
Event Discovery in Medical Time-Series Data

Christine L. Tsien, PhD
Massachusetts Institute of Technology, Laboratory for Computer Science, Cambridge, MA

Harvard Medical School, Boston, MA

Vast amounts of clinical information are generated
daily on patients in the health care setting.
Increasingly, this information is collected and stored
for its potential utility in advancing health care.
Knowledge-based systems, for example, might be able
to apply rules to the collected data to determine
whether a patient has a certain condition. Often,
however, the underlying knowledge needed to write
such rules is not well understood. How could these
clinical data be useful then? Use of machine learning
is one answer. We present a pipeline for discovering
the knowledge needed for event detection in medical
time-series data. We demonstrate how this process
can be applied in the development of intelligent patient
monitoring for the intensive care unit (ICU).
Specifically, we develop a system for detecting Ôtrue
alarmÕ situations in the ICU, wherecurrently as many
as 86% of bedside monitor alarms are false.

INTRODUCTION

As information technology continues to expand into all
areas of health care, we need to understand how to take
advantage of the clinical information being made
available. Vast amounts of clinical data are being
generated and collected daily on patients in the health
care setting. These data, however, can only be as
helpful as we know how to use them. Knowledge-
based systems, for example, might be able to apply
rules to data to determine whether a patient has a
certain condition. To build knowledge-based systems,
however, assumes that we both understand the
underlying knowledge and know how to encode that
knowledge into usable rules. Often, though, the
underlying knowledge is not well understood. In those
cases, is there a way we can still take advantage of the
available clinical information?

Machine learning methods, such as neural networks
and decision tree classifiers, are being used
increasingly for knowledge discovery in other areas of
society. Examples of their application are in loan
advising, speech recognition, and robot vision.1 In
medicine as well, machine learning methods have been
explored. A common target area for these methods is
the classification of patients as having or not having a
disease condition (e.g., myocardial infarction) based
upon patient characteristics (e.g., age, gender, smoking

history, and symptoms). An area of medicine that has
not received as much attention for machine learning is
data-intensive bedside monitoring. Patients in the
operating room, intensive care unit (ICU), emergency
room, labor and delivery department, coronary care
unit, as well as other areas of the health care setting,
are usually connected to several lines, tubes, and
probes that continuously monitor vital signs such as
heart rate, blood pressure, and respiratory rate. While
the classification of a patient as having a myocardial
infarction or not is relatively easy to fit into the
framework of machine learning, it is less clear how to
formulate these bedside monitoring situations as
machine learning questions.

We present a process, or pipeline, that can be used for
knowledge discovery of events in medical time-series
data. Events of interest can range from high-level
clinical events, such as a patientÕs development of low
blood pressure, to low-level events, such as sensor
artifact. We then demonstrate use of this pipeline for
development of ÔintelligentÕ patient monitoring.
Specifically, we develop a system for detecting Ôtrue
alarmÕ situations in the ICU, where currently as many
as 86% of bedside monitor alarms are false alarms.2,3

EVENT DISCOVERY PIPELINE

Four fundamental parts comprise the pipeline for event
discovery in medical time-series data. These are:
identification of the event(s) of interest, annotated data
collection, annotated data preprocessing, and
derivation of an event detection model. This system is
depicted in Figure 1. Performance evaluation and
prospective verification are also necessary.

Figure 1. Components of the pipeline for event
discovery in medical time-series data.

Event Identification
The first step in the event discovery pipeline is
identification of the event or events of interest for

Event
Identification

Annotated
Data

Collection

Annotated
Data Pre-
processing

Model
Derivation

knowledge discovery. An event in this context should
be an entity that is thought to effect changes in
available monitored time-series values; the exact
nature of those changes is what we would like to better
understand. Examples of events include disconnection
of an electrocardiogram (ECG) lead (or other sensor),
apnea (lack of breathing), false alarm due to patient
motion, and blood pressure decrease warranting
clinical attention. Candidate events for knowledge
discovery should either occur frequently, or, if not,
occur in environments amenable to prolonged
monitoring and observation such that adequate
numbers of those events may eventually be observed.
Candidate events should also be such that it is clear to
an observer when they are or are not occurring.

