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1 Innovative Claims

The traditional approaches to building survivable systems assume a framework of absolute
trust requiring a provably impenetrable and incorruptible Trusted Computing Base (TCB).
Unfortunately, we don’t have TCB’s, and experience suggests that we never will.

We, therefore, must instead concentrate on architecting software systems to provide useful
services in an imperfect environment in which any resource may have been compromised to
some extent.

We believe that such systems can be built by restructuring the ways in which systems
organize and perform computations. In particular,

1. Such systems will estimate to what degree and for what purposes a computer (or other
computational resource) may be trusted, as this influences decisions about what tasks
should be assigned to them, what contingencies should be provided for, and how much
effort to spend watching over them.

2. Making this estimate will in turn depend on having a model of the possible ways in
which a computational resource may be compromised.

3. This in turn will depend on having in place a system for long-term monitoring and
analysis of the computational infrastructure which can detect patterns of activity in-
dicative of successful attacks leading to compromise. Such a system will be capable of
assimilating information from a variety of sources including both self-checking obser-
vation points within the application itself and intrusion detection systems.

4. The application systems will be capable of self-monitoring and diagnosis and capable
of adaptation to best achieve its purposes with the available infrastructure.

5. This, in turn, depends on the ability of the application, monitoring, and control system
to engage in rational decision making about what resources they should use in order
to achieve the best ratio of expected benefit to risk.

Our claim is simple but revolutionary: “Survivable systems must make careful judgments
about the trustworthiness of their computational environment and make rational decisions
about strategy and resource allocation.”

1



2 Technical Rationale

2.1 A Scenario

Within the MIT Artificial Intelligence Laboratory an ensemble of computers runs
a Visual Surveillance and Monitoring application. On January 12, 2001 several of
the machines experience unusual traffic from outside the lab. Intrusion Detection
systems report that several password scans were observed. Fortunately, after
about 3 days of varying levels of such activity, things seem to return to normal;
for another 3 weeks no unusual activity is noticed. However, at that time, one
of the machines (named Harding) which is crucial to the application begins to
experience unusually high load averages and the application components which
run on this machine begin to receive less than the expected quality of service.
The load average, degradation of service, the consumption of disk space and the
amount of traffic to and from unknown outside machines continue to increase
to annoying levels. Then they level off. On March 2, a second machine in the
ensemble (Grant) crashes; fortunately, the application has been written in a way
which allows it to adapt to unusual circumstances. The system considers whether
it should migrate the computations which would normally have run on Grant to
Harding; however, these computations are critical to the application. The system
decides that in spite of the odd circumstances noticed on Harding earlier, it is a
reasonable choice.

Did the system make a good choice? It turns out it did. The system needed to run those
computations somewhere; even though Harding was loaded more heavily than expected, it
still represented the best pool of available computational resources, other machines were
even more heavily loaded with other critical computations of the application. But what
about all the unusual activity that had been noticed on Harding? It turns out that what
had, in fact, transpired is that hackers had gained access to Harding by correctly guessing
a password; using this they had set up a public FTP site containing among other things
pirated software and erotic imagery. They had not, in fact, gained root access. There was,
therefore, no worry that the critical computations migrated to Harding would experience any
further compromise. (Note: the adaptive system in this story is fictional, the compromised
computers reflect an amalgam of several real incidents).

Let’s suppose instead that (1) the application was being run to protect a US embassy
in Africa during a period of international tension (2) that we had observed a variety of
information attacks being aimed at Harding earlier on (3) that at least some of these attacks
are of a type known to be occasionally effective in gaining root access to a machine like
Harding and that (4) they are followed by a period of no anomalous behavior other than a
periodic low volume communication with an unknown outside host. When Grant crashes,
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should Harding be used as the backup? In this case, the answer might well be the opposite;
for it is quite possible that an intruder has gained root access to Harding; it is also possible
that the intent of the intrusion is malicious and political. It is less likely, but still possible,
that the periodic communication with the unknown outside host is an attempt to contact an
outside control source for a “go signal” that will initiate serious spoofing of the application.
Under these circumstance, it is wiser to shift the computations to a different machine in the
ensemble even though it is considerably more overloaded than Harding.

What can we learn from these examples?

1. It is crucial to estimate to what degree and for what purposes a computer (or other
computational resource) may be trusted, as this influences decisions about what tasks
should be assigned to them, what contingencies should be provided for, and how much
effort to spend watching over them.

2. Making this estimate depends in turn on having a model of the possible ways in which
a computational resource may be compromised.

3. This in turn depends on having in place a system for long term monitoring and anal-
ysis of the computational infrastructure which can detect patterns of activity such
as “a period of attacks followed by quiescence followed by increasing degradation of
service”. Such a system must be capable of assimilating information from a variety
of sources including both self-checking observation points within the application itself
and intrusion detection systems.

4. The application itself must be capable of self-monitoring and diagnosis and capable of
adaptation so that it can best achieve its purposes with the available infrastructure.

5. This, in turn, depends on the ability of the application, monitoring, and control systems
to engage in rational decision making about what resources they should use in order
to achieve the best relation of expected benefit to risk.

Systems that can do the above things can be resilient in the face of concerted information
attacks. They can carry on despite non-malicious intrusions; that is they can figure out when
compromises which might be present within the infrastructure can’t actually hurt them.

Our claim is simple but revolutionary: “Survivable systems make careful judgments
about the trustworthiness of their computational environment and make rational resource
allocation decisions accordingly.”

The claim is deceptively simple: To make it real one needs to develop serious represen-
tations of the types of compromises, of the trustworthiness of a resource, and of the goals
and purposes of the computational modules within an application. One also needs to build
monitoring, analysis and trend detection tools and adaptive computational architectures.
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Finally, one needs to find a way to make the required rational decision making computa-
tionally tractable. None of this is easy, but we have ideas and ongoing projects addressing
each of these issues. The claim is also revolutionary: we note that with the single exception
of the term intrusion detection, none of the key terms in our summary above are ordinarily
talked about in the context of information survivability.

We propose to develop the science and engineering principles of building practical, re-
silient systems and to demonstrate them in modest applications in a testbed environment.

2.2 Trust in Survivable Systems: An Overview

“Only the paranoid survive” - Andy Grove (everything is suspect)
“Love your mother, but cut the cards” - folk wisdom (trust management is cru-
cial)
“Trust but Verify” - Ronald Reagan (always monitor)

2.2.1 Trust and rational decision making should supplant traditional notions of
protection as the core concepts of Survivability

Traditional approaches to building survivable systems assume a framework of absolute trust.
In this view, survivable systems require a provably impenetrable and incorruptible Trusted
Computing Base (TCB). Unfortunately, we don’t have TCB’s, and experience suggests that
we never will.

