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Abstract— The purpose of this work is to enable risk-limiting
electricity dispatch through a market mechanism. There has
been a solid body of work on centralized risk-limiting dispatch,
which guarantees that the risk of energy shortage is within
a user-specified bound. The current trading mechanism of a
day-ahead electricity market can be viewed as a market that
deals with the expectation (i.e., the first moment) of future
supply and load. We show in this paper that distributed and
risk-limiting dispatch is enabled by also trading the standard
deviation(i.e., the second moment). In the proposed mechanism,
a dispatchable power provider, such as spinning reserve and
battery, can “sell” the standard deviation in a market by
contributing to absorbing the uncertainty of energy demand
and supply. The market-clearing prices of the mean and
the standard deviation of electricity are found through the
Walrasian auction. This approach allows each power provider
to specify the probability density function (pdf) of the amount of
energy that it has to generate in the future. As a result, a power
provider can quantitatively limit the risk of power shortage
by imposing chance constraints in a decentralized manner.
The decentralized risk-limiting dispatch and pricing problem
are solved at each time step with a receding time horizon.
We demonstrate the capabilities of the proposed approach by
simulations using real data.

I. I NTRODUCTION

A. Overview of Contingent Power Dispatch and Pricing

Among various types of electricity market, futures mar-
kets, such as a day-ahead market, play a central role in power
dispatch. An existing day-ahead electricity market typically
concerns only the prediction of the uncertain future energy
supply and demand. In other words, although the probability
distribution of future energy supply and demand is often
available through a statistical method, existing market mech-
anisms consider only the mean of the probability distribution.

We observe that an electricity market becomes more
capable in dealing with uncertainty by fully exploiting the
information of the probability distribution. This observation
leads to our novel market-based power dispatch and pricing
approach, namelycontingent power dispatch and pricing,
which trades thestandard deviationof future power demand
and supply in a market. A market finds the market-clearing
prices of the mean and the standard deviation of the future
electricity by a price-adjusting mechanism called Walrasian
auction, which is also known as tâtonnement [1]. In Wal-
rasian auction, a market adjusts prices based on the current
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Fig. 1. An example of absorbing uncertainty of power demand by using
peaking plant.

supply-demand imbalance, while each self-interested player
optimizes the quantities of supply and demand to maximize
its own profit at the given the prices.

The primary purpose of employing this market mechanism
is to enable decentralizedand risk-limiting power dispatch.
More specifically, unlike existing centralized risk-limiting
approaches such as [2]–[4], our approach manages the risk
of power shortage within a user-specified bound by imposing
chance constraints oneach dispatchable power provider.
This is made possible since the proposed approach allows
each dispatchable power provider to specify the probability
density function (pdf) of the amount of energy that it must
provide in the future. As a result, risk-limiting dispatch is
realized through a market mechanism.

There are two additional contributions of the proposed ap-
proach. First, each dispatchable power provider can optimize
its output by considering the expected cost,E[J(G)], instead
of the nominal cost,J(E[G]), whereJ is a cost function and
G is the amount of future energy production. Second, each
dispatchable power plant can optimally choose the amount
of uncertainty that it commits to absorb by considering
the cost of deviating its output. As illustrated in Fig. 1,
peaking and load-following plants, such as gas and hydro
power plants, typically absorb the majority of fluctuation in
energy demand, while the output of base-load plants, such as
nuclear stations, are kept almost constant since it is difficult
and/or costly to change their outputs. The proposed approach
achieves such an optimal allocation of power generation over
time by a purely market-based mechanism.

We also provide a capability of optimally operating storage
facilities, such a battery and a pumped-storage hydroelec-



tricity, within the framework of contingent power dispatch
and pricing. The existence of storage capacities in a grid
introduces couplings between different points of time. There-
fore, instead of considering an optimization problem at a
single point of time, we optimize the nominal outputs of
dispatchable power plants over multiple time steps in the
future. The resulting algorithm is a decentralized stochastic
model predictive control, which solves at each time step
a contingent power dispatch and pricing problem over a
receding finite prediction horizon.

B. Related Work

There is a solid body of literature in risk-limiting power
dispatch, as well as in decentralized power dispatch and
pricing. The main contribution of this work is to achieve
both in a unified framework.