Annotated Data Collection
The second step is to collect a large amount of
numerical time-series data along with annotations of
event occurrences and event Ônon-occurrencesÕ.
Time-series data can usually be stored to computer
disk either in a central data repository or via a laptop
computer. Annotations need to be made prospectively,
at the time of event occurrence. Retrospective chart
review, for example, is not adequate for these
purposes. Annotations furthermore need to be Ôtime-
stampedÕ for accurate correlation with the data, which
are usually in a separate file or files. One way to meet
these criteria is by using a custom-built program in
which a human observer can easily record time periods
of event occurrence and event non-occurrence. An
observer, if not already knowledgeable about the area,
can be trained to recognize which events to look for
(with verbal verification from medical staff). An
alternative to a custom-designed annotation program is
a custom-formatted data entry interface for a readily
available commercial spreadsheet program.

Data collection and annotation can proceed for as long
as is feasible to capture multiple occurrences of the
event of interest. Typically, machine learning
programs are more robust when presented with more
samples of the event of interest. Initial model
development can also be tried periodically, with return
to data collection if inadequate models (due to
insufficient event samples) result.

Annotated Data Preprocessing
Preprocessing is much more important than generally
recognized. It enables us to apply traditional machine
learning methods to less traditional application areas
such as medical monitoring. The two major
components of the preprocessing step are feature
attribute derivation and class labeling. Feature
attribute derivation refers to the selection and
calculation of mathematical quantities, such as moving

mean or median, which can describe the time-series
data and which are thought to be potentially different
for events versus non-events. The quantities are
calculated over a specified time interval (e.g., 10
seconds). The same quantities can also be calculated
over multiple time intervals (e.g., 10 seconds, 1
minute) and then used as two different data attributes.
The time intervals may be chosen to reflect a very
general understanding of the problem. For example,
very short time intervals might be chosen for spurious
false alarms. The derived values are calculated not
only for just one physiological signal type, but also for
all available data signals being collected. The various
quantities calculated for each signal, for all monitored
signals of interest, together comprise the set of feature
attributes that describe a time period of bedside
monitoring.

Each set of multi-signal feature attributes is then given
a class label of ÔeventÕ or Ônon-eventÕ according to
the recorded annotations. All collected data are
similarly transformed into sets of class-labeled feature
attributes. Time intervals spanning a transition from
an event to a non-event or vice versa can electively be
disregarded for initial model development
experiments. Alternatively, these transition periods
can themselves become the event of interest for
detection.

Model Derivation
Class-labeled sets of feature attributes are then divided
into two or three sets: a training set, a test set, and an
optional evaluation set. The training set is used for
deriving candidate event detection models. The
evaluation set is used to determine how well candidate
models perform relative to each other. Once a final
model is selected, it is then run on the reserved test set
to determine the modelÕs performance. A training set
consisting of approximately 70% of the available data
is often chosen, while the remaining data can be
further split to create the other two data sets.

For the techniques described thus far, ÔsupervisedÕ
machine learning methods, such as neural networks or
decision trees, can now easily be employed. These
machine learning methods facilitate development of
models from training data, which can then be used to
classify unseen data as events or non-events.

Model performance is evaluated by comparing the
areas under the receiver operating characteristic (ROC)
curves4 for different models. The ROC curve is a plot
of sensitivity versus one minus specificity, where
sensitivity measures the number of correct model-
labeled event cases out of the total number of actual
event cases, while specificity measures the number of

correct model-labeled non-event cases out of the total
number of actual non-event cases. Because sensitivity
and specificity can be inversely varied simply by
altering the threshold at which to categorize a case as
one class or the other, the area under the ROC curve
more effectively describes a modelÕs discriminatory
ability. Final models should additionally be evaluated
prospectively in the clinical setting to better assess
actual performance in detecting events of interest.

