Problem 2 to obtain the optimal supower and standard deviation at the given prices (Line
ply of nominal power and standard deviatia@i; (k; px,p,), 5). Then, the market adjusts the prices by the subgradient
oy (k;pN, Do), R;(k;pN,pa), and U;fj(k;pN,p,T), for k = method (Line 8 and 9). This sequence is repeated until the
T---7 + H — 1. Problem 3 is solved by a market to finddifferences between the demands and the aggregate supplies
the prices that balance the supply and demand of nominate within specified tolerance levels (Line 3).
power and standard deviation. It is known that an optimal . ) ) ) .
solution to Problem 3 can be found by a subgradient methdd Reéceding Horizon Contingent Power Dispatch and Pric-
with a diminishing step size [13]. At each iteration, the/N9
subgradient method updates the prices with an incrementAlgorithm 1 is solved repeatedly at each time step with
that is proportional to the difference between the supply aral receding prediction horizon, as described in Algorithm 2.
the demand, i.e., the right hand sides of (26) and (27). IHere, Algorithm 1 is called at each time step as a subroutine
economics, such a price adjusting algorithm is referred to gkine 3). In order to enhance the computation efficiency, we
Walrasian auction, which is frequently used as a model afse the lastH — 1 optimal prices at timek, denoted by
the price dynamics in a competitive market [1]. pyk+1:k+H—-1,k)andps(k+1:k+H—1,k), as

The complete description of the algorithm is given inthe initial prices of Algorithm 1 at timé + 1 (Lines 4 and
Algorithm 1. The algorithm is initialized with initial prices, 5).




TABLE |
COST FUNCTION PARAMETERYUSD/MWH]

a b ao bs c Co
Plant 1 10 0.1 0 1000
Plant 2 30 0.3 0 10
Plant 3 50 0.5 0 0.5
Battery 1 01 01

Battery 2 02 0.2 5 20

10 15
Time [h]
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plant

10
\ Time [h]

Power [MWh]

1000 (b) The price of standard deviation
Base-load . . . . L
plant Fig. 4. The market-clearing prices of nominal power and standard deviation
500k , over 24 hours.
0 5 10 15 20 The risk boundsg,, ande,,, are set to 0.01 for all plants
Time [h] and batteries.

_ _ The profile of the nominal net load,, We use a 24
Fig. 3. A stacked graph showing the outputs from of power plants andqr_|ong data of electricity demand in California on August
batteries. Legends: blue solid line-Plant 1, purple solid line-Plant 2, gl’88£ 1 . =
solid line-Plant 3, red dashed-line-Battery 1, cyan dashed line-Battery 3, 2012_ ?—S the nommal net dgmandL,. We scaled the
thick black solid line-net load. data to fit into our simulation with three plants and two
batteries. The probability distribution of the net load at time
k is approximated by a Gaussian distribution. The standard
V. SIMULATION RESULTS deviation of the net Ioad:;L(k)_, is monotonically increasing
over time since the prediction of the far future involves
greater uncertainty than that of the near future. By assuming
We consider three power plants and two batteries, each tfat an independent, Gaussian-distributed uncertainty with a

A. Simulation Settings

which has a quadratic step cost function as follows: constant standard deviation is added at each time step, the
rH1 accumulated uncertainty has a standard deviation as follows:
k=1

2 where ) is a constant parameter, which is set 30. At
+H-1 Fa.75,(8) + bo.o, (F) ) each time step in the simulation, the profile of the nominal
5 _T . Y 9 net load is shifted by a random increment drawn from a
Jr, (15 (K), o, (K)) = Z (c’RJ (k) + co;0n, (k) ) ’ zero-mean Gaussian distribution with the standard deviation
beingn. The initial step size of the subgradient method and
wherea;, b;, a,,, by, cj, andc,, are constant parametersthe discount factor are given as= 0.05 and A = 0.995,
given in Table I. Plants 1, 2, and 3 model a baseload plant,rgspectively. Simulations are conducted on a machine with

load-following plant, and a peaking plant, respectively. Théntel Core i5-2520M CPU clocked at 2.50 GHz and a 4.00
cost functions of the peaking plant (Plant 3) and the batteriesB RAM.

are the expected cost derived from (9). The baseload and

load-following plants (Plants 1 and 2) has greaigr in B- Results

order to represent the degree of difficulty in deviating their Fig. 3 shows the amount of energy that is actually dis-
outputs. Also note that the baseload plant has the lowest cgstiched from each plant and battery. Note that the figure
of nominal power while the peaking plant has the highest coshows a similar tendency as Fig. 1 in that the baseload

k=1

of nominal power. plant (Plant 1) the high-frequency fluctuation of the net
The capacities of the power plants and the batteries alead is mostly absorbed by the peaking plant (Plant 3) and
set as follows: the two batteries, while the baseload plant has relatively

small rate of change in its output. This is because the
G =1500 MW (i =1,2,3)

1 . . I . )
m d_ pc - The data is available at the California 1SO’'s webpage:
Bj = 1500 MWh, RJ' - Rj = 100 MW (j =1, 2)' http://www.caiso.com/Pages/Today’s-Outlook-Details.aspx



TABLE I

VI. CONCLUSION
PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM AND THE

DETERMINISTIC ALGORITHM In this paper, we proposed a novel market-based con-

Probabiity of fallire  Average cost .tlngenF power dispatch algorlth_m that enables a grld with

Proposed algorithm 0.0% 17865 x 10° intermittent energy sources to dispatch energy within a user-
Deterministic algorithm 2.1% 4.8148 x 10° specified risk bound in a decentralized manner.

We first presented our concept of contingent power dis-
patch, and formulated a centralized contingent power dis-
patch problem (Problem 1). This problem can be solved by
one optimization process, but it is far from the real power

peaking plant and the batteries have smaller cost of providingarket mechanism. We next reformulated the problem using
contingent power (i.e., standard deviation) than the loagfyal decomposition method to introduce a market-based
following and baseload plants. The most significant portiogecentralized contingent power dispatch problem (Problem
of the energy is provided by the baseload plant since it$) and a optimal power pricing problem (Problem 3). Then

cost of nominal power is the cheapest. Also observe that thga proposed a decentralized optimization algorithm to solve
two batteries store eleCtriCity when the demand is IOW, Wh||©rob|em 2, 3 by using a subgradient method. Fina”y, we
discharging it when the demand is high. We emphasize thgemonstrated the performance of our proposed algorithm
these seemingly cooperative behaviors of power plants ajil simulation. The result showed that the risk of power

batteries result from a purely market-based process wheffipalance can be bounded quantitatively and the total cost

each power provider simply maximizes its own profit byof power generation can be minimized by the proposed
solving Problem 2. algorithm.

Figs. 4(a) and 4(b) shows the market-clearing prices of
the nominal power and the standard deviation. As expected,__, . : . .
the profile of the price of nominal power is similar to that of This work was supported in part by the Nat|_0nal Sci-
the net load, represented by the thick solid line in Fig. 3. Off'¢& Foundation under Grant No. 11S-1017992, Siemens AG
the other hand, the price of standard deviation has a simil§ der Addendum ID MIT CKI-2010-Seefund-008, and
tendency as the standard deviation of the net load, given T CREST'. Any opinions, .f'”d'.”gs' apd ponclusmns or
(28). Intuitively, this is because the market encourages powr commendations expressed in this publication are those of

plants and batteries to “sell’ greater amount of standarl e author and do not necessarily reflect the view of the

deviation (i.e., to absorb greater uncertainty) by raising thePonsoring agencies.

price when the prediction of the net load has significant REFERENCES
uncertainty.
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