
Brand X Interpreter 1

Table of Contents

Table of Contents

. 1 . Introduction 1
2 . A Version of OWL . 2

2.1 Concept Formation . 2
2.1.1 Concept Testing . 2
2.1.2 Concept Creation . 2
2.1.3 Iteration Paths . 3

2.2 Using Concepts in the Hierarchy . 3
2.3 Mutual Exclusion . 4
2.4 Characterization . 4
2.5 Inheritance . 5
2.6 Metacharacterization . 5
2.7 Slot Frames . 6

2.7.1 Slot Frame Ties . 7
2.7.2 Slot Frame Names . 8
2.7.3 Routines for Manipulating Slots . 8

. 2.8 Online Aids 9
2.8.1 Undefined Labels . 10
2.8.2 Printing the Structure . 11

. 3 . Lisp Extensions 12 . 3.1 Conditions and Signalling 12 . 3.2 Multiple Values 13

4 . T h e Failure System . 14
4.1 Causing Failure . 14
4.2 Trapping Failure . 15

. 5 . T h e Matcher 16
5.1 I'rimary Characterizations . 17

5.1 . 1 Characterization Proximities . 17
5.1.2 Taming the Beast . I 8

5.2 Functional Restrictors . 18
5.3 Slot Comparison . 19

5.3.1 Equal Values . 19
5.3.2 Required Values . 19
5.3.3 Future Developments . 19

. 5.4 Scoring 20
5.5 Debugging the Database . 20

. 6 . Concept Evaluation 21 . 6.1 Values and Binding 21 . 6.2 Concept Reconstruction 22 . 6.2.1 Slot Frame Evaluation 22 . 6.2.2 Programmable Evaluation 23

Brand X Interpreter Table of Contents

. 6.3 Available Objects 23 . 6.4 Default Values 2 4 . 6.5 Modifying Values 2 4 . 6.5.1 Checks 25
. 7 . Interpretation 26 . 7.1 The General Behaviour 2 6 . 7.2 Matching and Selection 27 . 7.3 Events 28 . 7.4 Side Effects 29 . 7.5 Defining Methods 29

. 8 . Xlultiple Values 30 . 8.1 I'assing Back Multiple Values 30
8.2 Receiving Multiple Values . 3 0 . 8.3 Other Special Forms 31 . 8.4 hlultiple Value Pairs 31

. 9 . Format 33

. Index 35

Brand X Interpreter 1 Introduction

1. Introduction

This paper describes the preliminary implementation of an Interpreter for concepts and
conceptual methods using the Brand X data base. The primary intent is to have automated
dynamic procedure selection based on both argument matching and prerequisites.
Secondarily, almost as a side effect to attain this, knowledge base conventions and primitives
are developed.

Based on the implementation and facilities of the Maclisp evaluator, one can consider
there to be three evaluation mechanisms of interest:

(I) evaluation of a form, the car of which is a special object

(2) application of a special object to some arguments (via apply, funcall, or lexpr-
f uncall)

(3) evaluation of a special object itself
This "special object" is a description in our knowledge base, known as a concept. The
primary goal of the system documented here is cases 2 and 3. Accordingly, the handling of
case 1 is simplified to just evaluating the arguments and going on to case 2.

Conceptually, what is desired is to be able to automatically select an appropriate
procedure based on the arguments given, the relations between the arguments, and the
external environment. This is (arbitrarily!) broken down into constraints which can be
specified declaratively (by "matching", which will be expounded on later), and those which
are must be specified procedurally. Note that the distinction between these is mainly a
matter of what can be specified declaratively. This distinction is undoubtedly useful no
matter how fluent the declarative language, since it seems unlikely that a declarative
language could encompass all possible situations which might be encountered. (For
exposition purposes, "procedural" is something for which eval or some application
counterpart is explicitly used, and "declarative" is where one, for example, compares
descriptions in a pre-defined manner.)

The breakdown chosen is to partition the procedures into methodr or partial definitions,
each of which is a procedure with some formal parameters. Partial definition selection will
be based on matching of the arguments to the corresponding formal parameters (the
declarative part). Each partial definition can have prerequisites (the procedural part) which
must be satisfied for that method to be valid. The fine points and mechanism of this are
detailed in chapter 7; first, knowledge base conventions are needed.

Brand X Interpreter A Version of OWL

2. A Version of OWL

This chapter details the knowledge base conventions upon which the evaluator extensions
are built. It is obviously subject to drastic redefinition.

2.1 Concept Formation

For the present, a concept is either the Brand X triple !tao, defined
[t a o = taoatao t a o]

or a triple whose ilk is a concept. The implications of this are

(I) A concept is not circular through the ilk path.

(2) One can iterate up the ilk of a concept, terminating on a trivial eq test.
When an object is created for an undefined Brand X label in OWL, it is made into a
concept, for ease of use: this is discussed fully in section 2.8.1, page 10.

Although not strictly tested for, concepts are often assumed to have ties which are
either atomic symbols or concepts. The creation of a concept with something else as a tie
might result in strange errors, such as infinite looping or memory errors.