Instead, we will need to develop systems that can survive in an imperfect environment
in which any resource may have been compromised to some extent. We believe that such
systems can be built by restructuring the ways in which systems organize and perform
computations. The central thrust of this approach is a radically different viewpoint of the
trust relationships that a software system must bear to the computational resources it needs.

The traditional TCB-based approach takes a binary view of trust; computational re-
sources either merit trust or not, and non-trusted resources should not be used. The tra-
ditional view also considers trustworthiness as a nearly static property of a resource: trust
lost is never regained, short of major system reconstruction. Consequently, these systems
wire decisions about how and where to perform computations into the code, making these
decisions difficult to understand, and preventing the system from adapting to a changing
runtime environment.

We agree with this viewpoint on the crucial role of the assessment and management of
trust, but reject the assumptions about the binary, static nature of trust relationships as
poor approximations to real-life computing situations. We instead base our approach on a
different, more realistic set of assumptions:

1. All computational resources must be considered suspect to some degree, but the degree
of trust that should be accorded to a computational resource is not static, absolute,
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or known with full certainty. In particular, the degree of trustworthiness may change
with further compromises or efforts at amelioration, in ways that can only be esti-
mated on the basis of continuing experience. The system must thus continuously and
actively monitor the computational environment at runtime to gather evidence about
trustworthiness and to update its trust assessments.

2. Exploiting assessments of trustworthiness requires structuring computations into layers
of abstract services, with many distinct instantiations of each service. These specific
instantiations of a service may vary in terms of the fidelity of the answers that they
provide, the conditions under which they are appropriate, and the computational re-
sources they require. But since the resources required by each possible instantiation
have varying degrees of trustworthiness, each different way of rendering the service also
has a specific risk associated with it.

3. The best method for exploiting assessments of trustworthiness requires making explicit
the information underlying decisions about how (and where) to perform a computa-
tion, and on formalizing this information and the method used to make the decision
in a decision-theoretic framework. The overall system adapts to the dynamism of the
environment and to the changing degrees of compromise in its components by decid-
ing dynamically which approach to rendering a service provides the best likelihood of
achieving the greatest benefit for the smallest risk. We do not require that the sys-
tem uses explicit decision-theoretic calculations of maximal expected utility to make
runtime decisions; the system may instead use the decision-theoretic formalizations
to decide on policies and policy changes, which then are used to compile new code
governing the relevant behaviors.

4. The system must consider selected components to be fallible, even if it currently regards
them as trustworthy, and must monitor its own and component behaviors to assure
that the goals of computations are reached. In the event of a breakdown, the system
must first update its assessments of the trustworthiness of the computational resources
employed and then select an alternative approach to achieving the goal.

2.2.2 How Active Trust Management can support Autonomous Adaptive Sur-
vivable Systems

These considerations motivate an architecture both for the overall computational environ-
ment (Active Trust Management) and for the application systems which run within it (Au-
tonomous Adaptive Survivable Systems), which we depict in Figure 1. The environment as a
whole must constantly collect and analyze data from a broad variety of sources, including the
application systems, intrusion detection systems, system logs, network traffic analyzers, etc.
The results of these analyses inform a “Trust Model”, a probabilistic representation of the

5



Monitoring trustworthiness

Rational Trust Manager

Trust Model

U(t(s),s,σ)
Task utilities

p(τ(s),σ)
Compromise 
probabilities

Task-level processing

Self-checking alerts

Compromise 
consequences

World 
Knowledge

Situation-focussed 
attention

Figure 1: An Overview of Active Trust Management

trustworthiness of each computational resource in the environment. The application systems
use this trust model to help decide which resources should be used to perform each major
computational step; in particular, they try to choose that resource which will maximize the
ratio of expected benefit to risk. This “rational decision making” facility is provided as a
standard utility within the environment. The application systems also monitor the execution
of their own major components, checking that expected post-conditions are achieved. If these
conditions fail to hold, diagnostic services are invoked to determine the most likely cause
of the failures and thereby to determine the most promising way to recover. In addition to
localizing the failure, the diagnostic services can also infer that underlying elements of the
computational infrastructure are likely to have been compromised and these deductions are
forwarded to the monitoring and analysis components of the environment to help inform its
assessments of trustworthiness. Finally, having accumulated sufficient evidence, the moni-
toring and analysis systems may decide that it is likely that some resource has, in fact, been
compromised. This will have an immediate impact if the resource is being used to perform a
computation which would be damaged by the specific form of compromise; in such cases, the
monitoring and analysis components transmit “alarms” into the running application, causing
it to abandon its work and to immediately initiate recovery efforts. Of course, a monitoring
system which transmits such alarms too frequently is the computational equivalent of the
shepherd boy who called “wolf” too often; the system again uses rational decision-making
facilities to decide whether the circumstances warrant this choice.

Thus the application system forms a tight feedback control loop whose goal is to guar-
antee the best possible progress towards providing the services the application is intended
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to provide to its users (i.e., the applications are Autonomous Adaptive Survivable Systems
“AASS’s”). The computational infrastructure also forms a feedback control loop whose goal
is to maintain an accurate assessment of the trustworthiness of the computational resources;
this assessment can then inform the application systems’ decision making and self-monitoring
which in turn helps inform the long-term assessments of trustworthiness (Active Trust Man-
agement “ATM”).

This vision leads us to focus our efforts in five major areas:

1. Models of Trust and Compromise
2. Perpetual Analytic Monitoring
3. Autonomous Adaptive Survivable Systems
4. Rational Decision Making in a Trust-Driven Environment
5. A testbed within which to experiment with these concepts

These areas of research are intimately related to two of our ongoing research efforts at
MIT. The first project, the Dynamic Domain Architectures (DDA) project, is developing
the runtime architectural features and the development environment facilities needed to
support self-adaptivity. The second project, the Monitoring, Analysis, and Interpretation
Tool Arsenal (MAITA), is developing the infrastructure needed for perpetual, analytic, and
adaptive monitoring. However, neither of them has so far made it a central concern that
there are malicious agents compromising resources, although the MAITA project is currently
exploring applications in the Information Assurance domain. Thus each of them needs to be
extended to fit within the context of Active Trust Management.

We end this section with brief sub-sections describing each of these five major areas of
work. We will then return to each of these topics in more detail.

