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Abstract

We use autoencoders to create low-dimensional embeddings of underlying patient
phenotypes that we hypothesize are a governing factor in determining how different
patients will react to different interventions. We compare the performance of
autoencoders that take fixed length sequences of concatenated timesteps as input
with a recurrent sequence-to-sequence autoencoder. We evaluate our methods
on around 35,500 patients from the latest MIMIC III dataset from Beth Israel
Deaconess Hospital.

1 Introduction

Intensive Care Units (ICUs) are high-cost, limited-resource environments where quick and accurate
decision-making is extremely valuable. However, most decision-making is often made in settings of
high uncertainty and based just on the clinician’s prior experience. With the rapid rise in Electronic
Health Records (EHRs) available for analysis, data-driven models are well-suited to aid physicians in
making decisions about when patients should be treated with or weaned off certain interventions [1].

Achieving high-quality care depends on a robust understanding of the patient’s underlying acuity
throughout time [2]. Traditional measures of acuity are often based on mortality evaluated at a
single endpoint [3, 4], or on static scores such as SAPS that don’t take into account evolving clinical
information [5, 6].

We aim to create richer representations of patient health with the end goal of predicting actionable
interventions. The efficacy of interventions can drastically vary from patient to patient, and unnec-
essarily administering an intervention can be harmful and expensive [7]. A model of patient health
that is able to capture complex relationships in physiological signals is key to accurately predict-
ing onset/weaning of interventions for different patients and necessary for successful personalized
medicine.

This type of patient phenotyping is challenging because robust representations of human physiology
are complicated, and contain many non-obvious dependencies between observed measurements.
Moreover, modelling evolving clinical information requires using timeseries data, but this data is
often varying-length, irregularly sampled or has missing values. Previously, multitask gaussian
processes have been tested for modelling patient acuity but only in Traumatic Brain Injury (TBI)
patients [8] or only using longitudinal billing data [2].

Our approach uses autoencoders for physiological timeseries signal reconstruction. Autoencoders
deep neural networks where the target values are the same as the input values, and the hidden layer(s)
compress the inputs into a lower dimensional embedding. Since this embedding tries to reconstruct
the original input, it must capture fundamental features about the input timeseries, and can be used as
a measure of underlying patient acuity. Feature learning in this approach is entirely unsupervised, so
unlike traditional acuity scores it is not limited by a manually-defined feature space. Furthermore,
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recurrent autoencoders are able to model signals of varying-length and are robust to missing data due
to the ability of Long-Short Term Memory (LSTM) cells to forget unimportant inputs.

Using autoencoders allows us to extract the low-dimensional embedding and use it in further work
for predicting interventions.

2 Background

2.1 Autoencoders

Previous work has attempted to use autoencoders on random 30-day patches of input vectors to learn
underlying patient phenotypes [9], and has shown that they can extract relevant and useful features
about patients.

It is also valuable to consider signals that occur throughout a patient’s stay, since there are often long
delays between when relevant signals are expressed [10].

Sequence autoencoders take in measured signals one timestep at a time into a layer of LSTM (Long-
Short Term Memory) cells and produce a fixed-length embedding. This embedding is then used as
input to another layer of LSTM cells that try to predict the original input sequence.

LSTM cells are used because of their ability to effectively model varying-length timeseries data and
capture long-term dependencies. LSTMs have achieved state-of-the-art results in many different
natural language processing applications from machine translation [11] to dialogue systems [12] to
image captioning [13]. They are well-suited to modeling clinical data because evidence of certain
conditions may be spread apart over several hours or days, and important symptoms may present
early on in a patient’s stay.

Sequence autoencoders using LSTM cells were inspired by the success of general sequence-to-
sequence models applied to machine translation. They were recently used as an initialization step for
recurrent neural networks for text classification [14], but have not been applied to the clinical space.