The cue of a concept may be any Lisp object. Certain concept constructs however
make assumptions about the cue, which may or may not be checked for validity.

2.1.1 Concept Testing

conceptp object
Returns t if object is a concept, nil otherwise.

OWL defines concept as a data type, using the predicate conceptp. This is used for
(automatically generated) argument type checking in many routines defined here.

2.1.2 Concept Creation

make-ltm-concept (concept ilk) tie cue
make-stm-concept (concept ilk) tie cue

These two routines open-code into calls to utriple and triple respectively. It is
unclear whether they are necessary, except from the standpoint that in some future
implementation concept formation may be more complicated than just triple
construction. These do, however, check the ilk for conceptp, when called
interpreted.

Brand X Interpreter Using Concepts in the Hierarchy

2.1.3 Iteration Paths

OWL defines the superiors iteration path for the loop macro.
(l o o p f o r var be ing concept and i t s super iors . ..)
(l o o p f o r var be ing t h e super iors o f concept

...)
step var through the superiors of concept, up to and including !tao. The first starts at
concept itself, the second at the ilk of concept.

2.2 Using Concepts in the Hierarchy

When one constructs a concept, one is stating that the new concept is ako its ilk. The
actual implication of this is dependent on the interpretation placed on the makeup of the
concept: that is, the interpretation one places on its tie and its cue, and other description,
the properties.

A significant hierarchical relation of two concepts is underp. A concept c l is said to be
underp a concept c2 if one can reach a concept equal to c2 by taking some non-zero
number of ilks of c l . Note that equal is used here; take, for example,

(s e t q a (t r i p l e / ! t a o 't / a))
=> (!TAO*T A)

(s e t q b (t r i p l e (t r i p l e / ! t a o 't / a) 't 'b))
=> ((!TAO*T A)*T 8)

The ilk of b is equal, but not eq, to a. At the same time, the intuitive feeling is that
indeed b is underp a. There are other cases where the use of equal by the OWL system is
less obviously correct; some of these will be noted. In any case, the decision of whether to
use equal or eq is primarily a matter of the significance of a concept's being non-unique,
which has not been properly established yet.

underp (concept concept-I) (concept concept-2)
This returns nil if concept-1 is not underp concept-2, as described above. If it is,
then the number of ilks separating the two is returned. E.g.,

(underp /[[! tao* t l]*t 2 1 /[! tao* t 1))
=> 1

underp-or-equal (concept concept-1) (concept concept-2)
Like underp, with a different boundary case.

Brand X Interpreter Mutual Exclusion

2.3 Mutual Exclusion

Detection of mutual exclusion allows one to immediately say that two conceptual
descriptions are incompatible. The primitive basis for mutual exclusion of two concepts is
that they follow two different branches from their closest common superior concept, both
with ties of s. That is, if

[dog = !animal*s dog]
[c a t = !animal*s c a t]
[ta i led-animal = !animal*t tai led-animal]

then we can say that any concept underp-or-equal to !dog is mutually exclusive with any
concept underp-or-equal to !cat. We can not, however, say the same for !tailed-animal
and either !dog or !cat. The following routine tests for mutual exclusion in the hierarchy.
Note that one can also detect mutual exclusion by recursively detecting mutual exclusion in
other descriptions, such as characterization. This is discussed later.

mutually-exclusive? (concept concept-1) (concept concept-2)
This returns t if concept-1 and concept-2 are mutually exclusive, as determined by
seeing if the concepts directly under the least-common-superior-concept of
concept-1 and concept-2 both have ties of s.

2.4 Characterization

The term characterization is used here in a more restricted sense than it is used in
English. In this domain, it is an alternative ako relationship; that is, an OWL
characterization of x as y implies that you can say that "x is a y" or " x is characterized as
being a y", but not "x is characterized as y". One would not use this meaning of
characterization to state that "the ball is red", but one might do so to say that "a person is a
corporate entity".

Characterization is represented in OWL by use of the c tie and the c property. Thus,
[person = ! animate-enti tyus person

&c ! corporate-ent i t y]
defines the concept labeled person, and also implies that a person is 'a kind of
!corporate-entity. The uses of characterization are discussed more fully with the pattern
matcher.

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Inheritance

2.5 Inher i t ance

A primary reason for having one thing being ako another is that the second can inherit
attributes from the first. The primary inheritance path for attributes is from the superiors,
i.e. through the ilk. This is not always sufficient. However, a reasonable compromise must
be reached between searching through many paths, and having to redundantly specify
inherited attributes or characteristics all over the place.

look-for- inher i ted-proper t ies concept proplist
This looks through concept and its superiors for any of the properties in proplist (i.e.,
it terminates on a non-null getpl). If a slot frame is encountered (a concept with a
t i e which satisfies slot-frame-tiep, as discussed in the next section), all of the
matching h properties on the c u e of the slot frame and its superiors are checked
also.