2.2.3 Trust and Compromise Models provide explicit models of the Trustwor-
thiness of computational resources and of the forms of of their Compro-
mise

Trust assessments necessarily involve many dimensions along which a system can be trusted,
since a system might be trusted for one operation (delivery of a message) but not for another
(privacy of the message), and might be trusted with one type of information but not another
(as in security classification systems).

We plan to develop preliminary trust-state models quickly, but view development of
models fully adequate to the task as a research topic that will require more time. Formalizing
trust-state models also requires a language for making assertions about trust states, and
reasoning about trust models requires effective methods for evaluating these statements. We
will need to bound the language above to ensure feasible computations, and bound it below
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to ensure it provides the necessary utility. There are obvious relations to QoS measures that
need to be taken into account.

We will explore ways of characterizing and combining the trust management protocols
with other protocols, for example, mixing protocols from Quorum with trust models. This
also requires developing models of the trust properties of protocols and of protocol combina-
tion methods. In some cases, combinations of protocols may be more trustworthy than the
protocols being combined.

2.2.4 Perpetual Analytic Monitoring keeps the Trust Model current by detect-
ing events and Trend Patterns which are indicative of compromise

The scenario illustrates that building a trust model involves more than just detecting an
intrusion. Indeed, what was important was a template of activity patterns consisting of
several temporal regions: First there was a period of attacks (particularly password scans).
Then there was a “quiescent period”. Then there was a period of increasing degradation of
service. Finally, there was a leveling off of the degradation but at the existing high level. We
call such a temporal pattern a “trend template”. In our previous work we have developed a
representation language for trend templates and tools for online monitoring and analysis of
data streams so as to recognize instances of trend templates in the stream.

The goal of Perpetual Analytic Monitoring is to assess the trustworthiness of the com-
putational resources in the environment. This in turn requires us to make estimates of
the likelihood that a resource has been compromised in a particular way. We believe that
trend templates represent a necessary tool for doing so. We intend to develop a library of
trend templates that correspond to a variety of compromises of computational resources. Of
course, the overall matching of trend templates depends on tools which can detect periods
of uniform behavior (e.g., uniformly increasing, constant, oscillating at constant frequency).
We intend to refine a highly extensible and modularized architecture for our monitoring tools
which will allow a broad variety of such tools to be integrated.

Trend templates are necessary, but not sufficient in themselves. We also need to make
inferences about the factual situation at hand (e.g., are international tensions rising?) and
about the intentions, and states of mind of significant players (e.g., would it be likely that
they are trying to attack me?). All of these inferences involve the combining of evidence
to provide assessments of the likelihood of certain propositions. Bayesian networks provide
a convenient formalism for representing and reasoning with basic probabilistic information.
We have long exploited such models in medical decision-making problems and will use them
in extending trend template models as needed.

Our scenario illustrates that monitoring mechanisms must be capable of assimilating in-
formation from a broad variety of information sources including Intrusion Detection systems,
self-monitoring by the application system, system logs, network traffic analyzers, etc. We
intend to create a highly modularized and extensible architecture for the data-collection
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portions of our monitoring system.
The principal goal of our Monitoring and Analysis tools is to keep the Trust Model

current. However, when these tools have achieved a high degree of confidence that a com-
promise has occurred, the monitoring and analysis system must generate an alarm which
may lead currently executing application components to rollback and attempt to use alter-
native strategies and resources. Deciding when to generate such an alarm is not trivial; if
it is done too liberally then applications will never get useful work done as they service an
endless stream of alarms. If it is done too conservatively, then application components will
be corrupted. The decision to sound the alarm must be based on a decision theoretic analysis
of the expected benefit and risks associated with raising an alarm.

2.2.5 The Autonomous Adaptive Survivable System infrastructure uses Trust
Models and models of the purpose of expected behavior to select compu-
tational strategy and to detect and recover from compromises

Autonomous Adaptive Survivable Systems have the goal of adapting to the variations in
their environment so as to render useful services under all conditions. In the context of
Intrusion Tolerance, this means that useful services must be provided even when there have
been successful information attacks.

AASS’s achieve adaptivity in two ways: First, they include many alternative implementa-
tions of the major computational steps, each of which achieves the same goal but in different
ways. Before each step is actually initiated, the system first assesses which of these most
appropriate in light of what is known about the environment. In the Survivability context,
such decisions must be rational decisions rooted in the Trust Model.

The second way in which the system achieves adaptivity is by noticing when its compo-
nents fail to achieve the conditions relied on by other modules, initiating diagnostic, rollback
and recovery services. This depends on effective monitoring of system performance and
trustworthiness which in turn requires a structured view of the system as decomposed into
modules, together with teleological annotations that identify prerequisites, post-conditions
and invariant conditions of the modules. These teleological models also include links de-
scribing how the post-conditions of the modules interact to achieve the goals of the main
system and the prerequisites of modules further downstream. We are already working on
developing a language for representing teleological annotations, and on techniques for using
these annotations to automatically construct monitors that help assess proper functioning.

Model-based diagnostic services play a key role in an AASS’s ability to recover from a
failure. This is done by providing models not only of the intended behavior of a component
but also of its likely failure modes. These application-layer models are linked to models
of the behavior of the computational infrastructure on which the application components
execute. Again these include models both of expected and compromised behavior. The
diagnostic task then is to identify the most likely set of such models which is consistent with
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the observed behavior. This helps the application decide how to recover from the failure and
restore normal functioning. It also provides evidence to the overall monitoring environment
about the trustworthiness of the underlying computational resources, particularly when the
most likely diagnosis is that one of the resources has been compromised.

In addition to component selection and diagnosis services, the Autonomous Adaptive Sur-
vivable Systems infrastructure provides a variety of other services including rollback/recovery
and resource allocation.

2.2.6 Rational Decision Making uses decision-theoretic models and the Trust
Model to control decisions about component selection and resource allo-
cation

We assess system trustworthiness and performance according to the trust and teleological
models in order to make decisions about how to allocate computational resources. To ensure
that these decisions represent a good basis for system operation, we will develop detailed
decision-theoretic models of trustworthiness, suspicion, and related concepts as applied to
information systems and their components. These models will relate notions such as attrac-
tiveness of a system as a target, likelihood of being attacked, likelihood of being compromised
by an attack, riskiness of use of the system, importance or criticality of the system for dif-
ferent purposes, etc.

The models will also relate estimates of system properties to an adaptive system of
decision-theoretic preferences that express the values guiding the operation of both system
modules and the system as a whole. We will develop mechanisms that use these elements
to allocate system resources optimally given task demands, trustworthiness judgments, and
the resources available.