A need for risk-limiting power dispatch arises from rapidly
growing penetration of intermittent wind and solar genera-
tions, which significantly increases the uncertainty in energy
supply. Moreover, several recent incidents, most notably the
Northeast blackout of 2003, showed that the traditionalN -
1 security criterion is vulnerable to “hidden” failures that
occur probabilistically [5]. Recently, an alternative security
criterion for power dispatch, called risk-based security or
stochastic security, has emerged [2], [5], [6]. Although its
definition varies, it seems to be a consensus that the risk
of a blackout needs to be managed quantitatively based
on a stochastic model of the power grid. For example, [7]
developed a power dispatch method that guarantees mar-
ket clearing under uncertainty. Their approach is “scenario
based” in a sense that the continuous probability distribution
of wind generation is approximated by a discrete one with
a finite number of “slices”, on each of which a market-
clearing constraint is imposed at all time steps. An issue
of this approach is that the computational cost increases
exponentially with the number of slices and the number of
time steps. A similar approach is presented by [8], which
employs scenario-based stochastic model predictive control
(SMPC) that randomly samples from the distribution. This
approach is “market-based” in a sense that a market specifies
the dual variable (i.e., a shadow price) of the optimal dispatch
problem, but the optimization is conducted in a centralized
manner. Recently, [2] has proposed a risk-limiting dispatch
approach that explicitly imposes a chance constraint on the
overall supply-demand balance. [3] proposed a probabilistic
extension to theN − 1 security criterion as well as a power
dispatch algorithm that satisfies the probabilistic criterion.
However, these power dispatch methods are centralized.

In general, a decentralized power dispatch has two practi-
cal advantages over centralized ones. First, it can be readily
applied to existing deregulated electricity markets, where
the quantity of generation and consumption of each self-
interested player is determined through a competitive market
mechanism. Second, it can scale to a real-world power grid
system, which consists of thousands of components. Various
decentralized dispatch approaches have been proposed. For
example, [9] developed a distributed power dispatch algo-

rithm called DYMOND, which is similar to our approach in
that it is built upon dual decomposition and uses a Walrasian
auction-based pricing mechanism. Optimal electricity pric-
ing, which can be viewed as a decentralized power dispatch,
is also a well studied area. For example, [10] considered
a Walrasian auction-based pricing mechanism with demand
response, while [11] proposed a double auction mechanism.
However, these decentralized approaches assume a deter-
ministic model, which does not allow to consider stochastic
security criterion such as chance constraint.

Overall, to the best of our knowledge, ours is the first
decentralized dispatch algorithm with chance constraints. De-
centralized chance-constrained dispatch is difficult because,
although the probability distribution of the futurenet load is
typically available, the probability distribution of the amount
power thateachelectricity provider must supply in the future
cannot be specified in a conventional market mechanism
since it only deals with the mean (i.e., expectation) of the
probability distributions. The proposed market mechanism
overcomes this challenge by trading the meanand the
standard deviation of the probability distributions.

The rest of this paper is organized as follows. In Sec-
tion II, we intuitively explain the concept of contingent
power dispatch. In Section III, we formulate the contingent
power dispatch problem. Section IV presents a decentralized
reformulation of the contingent power dispatch problem,
and proposes a decentralized stochastic MPC algorithm that
solves the problem at every time step. Finally, Section IV
demonstrates the proposed method by simulations.

II. WALK -THROUGH EXAMPLE

In this section, we intuitively explain the concept of
contingent power dispatch and pricing using an example.
For the sake of simplicity, we only consider a dispatching
problem at a single time step in this section.

In our proposed approach, two types of power are traded
in a market: nominal power andcontingent power. Nominal
power represents the expected demand and supply of power,
while contingent power represents the deviation from the
nominal. The key idea is to determine thepercentageof the
contingent power that each power provider covers through a
market mechanism.

For example, consider a power grid with three dispatchable
generators, as shown in Fig. 2. Plant 1 is a base-load plant,
which produces nominal power with the lowest cost, but
requires the largest cost to deviate the output (i.e., to produce
contingent power) from the constant level. Plane 2 is a load-
following plant, which has moderate cost to produce both
nominal and contingent power. Plant 3 is a peaking plant,
which has the highest cost of nominal power production, but
the output can be easily adjusted with the least cost.

We consider a day-ahead market that deals with the net
load, which is the total demand minus the total renewable
production. In Fig. 2 we assume that the predicted net load
at 8:00 p.m., January 2nd, is300 MWh. Hence, on the
preceding day, January 1st, at 8:00 p.m., 300 MWh nominal
power is sold to the three plants in the day-ahead market.



Our proposed contingent power dispatch mechanism is
different from regular electricity market in that the percent-
age of the contingent power covered by each plant is also
allocated by a market mechanism. For example, in Fig. 2,
plants 1, 2, and 3 commit to provide 20%, 30%, and 50%
of contingent power, respectively. Each plant sells such a
commitment at a price specified by the market. The market
adjusts the price so that the total percentage of commitment
is equal to 100%.