3 Methods

3.1 Features

Features were extracted from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC
III) Database [15]. Since 2001, the MIMIC database has been built up and maintained by the
Laboratory of Computational Physiology at the Massachusetts Institute of Technology, Beth Israel
Deaconess Medical Center, and Philips Healthcare, with support from the National Institute of
Biomedical Imaging and Bioinformatics. The database contains general patient information (ICD-9
codes, demographics, room tracking), physiological signals (vital metrics, SAPS), medications (IV
meds, provider order entry data), lab tests (chemistry, imaging), fluid balance (in- take, output), and
notes (discharge summary, nursing progress reports). The most recent version of MIMIC III contains
data from around 38,600 adults, comprising over 58,000 hospital admissions, from 2001-2012. The
MIMIC dataset is notable because it is publicly available for free use, encompasses a large and diverse
set of patients, and contains numerous high resolution features for each patient.

We use data from from the first ICU stay of patients in the Medical Care Unit (MICU), Cardiac Care
Unit (CCU), Cardiac Surgery Recovery Unit (CSRU), Surgical Intensive Care Unit (SICU), and
Trauma Surgical Intensive Care Unit (TSICU). We only look at patients older than 15 and who were
in the ICU for between 12 and 2000 hours. This totals 35,554 unique patients/ICU stays. We extract
30 physiological features for each patient as timeseries spanning their entire stay. Measurements are
given timestamps that are rounded to the nearest hour, and if an hour has multiple measurements for
a signal those are averaged.

Since there are many missing values, we first backfill using any present values the patient has, and
then fill in remaining missing values with the mean value for that variable across all patients.

The data is split into training/validation/testing sets with a 70/15/15 split, stratified on in-hospital
mortality in order to have a spectrum of patient severity in both the train and test sets.
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3.2 Autoencoders

We test the ability of a simple autoencoder with a single hidden layer, an autoencoder with two
hidden layers, and a sequence autoencoder to reconstruct the input (Figure 1). We also compare the
performance of these models over inputs of different interval lengths, specifically 4, 16, 32 and 64
hours. We train on mini-batches of 128 samples with early stopping to determine the number of
epochs.

For the fixed-length input autoencoders, we concatenate all 30 features for each hour throughout the
given interval length. We use an embedding size equal to the total number of input values divided by
10 to achieve a compression factor of 10x. All hidden layers use a ReLU activation function, and the
output layer uses a sigmoidal activation function.

4 Results

We evaluate the performance of each autoencoder by taking the mean squared error (MSE) between
the predicted sequence of values and the true sequence of values. The sequential autoencoder with
one LSTM layer achieves a lower MSE than the single-layer fixed length autoencoder on all interval
lengths, but varies in comparison to the double-layer fixed length autoencoder (Figure 2).

We also show that reconstructing input timeseries with autoencoders is fairly robust to stratifications in
population subsets. We run the autoencoders on intervals of 32 hours with patient subsets stratified by
care unit. MSEs are higher than when the autoencoders were trained on the entire patient population,
but less than 0.08 in all cases, even though the training sets are much smaller (Figure 3). On these
smaller subsets of patients, the sequence autoencoder appears to be able to generalize better with
smaller amounts of training data and does better in all cases.
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Figure 2: Performance of autoencoders on recon-
structing timeseries input of various lengths.

Figure 3: Performance of autoencoders on patient
population subsets with intervals of 32 hours.

Figure 4: Examples of feature reconstructions for a sin-
gle patient for an interval of 64 hours.

The reconstructed features from the
sequence autoencoder are less noisy
and more robust to varying-length se-
quences. The reconstructed feature
values from the fixed-length autoen-
coder often start trailing towards zero
near the end of the sequence (Figure
4). This could be due to the fact that
sequences are zero-padded at the end
for patients with fewer hours of data
than the interval length, and the point
at which a patient’s real data ends
is harder to determine when the se-
quence is fed in as one long concate-
nated vector.

5 Future Work

We plan to compare the performance of patient embeddings from different autoencoder structures to
predict onset of and weaning off of dialysis. We will compare its performance on its own and as an
additional feature matrix concatenated to the raw feature values.

It will also be interesting to experiment with deeper sequential autoencoder structures, or to use
bidirectional LSTM cells in the hidden layers to better reconstruct inputs.
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