2.2.7 A Testbed

The preceding description of our main ideas has been at a somewhat abstract level. Many
important issues can only be addressed within the context of a real implementation. To
what degree should facilities be replicated? How do we protect the key components of our
proposed infrastructure from being compromised themselves? To address these issues we
plan to configure a small ensemble of computers running a distributed application similar
to that described in our scenario. We will develop this application and the computational
infrastructure along the lines described above and experiment with the variety of design
options. Fortunately (in a manner of speaking), we are blessed by a never-ending stream
of attempts by hackers to compromise our computational environment, so we will get some
“red teaming” for free.
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2.3 Models of States of Trust and Compromise

Making rational decisions about how to use resources in an environment of imperfect trust
requires information about what resources can be trusted, and for what purposes. We
propose to develop models of trust states that go beyond mere information about whether
or how a system has been subject to attack to represent whether or how different properties
of the system have been compromised, and finally to represent whether they can be trusted
for a particular purpose even if compromised. We also represent the degree to which these
judgments should be suspected or monitored.

These models provide the point of intersection among all the other elements of the pro-
posed approach. The dynamic domain architecture automatically configures software compo-
nents to produce the monitoring data that the active monitors need to maintain the accuracy
of the trust models on which rational resource allocation decisions depend.

Indeed, trust plays a central role in resource allocation decisions. All decisions about
what to do must be based on beliefs about the situation in which the action is to be taken.
We can think of the degree of trust one places in a system as the degree to which one is
willing to rely on the proper functioning of the system without also dedicating unusual effort
to preparing for the contingency of failure. Since preparations for contingencies consume
resources, this makes trust management a central resource allocation issue.

The trust model is organized into three levels above that of raw behavior:

1. The lowest level of the trust model represents the results of initial interpretations
such as attacks and anomalous behavior. At this level we collect, filter and organize
the necessary information so that it can trigger trend templates and feed into Bayesian
inference networks. As we saw in our scenarios at earlier, we are not primarily interested
in what attacks or anomalous behaviors have taken place, but rather in what they imply
about what compromises might actually be present. We plan to draw on the work of
the intrusion detection community and others to help form annotated taxonomies of
attack types and to determine how these feed into the next layer of the model.

Current intrusion detection efforts have developed a taxonomy of types of attacks,
summarized in the AttackID descriptor from the Common Intrusion Specification Lan-
guage (CISL) draft of October 16, 1998 prepared for the Common Intrusion Detection
Framework (CDIF; see http://seclab.cs.ucdavis.edu/cidf/). There are four basic cat-
egories of attack in the common vocabulary already: penetration, denial of service,
unusual access, and flooding, with numerous specific types under these. The CISL also
provides a vocabulary for describing various actions occurring in the course of attacks,
such as copying, moving, and deleting of files, together with some informal information
about causality among different events.

2. The middle level of the trust model deals with compromises. The attack level only tells
us that malicious or anomalous activity has taken place. But what we are interested
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in is whether someone has actually succeeded in an attack and has used that to exploit
or corrupt resources. That such a compromise has been occurred can be inferred by
matching the temporal patterns of activity to a trend template for a particular compro-
mise. In the scenario we saw an example of this in which the gaining of unauthorized
user level access was indicated by the temporal pattern of password sweeps followed
by quiescence followed by increasing resource consumption.

The categorization of compromise states is relatively virgin territory, and one of the
main aims of this research. We plan to attack this initially by first of all considering
the properties that standard security techniques protect, such as the standard con-
cepts of privacy, integrity, authentication, and non-repudiation. Within each of these
dimensions, one can identify a variety of finer compromise types. For example, within
the privacy dimension, one might distinguish knowledge of passwords from knowledge
of the secrets these passwords protect, and from knowledge of the activity patterns of
the authorized users of the secrets. One might distinguish visibility of these secrets to
everyone from visibility to a narrower group. Within the integrity dimension, one can
distinguish incompleteness from incorrectness.

A second dimension involves operational properties, essentially the different factors
that make up quality of service. These properties include rate, timeliness (lack of
delay), and evenness (freedom from jitter).

A third dimension involves command and control properties, such as the degree of
confidence, the observability of security and operational properties, and the degree of
controllability. This dimension is not covered by the first two sets. For example, loss
of the ability to control the operational system might come about through a denial
of service attack or other compromises of the control system, and loss of observability
might come about through attacks on the monitoring system.

A fourth dimension distinguishes different subsystems, such as the intra-system com-
munications network, the primary operational processes, the security mechanisms, or
the monitoring subsystem. These distinctions may be made even more finely, to distin-
guish the types of information, operations, information sources or destinations affected,
and the identity and roles of people participating in or affected by the compromises.
(In this last situation, one possible compromise might be that someone inside is leaking
passwords or other access information).

However, we believe that all these will require careful formalization and will need to
be refined carefully. We can also gain some leverage on this issue by studying the
properties which our testbed application requires in fine detail.

3. The highest level of the trust model deals with trustworthiness. The fact that a resource
has been compromised does not in and of itself imply that it is totally unsafe to utilize
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it. That conclusion depends on the precise way in which the consumer wants to utilize
the resource as well as on assessments of the intention of the compromiser. In our
scenarios, we presented two different examples: in the first the system was compromised
by “teenaged hackers” looking for free resources, in the second it was compromised by
state-sponsored malicious agents. Clearly, we should generally be more wary of using
a resource in the second case than the first; but if we are not very sensitive to quality
of service and perhaps only care about the integrity of our data, then the first case is
not all that risky.

Knowledge of attack types mainly guides the organization’s attempts to defend against
future attacks. Knowledge of compromises indicates the threats to operations. Knowledge
of trust states guides how the organization carries on in the face of partially-understood
compromises. Because intent plays a central role, it too must be modeled throughout the
three layers, moving from raw reports about behavior at the base level, to statements about
intent in the middle layer and finally entering into assessments of trustworthiness at the
highest level. We have built up considerable experience through our projects in the HPKB
and IC&V programs in evidential reasoning about political intent that should transfer into
this aspect of the model.

Although it is not the central goal of our project to reason about whether a national scale
information attack is ongoing, we believe that our work has great relevance to this question.
One plausible approach to this problem involves using “plan recognition” to recognize the
difference between a coordinated national attack and widespread hacking. But plan recog-
nition works by recognizing the tactics which represent methods for achieving a sub-goal
of the plan. These sub-goals are precisely the compromising of certain resources which can
serve as the platform for their exploitation in compromising yet other more important re-
sources. Thus our work on modeling and recognizing compromises is essential groundwork
for strategic intrusion assessment.