Then, 24 hours later, the actual net load turns out to be 320
MWh, resulting in 20 MWh excess load. We call the excess
load ascontingent load. The contingent load is allocated to
each plant according to the levels of commitment agreed
in the day-ahead market. As a result, plants 1, 2, and 3
produce 4 MWh, 6 MWh, and 10 MWh of contingent power,
respectively. Hence, the total power produced by each plant
is 154 MWh, 106 MWh, and 60 MWh. These sum up to 320
MWh, which matches the actual load.

The advantage of this contingent power dispatch approach
is that each plant can knowa priori the probability distribu-
tion of the amount of power that it has to generate, given the
probability distribution of the future net load. As a result,
each plant can quantitatively bound the risk of exceeding
capacity, and statistically evaluate the expected cost of power
generation.

In the example in Fig. 2, consider the future net load has
a known probability distribution with a standard deviation
of 10 MW. Then, the probability distributions of the power
generation of the three plants have the same shape with the
standard deviation: 2 MW, 3 MW, and 5 MW, respectively.
Therefore, an allocation of the percentage of contingent
power can be viewed as an allocation of standard deviation.
In the following section, we formulate the contingent power
dispatch problem as an optimal allocation problem of the
meanand standard deviation of future net load.
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Fig. 2. Walk-through example of contingent power dispatch for a grid with
three dispatchable power plants.

III. PROBLEM FORMULATION

In this section we formulate the contingent power dispatch
and pricing problem introduced above into a decentralized
chance-constrained programming. After presenting the prob-
lem setups in Sections III-A, III-B, and III-C, we first present
a centralized formulation of the contingent power dispatch
problem in III-D. Then, we reformulate it into a decentralized
optimization problem using dual decomposition in III-E.

A. Definitions of Load, Generation, and Storage

We consider a power grid system consisting of non-
dispatchable renewable generators, dispatchable power
plants, batteries, and consumers. In our formulation, wind
and solar generations, which are non-dispatchable and inter-
mittent, are considered as negative load. We use the termnet
load to mean the total energy demand minus the wind and
solar generations. The net load at timek is represented by
a random variableL(k), which is assumed to have a known
probability distribution. We decomposeL(k) into its mean
and the deviation from the mean as follows:

L(k) = L̄(k) + σL(k)X(k), (1)

where X(k) is a zero-mean random variable with its
standard deviation being one. Note thatL̄ and σL in (1)
are deterministic parameters representing the mean and
the standard deviation of the predicted load. We call the
first term in (1), L̄(k), as nominal load at timek, while
referring to the second term,σL(k)X(k), as contingent load.

We assume that there areNg dispatchable generators and
Nb batteries in the grid. In the electricity market, theith
generator commits to produce the following amount:

Gi(k) = Ḡi(k) + σgi(k)X(k), (2)

where X is the same random variable as (1).Ḡi is the
nominal power production of the generator. Similarly, the
jth battery commits to discharge the following amount:

Rj(k) = R̄j(k) + σrj (k)X(k), (3)

where R̄j is the nominal power outflow from the bat-
tery, which is positive when discharging and negative when
charging. We assume a lossless battery dynamics, which is
commonly assumed in existing literature such as [4]:

Bj(k) = Bj(k − 1) +Rj(k), (4)

whereBj is the storage level of thejth battery. We note
that the loss of energy storage can also be considered in the
proposed contingent power dispatch and pricing framework
by replacing (4). Such an extension is beyond the scope
of this paper. The second term in (2) and (3) represents
contingent power production. Since they shareX with (1),
theith generator andjth battery are committed to provide the
fixed portion of the contingent load represented byσgi/σL

andσrj/σL.
An electricity market must balance the load and genera-

tion. Hence,

L(k) =

Ng∑
i=1

Gi(k) +

Nb∑
j=1

Rj(k). (5)



This can be achieved by ensuring that the nominal and con-
tingent power productions from all dispatchable generators
and batteries are equal to the net nominal and contingent
load, respectively:

L̄(k) =

Ng∑
i=1

Ḡi(k) +

Nb∑
j=1

R̄j(k) (6)

σL(k) =

Ng∑
i=1

σgi(k) +

Nb∑
j=1

σrj (k). (7)

Hence, instead of directly balancing a random quantity as
in (5), the market seeks to balance two quantities: nominal
power and standard deviation, as in (6) and (7).