APPLICATION TO ICU MONITORING

We now demonstrate how the described event
discovery process can be used for ICU monitoring to
decrease false alarms. Previous studies have shown
that as many as 86% of alarm soundings in the ICU are
actually false.2,3 Current systems for monitoring vital
signs typically sound an alarm any time the monitored
signal surpasses a high threshold limit or falls below a
low threshold limit. This simplistic rule, however,
usually results in a large number of spurious readings
that cause false alarms. This can lead to several
problems,5,6 the most important end result being
compromised patient care. Knowledge-based7,8 and
other approaches have been proposed for improving
various aspects of patient monitoring,9,10 but none has
seen widespread clinical application.

Our approach is to develop multi-signal, machine-
learned models able to detect Ôtrue alarmÕ events
from bedside time-series data. As an example, we
choose our event of interest to be true alarms that are
clinically relevant (of any cause) occurring in the ICU
on the systolic blood pressure signal.

Methods
Having identified an event of interest (true alarms on
the arterial lineÕs systolic blood pressure signal), the
next step was to collect annotated data. Over the
course of 12 weeks, bedside monitor data along with
prospectively recorded annotations of event and non-
event occurrences were recorded in the
multidisciplinary ICU (MICU) of a pediatric hospital.
Monitoring devices for each patient were connected to
a SpaceLabs bedside monitor (SpaceLabs Medical,
Redmond, WA). A laptop computer placed at the
bedside recorded raw values transmitted via a serial
line from the SpaceLabs monitor approximately every
five seconds. Available raw values included ECG
heart rate, ECG respiratory rate (measured by
impedance pneumography), pulse oximeter oxygen
saturation, and arterial line mean and systolic blood
pressure. A trained human observer recorded
annotations into a custom-designed data entry interface
to an Access database program (Microsoft, Redmond,
WA) running on the laptop. For each occurrence of a

clinically relevant systolic blood pressure true alarm,
the trained observer created a time-stamped note
indicating the true alarm occurrence. False alarm
soundings, as well as periods of appropriate alarm
silence (Ôtrue negative alarmsÕ), were also recorded.
The bedside nurse moreover verbally verified each
annotation.

Preprocessing first involved calculation of eight
different mathematical quantities for each successively
overlapping group of raw data values. These
calculated quantities included moving mean, median,
maximum value, minimum value, range, linear
regression slope, absolute value of linear regression
slope, and standard deviation. These eight quantities
were furthermore calculated for each of three different
time intervals. The time intervals chosen were 10, 20,
and 45 seconds, corresponding to feature derivation
over two, four, and nine raw values, respectively.
These time intervals were chosen with the general
knowledge that false alarms tend to occur fleetingly,
while true alarms tend to develop more slowly; the
exact numbers themselves were otherwise chosen
arbitrarily. The 24 described values (8 different
quantities for each of 3 different time intervals) were
calculated for each of the five recorded data signals,
resulting in sets of 120 feature attributes (120-
dimensional feature vectors). Each multi-signal
feature vector was next labeled according to the
annotations. Feature vectors whose attributes were
derived from raw values labeled Ôtrue alarmÕ were
given the true alarm class label. Feature vectors whose
attributes were derived from raw values occurring
during false alarm or true negative (no alarm) periods
were labeled Ôno alarmÕ (meaning that the desired
result was to have no alarm sound at those times).
Feature vectors whose attributes were derived from
raw values spanning more than one label type were not
used in model derivation for this set of experiments.