2.4 Adaptive Systems: Dynamic Domain Architectures for Au-
tonomous Adaptive Survivable Systems

“If you only know one way to do a task, you’ll eventually discover a situation in
which you don’t know how to do the task at all” - Marvin Minsky
“If at First you Don’t Succeed, Try Try Again” - Ben Franklin

The Autonomous Adaptive Survivable Systems component of this project will extend our
Dynamic Domain Architecture work. The basic insight of this work is that adaptivity can
be realized by capitalizing on the “variability within commonality” which is typical of the
service layers in any software domain. A Dynamic Domain Architecture structures a domain
into service layers; each service is annotated with specifications and descriptions of how it
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Figure 2: Dynamic Domain Architectures provide for Intrusion Tolerance by coordinated
efforts in the Development and Runtime Environments

is implemented by the services at lower levels. However, a Dynamic Domain Architecture
provides multiple instantiations of each service, with each instantiation optimized for differ-
ent purposes. In a Dynamic Domain Architecture, all the alternative instantiations of each
service, plus the annotations describing them are present in the run-time environment.

Dynamic Domain Architectures late bind the decision of which alternative instantiation
of a service to employ. We may view this as an extremely dynamic and information rich
version of OOP in which method invocation is done in decision-theoretic terms, i.e., we
invoke that method most likely to succeed given the current trust state. The possibility of
coordinated intentional information attacks makes it necessary to add trustworthiness as a
primary concern in this process.

Dynamic Domain Architectures recognize that in many open environments (e.g., image
processing for ATR) it is not possible to find a priori grounds for selecting the correct
operator with precision; in the context of information survivability, there is the additional
complexity that the best operator may be corrupted or otherwise untrustworthy. Therefore,
Dynamic Domain Architectures support an even later binding of operator selection, allowing
this initial selection to be revised in light of the actual effect of the invocation. If the method
chosen doesn’t do the job well enough, alternatives selections are explored.

Dynamic Domain Architectures remove exception handling from the purview of the pro-
grammer, instead treating the management of exceptional conditions as a special service
provided by the run-time environment. The annotations carried forward to run time include
formal statements of conditions which should be true at various points of the program if it is
to achieve its goals. The architecture provides monitors which invoke error-handling services
if the conditions fail to be true. The exception-management service is informed by the Dy-
namic Domain Architecture’s models of the executing software system and by a catalog of
breakdown conditions and their repairs; using these it diagnoses the breakdown, determines
an appropriate scope of repair; possibly selects an alternative to that invoked already and
then restarts the computation.

In summary, a dynamic domain architecture provides the following services:

1. Synthesis of code that selects which variant of an abstract operator is appropriate in
light of run-time conditions.

2. Synthesis of monitors that check whether conditions expected to be true at various
points in the execution of a computation are in fact true.

3. Diagnosis and isolation services that locate the cause of an exceptional condition, and
characterize the form of the breakdown which has transpired.

4. Selection of alternative methods that achieve the goal of the failed computation using
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different means (either by trying repairs or by trying alternative implementations, or
both).

5. Rollback and recovery services that establish a consistent state of the computation
from which to attempt the alternative strategy.

6. Reallocation and re-optimization of resource allocations in light of the resources re-
maining after the breakdown and the priorities obtaining at that point. These services
may optimize the system in a new way in light of the new allocations and priorities.

A key component of this overall structure is the diagnostic service, based on our earlier
work [2], [13] and the work at Xerox Parc [3], [27]. This work all deals with diagnosing
physical faults in hardware, our plan is to extend these techniques to handle the diagnosis of
software failures which are in turn used as the symptoms of compromise of the underlying
computing infrasturcture (including the OS and the hardware).

Model-Based Diagnosis works by using models of the structure and intended behavior of
an artifact’s components to predict the overall behavior. When the diverges from observa-
tion, a symptom has been detected and dependency records maintained during the prediction
phase can quickly identify set of components which cannot all be functioning correctly given
the observed behavior. In addition to modeling the “functional properties” of the compo-
nents, we also model quality of service properties (e.g., delay) because these are particularly
easy to reason about.

Each component is provided with multiple models, one for the normal behavior, one for
each known abnormality (e.g., unusual long delay, or unusually short delay) and a final “null
model” to cover all other anomalous behavior. The behavior of the software components,
however, is dependent on whether the underlying system has been compromised; to model
this we also provide both normal and abnormal behavioral models for each underlying com-
putational resource, modeling the possible compromised states of that resources (including
a model for “unknown anomalies”). These are connected to the software component models
by conditional probabilities which estimate how likely the software would be to fail in that
particular way, given that the underlying resource (the Scheduler of the OS for example) has
been compromised in a particular way. This network of models at two levels connected by
conditional probabilities forms a Bayesian network through which evidence (e.g., software
component misbehavior) can influence our estimate of the likelihood of underlying causes
(e.g., compromised OS). The diagnostic service chooses the most likely set of behavioral
models which are consistent with the observations, in the process updating the Compromise
Layer of the Trust Model.
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2.5 Perpetual Analytic Monitoring: adaptive monitoring for ac-
tive trust management

Trust monitoring is perpetual, analytic, and active. Trust monitoring is perpetual because
eternal vigilance is the price of survivability. Every defense becomes, when discovered by
adversaries, a spur to invention of a new offense. Trust monitoring is analytic because the
raw data received from instrumented computational modules must be analyzed at a number
of levels to determine the significance of the observed overt events. Trust monitoring is also
adaptive. The monitoring system will expend more effort during a time of frequent attacks
than during a period of happy isolation, and may spend less during frequent attacks if system
capabilities have been degraded sufficiently to place such limits on the monitoring effort.

The Perpetual Analytic Monitoring component of this project will extend the MAITA
system and integrate its mechanisms with the Dynamic Domain Architecture. The MAITA
system began development for rapid, knowledge-based construction of monitoring systems
under DARPA’s High Performance Knowledge Bases program. The MAITA system consists
of a library of monitoring methods, an architecture for operating networks of monitoring
processes, and a flexible, display-oriented control system for quickly constructing, composing,
modifying, inspecting, and controlling monitoring networks. See [6] for more details.

2.5.1 A library of recognition methods

The MAITA system provides an extensible and growing knowledge-based library of monitor-
ing methods and components, already annotated with structural and teleological information,
which system developers can use to construct new monitoring systems.