The proposed mechanism is similar to the the conventional
balancing market in that each participating generator holds
regulating reserve on top of the expected output,Ḡi(k).
The difference is that the proposed approach also gives the
probability distribution of the amount of energy that needs to
be provided by each generator. As a result, each generator
can quantitatively limit the risk of the shortage of reserve
capacity by imposing a chance constraint, as we explain in
detail in Section III-C.

B. Cost Function

In our problem formulation, the step cost function of each
plant and battery is a function of the supply of nominal power
and standard deviation, denoted byJgi(Ḡi(k), σgi(k)) and
Jrj (R̄j(k), σrj (k)). In this subsection, we omit the argument
k for simplicity of notation. This formulation is justified by
the following two observations.

a) Expected Cost:The first observation is that this
formulation allows us to explicitly represent the expected
cost of future energy generation and storage. Note that the
expectation of any function ofGi is a function ofḠi and
σgi . Likewise, the expectation of any function ofRi is a
function of R̄i and σri . Recall that the probability density
function ofX is assumed to be known. Therefore,

E [J ′(Gi)] =

∫ +∞

−∞
f(x)J ′(Ḡi + σgix)dx := J(Ḡi, σgi),

(8)

wheref is a probability density function ofX.
The integral in (8) is obtained in a closed-form in many

cases. For example, whenJ ′(Gi) is a quadratic function,
J ′(Gi) = a1Gi + a2G

2
i , we have:

J(Ḡi, σgi) := E [J ′(Gi)] = a1Ḡi + a2(Ḡ
2
i + σ2

gi). (9)

More generally, consider a polynomial function given by:

J ′(Gi) =
N∑

n=0

anG
n
i .

We assume that theN th moment ofX exists. Forn ≥ 1,
we denote byµn thenth raw moment ofX. By assumption,

µ0 = 1, µ1 = 0, andµ2 = 1. Then,

J(Ḡi, σgi) := E [J ′(Gi)] =
N∑

n=0

an

n∑
l=0

(
n

l

)
µlḠ

n−l
i σl

gi ,

where
(
n
l

)
is a binomial coefficient. Note that the expected

cost of energy production of each power plant cannot be
evaluated in a existing market mechanism that only concerns
Ḡi.

b) Cost of Output Deviation:The second observation is
that our objective function formulation allows us to consider
the cost of deviating the output of a generator in real time.
Recall that the contingent power generation, represented by
σgi(k)X(k) in (2), means the deviation from the expected
power output,Ḡi(k). The amount of contingent power that
a power plant must supply is unknown until the moment of
dispatch. Therefore, its standard deviation,σgi(k), can be
interpreted as the expected deviation of power output.

A certain type of power plant can change its output easily
while others cannot. For example, gas and hydro power
plants are typically operated as peaking and load-following
plants since their output can be varied easily. On the other
hand, it is typically hard to quickly change the output of a
nuclear power plant, which is operated as a base-load plant.
With the contingent power dispatch and pricing framework,
we can explicitly consider the degree of difficulty in changing
the output of each power plant since the cost is a function of
σgi(k). In other words, each plant can optimize the degree
of the variation in its output by setting the cost of deviation
appropriately.

C. Constraints

We assume that each generator and battery has a genera-
tion and storage capacity,Gm

i andBm
j , which is a positive

real constant:

0 ≤ Ḡi(k) + σgi(k)X(k) ≤ Gm
i (10)

0 ≤ Bj(k) ≤ Bm
j . (11)

Moreover, we assume that each battery has bounds on its
charging and discharging rate:

Rd
j ≤ R̄j(k) + σrj (k)X(k) ≤ Rc

j . (12)

Note that, whenX has an unbounded probability distribu-
tion, it is impossible in general to guarantee the satisfaction
of constraint (10) and (12). This means that there is a risk
of power shortage when unexpectedly large net electricity
demand exceeds generation and discharging capacity of
plants and batteries. In order to manage such a risk, we
impose following chance constraints:

Pr
[
Ḡi(k) + σgi(k)X(k) ≤ Gm

i

]
≥ 1− ϵgi (13)

Pr
[
R̄j(k) + σrj (k)X(k) ≤ Rc

j

]
≥ 1− ϵrj , (14)

where ϵ are risk boundsthat are specified by users. Note
that we do not bound the probability of violating the lower
bounds of (10) and (12). This is because we assume that
excessive production of energy does not pose a risk since the
output of renewable generation can be arbitrarily reduced, by



employing the pitch control of the blades of wind turbines,
for example.