Data in the form of labeled feature vectors were
divided as follows: 70% for training set, 21% for test
set, and 9% for evaluation set. The training data were
then given to both a decision tree induction system
(c4.5)11 and a neural network classifier system
(LNKnet) (Lincoln Laboratory, Lexington, MA). The
decision tree system allows for model experimentation
in various ways, such as changing the ÔselectivityÕ of
growing a tree or the amount of ÔpruningÕ of a tree.
Decision tree models were preferred if they had fewer
errors when run on the evaluation set, and/or smaller
size with little to no increase in the number of errors
when run on the evaluation set. No special decision
tree features (e.g., boosting, bagging) were used. The
neural network system allows for model variation also,
for example, by changing the number of layers of

hidden nodes to be included in the network structure,
or by changing the number of hidden nodes per layer.
All networks explored here used a back propagation
algorithm to perform a gradient descent that minimizes
the error seen at the outputs. Networks with simpler
structure and fewer hidden nodes, having similar
performance on the evaluation set compared to more
complicated networks, were preferred. Networks had
two output nodes, one for each class (events and non-
events); the one with the maximum output was
returned. Final tree and network models were run on
the same test set. For decision trees, ROC curves were
determined by first assigning to each tree leaf the
probability of being an event for a set of derived values
that percolates to that point. These probabilities are
based upon the ratio of events to (events + non-events)
that fall into each leaf during training. The threshold
for considering a case to be event or non-event was
then set at each leaf probability value. The resulting
sensitivity-specificity pairs were used to plot
corresponding ROC curves, from which the area under
the curves could then be calculated by trapezoidal
method. For neural networks, ROC curve areas were
calculated internally by LNKnet. A threshold is
similarly moved over the event class output, with
patterns below the threshold being rejected and
patterns above the threshold being labeled as events.

Results
Over the 12-week data collection period,
approximately 585 hours of bedside signal values were
recorded along with annotations of alarm and no-alarm
periods. Only monitored data containing all five
signals of interest (heart rate, oxygen saturation,
respiratory rate, and mean and systolic blood pressure)
were further used in this study. Data were
preprocessed by the described methodology. There
were 86,062 training cases, 25,952 test cases, and
10,906 evaluation cases, collectively consisting of
1550 true-alarm cases and 121,350 no-alarm cases.
(The no-alarm cases included 2109 false-alarm cases.)
The training and evaluation sets were then given to
c4.5 and LNKnet.

The final decision tree model chosen for detection of
true alarms on the systolic blood pressure signal is
shown in Figure 2. Class labels are represented by
Ô1Õ for the true-alarm class and Ô0Õ for the no-alarm
class. Parentheses after a class label indicate the
number of training data cases which arrived at that
node, followed by the number of training cases which
were incorrectly classified at that node. Attribute
names are a concatenation of the abbreviation of the
signal name, an abbreviation of the derived feature
name, and the number of values over which the
derived feature was calculated. For example, the first

line in the decision tree model, Òsbp_avg9 <= 136.9 :
0 (71141.0/137.8),Ó means: Òif the average value over
nine raw values of systolic blood pressure is less than
or equal to 136.9, the case will be labeled no-alarm.
During training, 71141.0 training cases arrived at this
node and were labeled no-alarm; 137.8 of those cases
were incorrectly labeled.Ó (Fractional numbers of
cases can arise due to pruning of the tree.) The final
model used a ÔselectivityÕ of 2% (meaning very
selective about whether or not to add a particular test
node to the tree), and a pruning factor of 45 (meaning
that a test node on the tree was only kept if at least 45
cases were classified by one outcome branch of that
node. The decision tree model achieved an area under
the ROC curve of 94.34% when run on its test set.

The final neural network model for systolic blood
pressure alarm detection contained 120 input nodes,
one hidden layer with 15 nodes, and two output nodes
(one for each class type). During network training, a
step size of 0.2 was chosen for updating network
weights during error propagation. The training process
updated weights during each of 20 cycles. The final
neural network achieved an ROC curve area of 98.98%
when run on its test set.