The monitoring method library includes entries at all levels of computational detail,
from very abstract procedures covering virtually all monitoring tasks, to intermediate-detail
procedures capturing more specific algorithmic ideas, information about the class of domain
or enclave, or types of information being monitored, to highly detailed procedures involving
specific representations, code, domain details, and signal sources. For example, the most
abstract levels speaks of constructing and comparing a set of hypotheses about what is going
on, without providing any details about how the hypotheses are constructed or compared.
At an intermediate level, the TrenDx [12, 11, 18, 15, 9] trend monitoring system developed
at MIT uses a partial-match strategy operating over a set of trend templates, each of which
consists primarily of temporal constraints characterizing some temporal event. More refined
monitoring models emend this procedure to take probabilistic or default information into
account, or to embed background knowledge of the domain in the matching strategy. The
most abstract control and interpretation procedures serve as a base for more specific ones.

We will construct a library of abstract and special signal correlators called trend templates,
after the representation by that name developed at MIT by Haimowitz and Kohane in the
TrenDx system [12, 11, 18, 15, 9]. A trend template (TT) is an archetypal pattern of data

16



variation in a related collection of data. Our earlier explanation of the pattern illustrated in
the scenario is an example of such.

Each TT has a temporal component and a value component. The temporal component
includes landmark time points and intervals. Landmark points represent significant events
in the lifetime of the monitored process. They may be uncertain in time, and so are rep-
resented with time ranges (min max) expressing the minimal and maximal times between
them. Intervals represent periods of the process that are significant interpretation. Intervals
consist of begin and end points whose times are declared either as offsets of the form (min
max) from a landmark point, or as offsets of the form (min max) from another interval’s
begin or end point. Value changes are described in terms of various standard types of curves,
and we are expanding the original representation to include statistical information as well.
The representation is supported by a temporal utility package (TUP) that propagates tem-
poral bound inferences among related points and intervals [17, 16]. The value component
characterizes constraints on individual data values and propositions and on computed trends
in time-ordered data, and specifies constraints that must hold among different data streams.

In matching a trend template to data, two tasks are carried out simultaneously. First,
the bounds on time intervals mentioned in the TT are refined so that the data best fits the
TT. For example, a TT that looks for a linear rise in a numeric parameter followed by its
holding steady while another parameter decays exponentially must find the (approximate)
time boundary between these two conditions. Its best estimate will minimize deviations
from the constraints. Second, an overall measure of the quality of fit is computed from the
deviations. The most appropriate language of trends and constraints will vary from domain
to domain, and we expect to build a rich set of capabilities to populate the ontology of
trends.

We plan to develop TTs for intrusion detection, compromise identification, and a library
of processes for monitoring trustworthiness and suspiciousness of system components and
behaviors. Some of the elementary processes in the library will be based on the relationships
between trust concepts as delineated in models of trust states and trust-based resource allo-
cation methods. Other library elements will correspond to techniques used in extant system
security methods, such as boundary controller patterns, intrusion and misuse signatures, and
statistical models of normal, abnormal, and anomalous behaviors. Obviously this relies on
a lower level of signal processing techniques, such as standard transforms and correlators.

2.5.2 Monitoring for trust management

The central concept in the MAITA architecture is that of a network of monitoring processes,
operating under the control of a “monitor of monitors” or “MOM”. The set of monitoring
processes form the nodes of the network, and the communication paths form the edges or
links of the network. Each process in the network may have a number of “terminals”, each of
which receives or emits streams of reports via one or more standard transmission protocols.
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The network may exhibit a hierarchical structure, as some monitoring processes may consist
of a subnetwork of subprocesses. The metaphor we used for thinking of the operation of
these networks is that of electrical networks, in which we “wire together” various processes
and network fragments by connecting their terminals together. A MOM provides means
for constructing, maintaining, inspecting, and modifying the monitoring network and its
operation. We achieve a degree of uniformity in the control process by organizing MOMs as
special types of monitoring processes. We provide some standard programming classes that
act as wrappers, for adding MAITA terminals and functionality to application systems.

We plan to integrate the MAITA architecture with the Dynamic Domain Architecture
in order to further reduce the effort of constructing and tailoring monitors. Our approach
will be to use the DDA itself to automatically configure the backbone monitoring systems.
Specifically, the DDA will be automatically configuring software modules to produce the data
streams needed for monitoring. To make use of these streams, the DDA will also configure
the network of monitoring to make use of these streams, both to feed into resource allocation
decisions and to feed back into the operations of the software components themselves.

The first step of this integration modifies the DDA to add MAITA functionality to each
instrumented software module. The second step calls on the DDA to set up those monitoring
processes needed to analyze the instrumentation data and to maintain the trust models. The
third step is to tailor the configuration of alerting models used in the monitoring process to
conform to resource allocation decisions made by the trust-management system, so as to not
overwhelm the resources with monitoring alerts.

2.6 Rational Trust Management

The aim of managing resources in an environment of imperfect trust is to find an allocation
of resources to tasks that maximizes overall utility. This includes allocations of resources to
carry out the primary tasks, and also allocations of resources to ensure survivability through
monitoring, replication, reconfiguration, etc. Since an easy way to deny service is to feint
attacks that convince a system to expend all its resources on defensive measures, the primary
aim of rational trust management is to allocate resources to tasks in the face of compromise,
and to balance resources spent on defense and survivability against the effects of these ex-
penditures on the primary operational tasks. Doing this requires development of methods for
making allocation decisions that take information about degree of trustworthiness into ac-
count. Our approach to these decisions seeks to formulate the decisions in decision-theoretic,
terms, in order to identify rational allocations as ones of maximal expected utility. Since
it is not always possible to compute the rational decisions rapidly, we also plan to explore
various means for making rational decisions in practice, ranging from rule-based policies jus-
tified in decision-theoretic terms to approximation algorithms for computing good-enough
allocations.

18



2.6.1 Trust-based resource allocation

Trust-based resource allocations form a special case of resource allocations in general. There
is a sizable literature on resource allocation decision, especially in the financial realm, such as
methods for allocating investments across investment vehicles. These models are all based on
base notions of probability of performance and utility of performance. Trust-based models
will also involve these variables, but will modulate the judgments of probability and utility
by the degree of trustworthiness, suspiciousness, etc., of the resources involved.

In the simplest case, we might view total allocation utility in a state of the world σ as
simply the sum of the utility of each allocation of tasks to systems, i.e.,

∑

s

EU (t(s), s, σ)

where EU (t(s), s, σ) denotes the expected utility of having system s perform the task t(s) in
state σ. In this simplest case, we presume only one task assigned to a system at a time; in
the more natural case of multiprocessing systems, the expected utility would accord to the
complete set of tasks assigned to each system. The separability of utility of assignments to
different systems also represents a potential target for improving reality, since in some cases
the overall utility must take into account the entire allocation across systems, not just sum
the individual contributions. For example, purely local measures might call for redundancy,
assigning the same process to several systems. But this may be unacceptable if there is a
larger set of processes that must be performed than the servers left after the duplications
used for redundant computing. Nevertheless, the local utility estimations provide a good
and feasible starting point for investigation of the effect of trust on resource allocations.