We next convert the chance-constraints in (13) and (14)
into deterministic constraints. LetFX(·) be the cumulative
distribution function ofX. We also denote byF−1

X (ζ) the
inverse function of the cumulative distribution function:

FX(y) = ζ ⇐⇒ F−1
X (ζ) = y.

Using these notations, the chance constraint (13) is trans-
formed into an equivalent deterministic constraint as follows:

Pr
[
Ḡi(k) + σgi(k)X(k) ≤ Gm

i

]
≥ 1− ϵgi

⇔ FX

(
Gm

i − Ḡi(k)

σgi(k)

)
≥ 1− ϵgi

⇔ Gm
i − Ḡi(k) ≥ σgi(k)F

−1
X (1− ϵgi).

The last equivalence is derived from the fact that a cumula-
tive distribution function is always a non-decreasing function.
(14) can also be transformed into an equivalent deterministic
constraint in the same manner.

D. Centralized Contingent Power Dispatch

We now present the overall formulation of the contingent
power dispatch problem. Present in this subsection is a
centralized formulation, which does not involve pricing since
the allocation of electricity generation is optimized by a
centralized process instead of a market. The pricing problem
is introduced in the decentralized formulation presented in
Section III-E.

The objective of contingent power dispatch is to find
the optimal allocation of nominal and contingent powers
to dispatchable power providers so that the overall cost
over a finite time horizon is minimized. After applying
the deterministic transformation described above to chance-
constraints (13) and (14), we now formulate the contin-
gent power dispatch problem as a finite-horizon chance-
constrained optimal control problem, as below:
Problem 1: Centralized Contingent Power Dispatch

min
Ḡ1:Ng , σg1:Ng

,

R̄1:Ng , σr1:Ng

τ+H−1∑
k=τ

 Ng∑
i=1

Jgi(Ḡi(k), σgi(k))

+

Nb∑
j=1

Jri(R̄j(k), σrj (k))

 (15)

s.t. L̄(k) =

Ng∑
i=1

Ḡi(k) +

Nb∑
j=1

R̄j(k) (16)

σL(k) =

Ng∑
i=1

σgi(k) +

Nb∑
j=1

σrj (k) (17)

Ḡi(k) ≤ Gm
i − σgi(k)F

−1
X (1− ϵgi) (18)

R̄j(k) ≤ Rc
j − σrj (k)F

−1
X (1− ϵrj ) (19)

0 ≤ Bj(k) ≤ Bm
j (20)

whereH is a prediction horizon. The decision variableḠ1:Ng

consists of the nominal power output ofall power plants at
all time steps in the horizon, defined as follows:

Ḡ1:Ng := {Ḡ1 · · · ḠNg}
Ḡi := {Ḡi(τ) · · · Ḡi(τ +H − 1)}.

The other decision variables,σg1:Ng
, R̄1:Ng , andσr1:Ng

, are
likewise defined.

E. Decentralized Formulation of Contingent Power Dispatch
and Pricing

The advantage of our problem formulation, Problem 1, is
that it can be reformulated into a decentralized optimization
problem by using dual decomposition [12]. The resulting
decentralized formulation consists of two parts. In the first
part (Problem 2), each self-interested power provider max-
imizes its own profit by optimizing the supply quantity of
nominal and contingent power, given their prices. Chance
constraints are imposed on each individual power provider
in order to limit the risk of power shortage. In the second
part of the decentralized optimization (Problem 3), the prices
of the mean and the standard deviation of electricity are
optimized by a market. It turns out that the market-clearing
prices achieve the minimum overall cost.

Let pN (k) and pσ(k) be the dual variables for (16) and
(17), respectively. The dual variables correspond to the prices
of nominal power and standard deviation. Given the prices,
the following problem is solved by each power provider:
Problem 2: Decentralized Contingent Power Dispatch
For ith generator

min
Ḡi,σgi

τ+H−1∑
k=τ

{
Jgi(Ḡi(k), σgi(k))

−
(
pN (k)Ḡi(k) + pσ(k)σgi(k)

)}
(21)

s.t. Ḡi(k) ≤ Gm
i − σgi(k)F

−1
X (1− ϵgi) (22)

For jth battery

min
R̄j ,σrj

τ+H−1∑
k=τ

{
Jri(R̄j(k), σrj (k))

−
(
pN (k)R̄j(k) + pσ(k)σrj (k)

)}
(23)

s.t. R̄j(k) ≤ Rc
j − σrj (k)F

−1
X (1− ϵrj ) (24)

0 ≤ Bj(k) ≤ Bm
j . (25)

Note that this optimization problem only involve variables of
a single power plant or a battery. Hence, it can be solved in a
decentralized manner. Also note that, in (21),pN Ḡi+pσσgi

corresponds to the revenue of theith generator obtained by
sellingḠi of nominal power andσgi of standard deviation in
the market. Hence, minimizing the objective function in (21)
and (23) means maximizing the benefit of theith generator
and thejth battery.