DISCUSSION

The results of applying the described event discovery
pipeline to the problem of detecting true alarms in the
ICU are promising. Both the decision tree and neural
network models performed well on their test sets.
These results still need to be validated prospectively in
the clinical setting. The actual thresholds present in
the decision tree model, for example, may reflect those
patients whose vital signs were used for training.
These thresholds would likely need to be refined for
each different population of patients (e.g., neonatal
babies, young children, or adults).

The ICU case study is not without limitations. First,
the data collected were only available at a frequency of
once per five seconds. This limits our choice in
selecting appropriate time intervals for feature
derivation; for example, a feature attribute derived
from a time interval that is not a multiple of five
seconds may in fact be the most accurate predictor for
an event. The infrequency of data values from which
to learn alarm patterns also may pose a problem if
higher frequencies of data are later available when
these models are tested prospectively.

Another limitation of the case study was that
annotations were only recorded to the nearest minute,
while raw data values were collected every five
seconds. This difference mandates that we will

incorrectly label some cases simply because we are not
sure precisely when, during the recorded minute, the
true alarm actually occurred. Future work in this area
should pay caution to recording annotations with the
same time granularity as available raw data.

Annotations are additionally subject to inter-observer
and intra-observer biases. For the described ICU case
study, two trained observers recorded all of the
annotations; for each annotation, the bedside nurse
present that day validated the annotation. It is not
possible that all of the MICU nurses and both trained
observers interpreted or recorded all alarm occurrences
in the same manner. Moreover, the same nurse or the
same trained observer would also likely not record
every alarm occurrence in the same manner.

Despite its limitations, however, the ICU alarm
example has provided a useful demonstration of how
data-intensive medical time-series data may be useful,
even when the underlying knowledge about how they
relate to particular events is not well understood.
Especially at a time when information technology is
making available enormous amounts of clinical data,
methods for taking advantage of these data need to be
explored. The event discovery paradigm may be one
technique that can assist in learning from these data.

Acknowledgments

The author would like to thank I. Kohane, J. Fackler,
P. Szolovits, and H. Fraser for advice, J. Doyle for
support; and M. Curley and the ChildrenÕs Hospital
MICU nurses in Boston for assistance. This work was
supported in part by the National Library of Medicine,
AAUW Educational Foundation, and DARPA contract
F30602-99-1-0509.

References

1. Mitchell TM. Machine learning. McGraw-Hill,
1997.
2. Lawless ST. Crying wolf: false alarms in a pediatric
intensive care unit. Crit Care Med 1994; 22:981-985.
3. Tsien CL, Fackler JC. An annotated data collection
system to support intelligent analysis of intensive care
unit data. In: Advances in intelligent data analysis.
Springer-Verlag, 1997, pp. 111-121.
4. Hanley JA, McNeil BJ. The meaning and use of the
area under a receiver operating characteristic (ROC)
curve. Radiology 1982; 143:29-36.
5. Meredith C, Edworthy J. Are there too many alarms
in the intensive care unit? An overview of the
problems. J Advanced Nursing 1995; 21:15-20.
6. Sara CA and Wark HJ. Disconnection: an
appraisal. Anesthesia and Int Care 1986; 14:448-452

7. Fukui Y, Masazawa T. Knowledge-based approach
to intelligent alarms. J Clin Monit 1989; 5:211-216.
8. Koski EMJ, Sukuvaara T, Makivirta A et al. A
knowledge-based alarm system for monitoring cardiac
operated patientsÑassessment of clinical performance.
Int J Clin Mon Comp 1994; 11:79-83.
9. Uckun S. Intelligent systems in patient monitoring
and therapy management. Int J Clin Mon Comp 1994;
11:241-253.
10. Orr JA, Westenskow DR. A breathing circuit alarm
system based on neural networks. J Clin Monit 1994;
10:101-109.
11. Quinlan JR. C4.5 Programs for machine learning.
San Mateo, Morgan Kaufman Publishers, 1993.