In this simplified setting, the expected utility of a task assignment, EU (t(s), s, σ), is itself
expressed by ∑

τ

Pr(τ(s)|σ)U (t(s), s, σ)

where Pr(τ(s)|σ) is the probability that trust state τ obtains for system s given that the
world state is σ, and where U (t(s), s, σ) is the utility of performing task t(s) in system s in
the world state σ.

In some cases, we may be able to decompose the utility U (t(s), s, σ) into factors depending
on the task, trust state, and the world state, for example,

U (t(s), s, σ) = U1(t(s), τ(s)) · U2(τ(s), σ)

Such decompositions may simplify the task of estimating these utilities, and part of our
research on trust models will be to investigate the practicality and realism of such decom-
positions.

We plan to refine and elaborate these initial and simplified decision-theoretic models
for trust-based resource allocation. One task here is to identify situations in which the
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simplifying assumptions hold true. We also will seek to find models appropriate to more
complicated situations that cannot be simplified in these ways. Finally, we will develop a
range of concrete models for how the rich and varied structures of trust states influence the
probabilities and utilities in these abstract models.

2.6.2 Decisions affecting resource consumption

Resource allocations must address both gross static allocations, in which the system allocates
processes to hosts based on their expected CPU, memory, and network requirements, but
also finer-grained, dynamic controls on the processes that affect their expected resource
consumption. For example, monitoring systems that produce floods of false alerts may
consume bandwidth and processing on the part of the recipients that the system cannot
spare.

We will seek to apply our ongoing research on qualitative representations of preference
information to the trust-management task. These representations characterize preferences
among classes of situation or object rather than the usual preferences among individuals
that form the foundations of standard decision theories. The primary applications in trust
management are to representing the alerting preferences of monitoring processes, so as to
be able to easily control the flow and quality of alerts generated, and to representing the
resource allocation preferences.

We will build on our past work [25, 7, 26, 8] on qualitative representation of utility
information, which has developed logical languages that can express generic preferences
(“prefer air campaign plans that maintain a center of gravity over those that distribute
forces more widely”), and that relate this notion of preference to the notion of problem-
solving or planning goals (interpreting goals as conditions preferred to their opposites, other
things being equal). We will develop utility models that combine both qualitative preference
information with approximate numerical models of common utility structures (e.g., utility
models that increase up to some time and then drop off to model deadline goals, as in [10]),
along with automatic procedures for combining such information into qualitative decision
procedures and numerical multiattribute utility functions suitable for quick evaluation of
alternatives.

2.6.3 Practical rational decision making

We expect to employ different decision-making procedures for different decisions within op-
erational, monitoring, and control processes. Some decisions, such as those made by higher-
level monitoring analysis process that can afford to take some time in coming to decisions,
may use direct decision-theoretic computations. For these we will use implementations based
on Bayesian probabilistic networks and influence diagram representations, and make use of
the latest algorithms. Such algorithms are entirely adequate to many specific problems, and
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a large class of monitoring library entries will be focussed on specific problems.
Other decision problems will require other methods, for they will involve probabilistic

models of a scale that makes the standard methods infeasible, or will involve distributed
decisions difficult to cast in the form of a centralized decision problem. We will explore a
number of approaches to practical rational decision making, each based on existing progress.
These include methods based on derivation of decision policies or rules from the decision
model; approximation algorithms that work to improve initial decisions as much as possible
given the available time; determine dominance relations and other conditions that greatly
reduce the complexity of a decision problem in advance, permitting the runtime decision to
be made by checking a few class-membership questions.

In addition to these direct approximation methods, we will explore distributed resource
allocation methods that seek to reduce the complexity of decision-making tasks by dividing
them up according to specialized interests of different system components. To do this, we will
build on our previous DARPA-funded research on market-guided reasoning and planning [4,
5]. The main goods in these economies represented computational resources (time, memory,
etc.) and the achievement of different goals; the producers represented problem-solving
or planning methods; and the consumers represented goals (external demands or internal
subgoals). This work and experience carries over fairly directly to the task of allocating and
reallocating large-scale survivability resources in the face of changing resources and demands.

3 Comparison with Related Research

Current systems for intrusion detection focus on developing two basic types of mechanisms,
plus hybrid methods combining these. The first basic type is that of signature recognition,
in which a specific pattern of events signals a possible intrusion. The second basic type
is that of statistical anomaly detection, in which comparison of system, user, or operation
statistics across different timescales and from different time periods identify the existence of
potential intrusions. The knowledge embodied by these systems tends to focus on fairly low
levels of signals. In the Emerald system, for example, rules tend to be simple and statistical
methods tend to be prominent at the lowest levels of the monitoring hierarchy; at higher
levels, rules become more complex, while the contributions of statistical methods diminish.
The main bodies of knowledge for rules concern signature of varying degrees of complexity,
but most represent fairly local considerations, rather than the wider situational awareness we
seek to capture in the proposed monitoring knowledge libraries. The statistical models may
be constructed manually or constructed and adapted mechanically, but most are based on
fairly gross properties of the system being monitored. Our proposed work develops methods
for basing monitors on more complicated statistical and probabilistic models, using Bayesian
networks involving terms related to concepts in the situation knowledge base, and exhibiting
situational dependence in which the probabilistic network used may itself be changed as the
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situation changes.
Specific monitoring systems, as opposed to codifications of libraries of knowledge for

constructing monitoring systems, are well represented in the literature and in commercial
products. The most relevant work, other than our own, on monitoring knowledge and meth-
ods appears in the literature on trend detection and “temporal abstraction”, especially in the
work of Shahar [21] and Das [1] at Stanford. These efforts focus on representing temporal
relationships and on methods for identifying patterns of temporal relationships as instances
of more abstract events. This work provides a good foundation for monitoring and analysis
activities, but intelligent monitoring and analysis involve more than just temporal informa-
tion. Structuring relevant sorts of non-temporal information, especially information about
logical implication, statistical correlations, and causation, is crucial, but lacking in most
abstraction-based treatments. Statistical trend detection, on the other hand, does not ade-
quately exploit the constraints and structuring information that templates provide. We plan
to design representations for monitoring conditions that integrate the best representations
devised for each of these separate types of knowledge.