Let Ḡ∗
i (k; pN , pσ), σ∗

gi(k; pN , pσ), R̄∗
j (k; pN , pσ), and

σ∗
rj (k; pN , pσ) be the optimal solutions to (21)-(25) given



the pricespN := {pN (τ) · · · pN (τ + H − 1)} and pσ :=
{pσ(τ) · · · pσ(τ+H−1)}. The market finds market-clearing
prices by solving the following root-finding problem:
Problem 3: Contingent Power Pricing
For k = τ · · · τ +H − 1, find [pN (k), pσ(k)] such that:

L̄(k) =

Ng∑
i=1

Ḡ∗
i (k; pN , pσ) +

Nb∑
j=1

R̄∗
j (k; pN , pσ) (26)

σL(k) =

Ng∑
i=1

σ∗
gi(k; pN , pσ) +

Nb∑
j=1

σ∗
rj (k; pN , pσ). (27)

The above equalities correspond to the stationary condition
for the dual of Problem 1. Since the dual objective function
is guaranteed to be concave, it is a sufficient condition
for optimality. Therefore, with our formulation, the market-
clearing prices achieve the dual optimality. IfJgi and Jrj
are convex functions, the dual solution has no duality gap.
Therefore, an optimal solution to Problems 2 and 3 is
guaranteed to be an optimal solution to Problem 1. Although
the decentralized optimization with nonconvex cost functions
may result in a suboptimal solution, an upper bound on the
duality gap can be evaluated posteriori.

IV. M ARKET-BASED SOLUTION METHOD TO

CONTINGENT POWER DISPATCH AND PRICING

The goal of this section is to develop a decentralized
solution algorithm to Problems 2 and 3 that can be readily
used in a market. To this end, we build our algorithm upon
Walrasian auction, where the prices are iteratively updated
by a market while each power provider responds to the
price signals by adjusting the supply of nominal power and
standard deviation. At each time step, Problems 2 and 3 are
solved with a finite prediction horizon. Hence, the resulting
algorithm can be viewed as a decentralized stochastic model
predictive control.

A. Finite Horizon Contingent Power Dispatch and Pricing

In this subsection we develop a finite-horizon optimization
algorithm that finds optimal solutions to Problems 2 and 3.
Given the pricespN , pσ, in each iteration, each self-interested
power providers solves Problem 2 to obtain the optimal sup-
ply of nominal power and standard deviation,Ḡ∗

i (k; pN , pσ),
σ∗
gi(k; pN , pσ), R̄∗

j (k; pN , pσ), andσ∗
rj (k; pN , pσ), for k =

τ · · · τ + H − 1. Problem 3 is solved by a market to find
the prices that balance the supply and demand of nominal
power and standard deviation. It is known that an optimal
solution to Problem 3 can be found by a subgradient method
with a diminishing step size [13]. At each iteration, the
subgradient method updates the prices with an increment
that is proportional to the difference between the supply and
the demand, i.e., the right hand sides of (26) and (27). In
economics, such a price adjusting algorithm is referred to as
Walrasian auction, which is frequently used as a model of
the price dynamics in a competitive market [1].

The complete description of the algorithm is given in
Algorithm 1. The algorithm is initialized with initial prices,

Algorithm 1 Finite-Horizon Contingent Power Dispatch and
Pricing

1: function FiniteHorizonContingentPowerDispatch(k, pN , pσ)
2: α← α0 andλ ∈ (0, 1)
3: while |εN (k : k +H − 1, k)| > γN ∨

|εσ(k : k +H − 1, k)| > γσ do
4: The market announces the pricespN (k : k + H − 1, k),

pσ(k : k +H − 1, k) to plants and batteries.
5: Each power provider computes̄G∗

i (k : k+H−1, k), σ∗
gi(k :

k+H−1, k), R̄∗
j (k : k+H−1, k), σ∗

rj (k : k+H−1, k)
by solving Problem 2.

6: εN (k : k +H − 1, k) ← L̄(k : k +H − 1) −
Ng∑
i=1

Ḡ∗
i (k :

k +H − 1, k) +

Nb∑
j=1

R̄∗
j (k : k +H − 1, k)

7: εσ(k : k +H − 1, k)← σL(k : k +H − 1)−
Ng∑
i=1

σ∗
gi(k :

k +H − 1, k) +

Nb∑
j=1

σ∗
rj (k : k +H − 1, k)

8: pN (k : k +H − 1, k)← pN (k : k +H − 1, k) + αεN (k :
k +H − 1, k)

9: pσ(k : k +H − 1, k) ← pσ(k : k +H − 1, k) + αεσ(k :
k +H − 1, k)

10: α← λα

11: end while

Algorithm 2 Receding Horizon Algorithm
1: Initialize pN (1 : H, 1) andpσ(1 : H, 1).
2: for k = 1, 2, · · · do
3: FiniteHorizonContingentPowerDispatch(k, pN (k, k + H −

1, k), pσ(k, k +H − 1, k))
4: pN (k+1 : k+H, k+1)← [p⋆N (k+1 : k+H−1, k), pN,init]
5: pσ(k+1 : k+H, k+1)← [p⋆σ(k+1 : k+H−1, k), pσ,init]
6: end for

pN (0 : H − 1, 0) and pσ(0 : H − 1, 0) (Line 1). The step
size of the subgradient method,α, diminishes throughout
iteration with a discount factorλ ∈ (0, 1) (Line 10). The
initial step size and the discount factorλ are also initialized
appropriately (Line 2). In each iteration, each power provider
solves Problem 2 to find the optimal supply levels of nominal
power and standard deviation at the given prices (Line
5). Then, the market adjusts the prices by the subgradient
method (Line 8 and 9). This sequence is repeated until the
differences between the demands and the aggregate supplies
are within specified tolerance levels (Line 3).

B. Receding Horizon Contingent Power Dispatch and Pric-
ing

Algorithm 1 is solved repeatedly at each time step with
a receding prediction horizon, as described in Algorithm 2.
Here, Algorithm 1 is called at each time step as a subroutine
(Line 3). In order to enhance the computation efficiency, we
use the lastH − 1 optimal prices at timek, denoted by
p⋆N (k + 1 : k +H − 1, k) andp⋆σ(k + 1 : k +H − 1, k), as
the initial prices of Algorithm 1 at timek + 1 (Lines 4 and
5).



TABLE I

COST FUNCTION PARAMETERS[USD/MWH]

a b aσ bσ c cσ
Plant 1 10 0.1 0 1000
Plant 2 30 0.3 0 10
Plant 3 50 0.5 0 0.5

Battery 1 0.1 0.1
Battery 2 0.2 0.2
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Fig. 3. A stacked graph showing the outputs from of power plants and
batteries. Legends: blue solid line-Plant 1, purple solid line-Plant 2, green
solid line-Plant 3, red dashed-line-Battery 1, cyan dashed line-Battery 2,
thick black solid line-net load.

V. SIMULATION RESULTS

A. Simulation Settings

We consider three power plants and two batteries, each of
which has a quadratic step cost function as follows:

Jgi(Ḡi(k), σgi(k)) =
τ+H−1∑
k=τ

(
aiḠi(k) + biḠi(k)

2

+aσiσgi(k) + bσiσgi(k)
2
)

Jrj (R̄j(k), σrj (k)) =
τ+H−1∑
k=τ

(
ciR̄j(k)

2 + cσjσrj (k)
2
)
,

whereai, bi, aσi
, bσi

, cj , and cσj
are constant parameters

given in Table I. Plants 1, 2, and 3 model a baseload plant, a
load-following plant, and a peaking plant, respectively. The
cost functions of the peaking plant (Plant 3) and the batteries
are the expected cost derived from (9). The baseload and
load-following plants (Plants 1 and 2) has greateraσ in
order to represent the degree of difficulty in deviating their
outputs. Also note that the baseload plant has the lowest cost
of nominal power while the peaking plant has the highest cost
of nominal power.

The capacities of the power plants and the batteries are
set as follows:

Gm
i = 1500 MW (i = 1, 2, 3)

Bm
j = 1500 MWh, Rd

j = Rc
j = 100 MW (j = 1, 2).
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Fig. 4. The market-clearing prices of nominal power and standard deviation
over 24 hours.

The risk bounds,ϵgi and ϵri , are set to 0.01 for all plants
and batteries.