Artificial intelligence and computer science have made use of economic and decision-
theoretic models for resource allocation for some time, notably the SPAWN system of Wald-
spurger et al. [23] for allocating processor time across workstations, work on rational negoti-
ation and auction structures by Rosenschein [20], Zlotkin [29], Kraus, Sandholm and others,
and the work of Wellman and his students on the WALRAS [24] artificial economy and its
applications. None of these have addressed methods for trust-based resource allocations,
however. There also has been significant work done on rational decision making under time
and resource constraints, notably in the family of notions of anytime algorithms, flexible
computation, and bounded optimality introduced by Horvits, Dean, Boddy, Russell, Zilber-
stein, and others. We expect that some of these mechanisms will prove suitable for some
of the trust-based survivability decisions, though these methods have not been studied very
thoroughly in the setting of distributed action.

Our work on Dynamic Domain Architectures draws on much previous research on software
representations and Model-Based Troubleshooting. However, the integration of these two
threads is completely novel to our project. The application of these techniques to Information
Survivability is also novel to our project.

There is a considerable body of work on model-based diagnosis (see e.g., [14] for a good
overview) that provides the foundation for the work proposed here. In that body of work the
recent efforts by Williams are particularly relevant and offer good comparison points. Earlier
work in our group at MIT [2] and at Xerox Parc [3] established the basic framework for Model
Based Troubleshooting. In particular, the idea of modeling both expected and known faulty
behavior comes from the work at Parc. Later work at MIT [13] first demonstrated that with
well-chosen abstractions one can apply these techniques to real-world artifacts of significant
complexity.

Brian Williams’s work at NASA [28] is an excellent recent development that is closest to
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the variety of task being examined here. Williams offers an existence proof that model-based
diagnosis can be used on systems that are complex hybrids of hardware and software with
time-varying histories of behavior, and that the same framework also supports reconfigura-
tion. We should note that Brian Williams has recently joined our Faculty and is will aid in
this effort.

None of these efforts, however, deal with the context of a coordinated attach by an inten-
tional malicious agent. This extra complexity leads us to a multi-tiered modeling framework
in which the observable behavior (and misbehavior) of the software components are modeled
at one level and the behavior (and compromised states) of the underlying infrastructure are
modeled at another.

We intend to draw heavily on our earlier Programmer’s Apprentice for representations
of software systems [19]. This work established an important set of abstractions which have
shown up in later work on software architectures, in particular, modeling in terms of abstract
components and connectors. It also introduced a represenation of dependencies between
modules (purpose links) which seems to be a good starting point for generating wrappers for
monitoring the intended behavior of components. Of course, this was quite preliminary work
and it was not intended to deal with the complexities posed by the information survivability
context.

4 List of key personnel

Howard Elliot Shrobe, Ph.D., is Associate Director of the M.I.T Artificial Intelligence Labo-
ratory. He has done research in Software Engineering, VLSI design, Computer Architecture
and Artificial Intelligence. He served as Chief Scientist of the DARPA Software and Intel-
ligent Systems Technology Office (SISTO) and of the Information Technology Office (ITO)
from September 1994 through August 1997. In this capacity he had a significant role in
the creation of several programs including EDCS and Information Survivability. He has
also served as Chief Technology Officer of Symbolics Inc. He served as Chair of the AAAI
Conference Committee for 5 years and is a Fellow of the AAAI.

Additional key personnel identified at this point include Drs. Jon Doyle, William Long,
and Professor Peter Szolovits of the MIT Laboratory for Computer Science.

Jon Doyle, Ph.D., will devote 50% of his time to this effort in different years of the covered
period. His principal research goal is to develop theories and techniques for representation
and reasoning that have a sound basis in decision theory, economics, and logic, and to
apply these to practical problems of planning and medical informatics, especially to the
representation and use of qualitative and quantitative models of preferences and utilities. He
has published widely on the roles that economic notions play in the structure of reasoning
and representations, and together with his students, has conducted investigations into means
for mechanizing rational reasoning. Dr. Doyle has made many contributions to the theory
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of rational and economic reasoning, has developed representations for rational agents and
market-guided reasoning systems, and has worked on structuring ontologies for planning, the
process of planning, and general medical health-maintenance monitoring, all under previous
and current DARPA funding. He currently serves as PI of our work on the MAITA system.
He is a Fellow and member of the Executive Council of the American Association for Artificial
Intelligence, as well as a director of Principles of Knowledge Representation and Reasoning,
Inc., which organizes the KR conferences.

William Long, Ph.D., will devote 25% of his time to this effort in each covered year. He
is involved in research in causal and temporal reasoning. This work over the past dozen
years has been focused on the cardiology domain and the diagnosis of heart disease. This is
a rich domain for causal reasoning because the underlying mechanisms take from seconds to
years and the challenge is to fit the findings into a consistent, plausible scenario in time. The
strategies for generating and evaluating such causal hypotheses will be useful in the proposed
work. Dr. Long has also been involved in the use of classification trees and neural networks
for the development of classification tools from data sets. While this was also done in a
medical context (detection of cardiac ischemia in the emergency room), the methodology is
applicable in a wide range of domains. The third area of expertise is the detection of trends.
This work has been carried out in the context of managing therapy, both the adjustment
of digitalis and the management of ventricular arrhythmias. Dr. Long is a Fellow of the
American College of Medical Informatics. He currently serves as a key researcher in the
MAITA project.

Peter Szolovits, Ph.D., will devote 15% of his time to this effort in each contract year.
He has worked on problems of knowledge representation, reasoning under uncertainty, and
diagnostic and therapeutic planning and monitoring, mostly in applications to medical de-
cision making. He and his students pioneered diagnostic reasoning methods that rely on
detailed models of causality and temporal relationships among aspects of a hypothesized
disorder, and investigated multi-level reasoning systems that pursue a simple analysis of a
problem when all data consistently indicate a single solution but that engage in much more
detailed analyses when discrepancies arise between data and expectations. Prof. Szolovits is
currently participating in the development of a new architecture for medical record systems
that exploit the technologies of the World Wide Web to support sharing and commonality
of access to records from multiple institutions, and is engaged in building life-long active
patient-centered health information systems that orient medical information processing, de-
cision making, health and treatment monitoring, task-specific education and communication
around the individual patient. This project, called Guardian Angel, was begun with DARPA
support [22]. Experience from these efforts motivates and contributes to the design of the
present proposal, and advances in the ability to support monitoring and analysis tasks will
greatly contribute to the future of these projects as well as to applications in the challenge
domains. Prof. Szolovits is a fellow of the American Association for Artificial Intelligence
and of the American College of Medical Informatics. He currently serves as co-PI of the
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MAITA project.
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