The profile of the nominal net load,̄L, We use a 24
hour-long data of electricity demand in California on August
23, 20121 as the nominal net demand,̄L. We scaled the
data to fit into our simulation with three plants and two
batteries. The probability distribution of the net load at time
k is approximated by a Gaussian distribution. The standard
deviation of the net load,σL(k), is monotonically increasing
over time since the prediction of the far future involves
greater uncertainty than that of the near future. By assuming
that an independent, Gaussian-distributed uncertainty with a
constant standard deviation is added at each time step, the
accumulated uncertainty has a standard deviation as follows:

σL(k) = η
√
k, (28)

where η is a constant parameter, which is set to30. At
each time step in the simulation, the profile of the nominal
net load is shifted by a random increment drawn from a
zero-mean Gaussian distribution with the standard deviation
beingη. The initial step size of the subgradient method and
the discount factor are given asα = 0.05 and λ = 0.995,
respectively. Simulations are conducted on a machine with
Intel Core i5-2520M CPU clocked at 2.50 GHz and a 4.00
GB RAM.

B. Results

Fig. 3 shows the amount of energy that is actually dis-
patched from each plant and battery. Note that the figure
shows a similar tendency as Fig. 1 in that the baseload
plant (Plant 1) the high-frequency fluctuation of the net
load is mostly absorbed by the peaking plant (Plant 3) and
the two batteries, while the baseload plant has relatively
small rate of change in its output. This is because the

1The data is available at the California ISO’s webpage:
http://www.caiso.com/Pages/Today’s-Outlook-Details.aspx



TABLE II

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM AND THE

DETERMINISTIC ALGORITHM

Probability of failure Average cost
Proposed algorithm 0.0% 4.7865× 106

Deterministic algorithm 2.1% 4.8148× 106

peaking plant and the batteries have smaller cost of providing
contingent power (i.e., standard deviation) than the load-
following and baseload plants. The most significant portion
of the energy is provided by the baseload plant since its
cost of nominal power is the cheapest. Also observe that the
two batteries store electricity when the demand is low, while
discharging it when the demand is high. We emphasize that
these seemingly cooperative behaviors of power plants and
batteries result from a purely market-based process where
each power provider simply maximizes its own profit by
solving Problem 2.

Figs. 4(a) and 4(b) shows the market-clearing prices of
the nominal power and the standard deviation. As expected,
the profile of the price of nominal power is similar to that of
the net load, represented by the thick solid line in Fig. 3. On
the other hand, the price of standard deviation has a similar
tendency as the standard deviation of the net load, given by
(28). Intuitively, this is because the market encourages power
plants and batteries to “sell” greater amount of standard
deviation (i.e., to absorb greater uncertainty) by raising the
price when the prediction of the net load has significant
uncertainty.

Finally, we conducted a Monte Carlo simulation to demon-
strate that the proposed approach can limit the risk of
power shortage. We compare the proposed algorithm with a
deterministic one, which omits the second term of the right
hand side of (22) and (24). This deterministic approach is
roughly corresponds to the decentralized algorithm presented
in [9], which does not consider chance constraints and
contingent power. We run both simulations 1,000 times to
evaluate the probability of failure (i.e., risk) as well as
the average total cost. Average computation time of the
contingent power dispatch and pricing algorithm per time
step is 2.09 minutes. A simulation is regarded as a failure if
the capacity constraints in (11) by at least one of the power
plants or batteries. The results are summarized in Table II.
In order to make a fair comparison, we excluded the cost
of contingent power generation from the first row of the
table. The proposed algorithm results in a slight reduction
in the average cost. This is probably because the proposed
algorithm explicitly minimizes the expected (i.e., average)
cost of Plant 3 and the batteries. Also note that none of the
simulations resulted in a failure when using the proposed
contingent power dispatch and pricing algorithm. This result
indicate that the risk is limited within the given bound,1%.
On the other hand, without chance constraints, the power
dispatch algorithm results in the2.1% probability of failure.

VI. CONCLUSION

In this paper, we proposed a novel market-based con-
tingent power dispatch algorithm that enables a grid with
intermittent energy sources to dispatch energy within a user-
specified risk bound in a decentralized manner.

We first presented our concept of contingent power dis-
patch, and formulated a centralized contingent power dis-
patch problem (Problem 1). This problem can be solved by
one optimization process, but it is far from the real power
market mechanism. We next reformulated the problem using
dual decomposition method to introduce a market-based
decentralized contingent power dispatch problem (Problem
2) and a optimal power pricing problem (Problem 3). Then
we proposed a decentralized optimization algorithm to solve
Problem 2, 3 by using a subgradient method. Finally, we
demonstrated the performance of our proposed algorithm
in simulation. The result showed that the risk of power
imbalance can be bounded quantitatively and the total cost
of power generation can be minimized by the proposed
algorithm.
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