The above routine follows the "canonical" way in which things are inherited in OWL. It
is expected that a mechanism will be provided so that one can cause inheritance from the
c u e concept; take, for example, the stereotypical example of the representation of "a can of
beans", as in "I opened and ate a can of beans". One might wish to represent it as

[! canstie ! b e a n s]
for some appropriate tie, and thus make use of inheritance from both !can and !beans.
Presumably the sentence means that the can was opened and the beans were eaten. Some
common scenarios would be

(I) Inherit from only the ilk

(2) Inherit from both the ilk and the cue, with the ilk having precedence

(3) Inherit from both the ilk and the cue, with the c u e having precedence

(4) Inherit only those attributes implied by both the ilk and the c u e

Hopefully, a mechanism will soon be provided in OWL which allows o n e t o do this
while neither constraining the semantics nor increasing the inefficiency significantly.

2.6 Metacharac te r iza t ion

Mctacharacterization is description for the use and/or maintenance of the knowledge
base itself. At present, the only metacharacterization used by the OWL system is the lexical
keyword, which controls concept binding (section <not-yet-written>, <not-yet-written>).
Metacharacterization is'indicated by use of the m property, which at present is assumed t o
be a list of either atomic symbols (presumably used like keywords), o r concepts.

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter 6 Slot Frames

look-for-metacharacterization (concept concept) metacharacterization
This returns t if metacharacterization is found under any of the m properties which
concept inherits (as described under look-for-inherited-properties, page 5). Eq is
used for comparison, as typically metacharacterizations will be atomic symbols used
as keywords.

2.1 Slot Frames

Slot frames allow one to associate attributes or substructure with concepts. For example,
in the description for a generic person

[pe r son = ! a n i m a t e - e n t i t m s person
&h [! locat ionmu : &c !p lace]]

the h property lists a concept, called a slot frame, which says (loosely) that a !person can
have a location. The value of the !location slot of a !person must be characterized as a
!place. In this example, the concept !location is called a slot frame name, and the tie
used in such a slot frame is called a slot frame tie. One can give a slot frame a value,
which will be inherited as the default value of any concepts under the concept the slot
frame is attached to, as in

[pon t i ac - eng ine = !enginekt pont iac-engine
&h [!manufactureruu : &v ! pont iac]]

o r one could embed the value in the conceptual hierarchy, as in
[c h e v r o l e t - e n g i n e = !engines!manufacturer ! c h e v r o l e t]

The latter has more of a flavor that the value of that slot is an integral part of the object
than the former example.

The process of finding the value of a slot for a particular concept involves searching
through the concept and its superiors for either a concept specifying the value (as in
!chevrolet-engine) or an h property for that slot, as in !pontiac-engine. The first such
concept found supplies the value. (The slot frame names are compared with eq.)

Because of this action, the act of copying a slot frame down from some concept t o an
inferior involves creating a new slot frame, copying the value(s), and attaching it t o the
concept, all as an "atomic operation". This also demonstates one of the primary inheritance
paths: for example, in

[b i l l = !person*i b i l l
&h [! locat ion*qu : &v !boston]]

and using the definition of !person given at the beginning of this section, [!location*qu
!bill1 inherits from [!location*u !person] before it inherits from !location.

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Slot Frames

2.7.1 Slot Frame Ties

The tie of a slot frame is used to determine certain attributes about both the slot frame
itself, and the process of evaluation of such a slot frame (described in chapter 6).
Implementationally, a slot frame tie is recognized by being a symbol or concept which has
(or inherits) a slot-frame-tie property. This property is a list of keywords which name
various attributes of slot frames constructed from this tie. These keywords are used
primarily for evaluation of slot frames, and the presence of this property distinguishes a slot
frame from other concepts. The keywords multiple-valued and single-valued tell whether
the slot frame is allowed to have one, many, or no values. The read-only keyword says
that the value is not allowed to be modified. The ilk-evaluable and cue-evaluable
keywords tell whether, when a slot frame with this tie is evaluated, the ilk and cue should
be evaluated to find a new slot frame to find the value of (section 6.2.1, page 22). The
initially defined slot frame ties, and their slot-frame-tie properties, are:

(absorb
[. r &slot-frame-tie

multiple-valued cue-evaluable]
[. u &slot-frame-tie

single-valued cue-evaluable]
[. ror &slot-frame-tie read-only multiple-valued]
[. rou &slot-frame-tie read-only single-valued]
[. v &slot-frame-tie

ilk-evaluable cue-evaluable] [. uv &slot-frame-tie single-valued
ilk-evaluable
cue-evaluable] [. q &slot-frame-tie multiple-valued]

[. uq &slot-frame-tie single-valued]
[. roq &slot-frame-tie multiple-valued read-only]
[. rouq &slot-frame-tie single-valued read-only]

1

slot-frame-tiep object
If object is a slot frame tie, this returns the slot-frame-tie property. Object need
not be a concept. For convenience in error checking, slot-frame-tie is defined as
a data type, based on this predicate.

slot-frame-tie-data slot-frame-tie
This is like slot-frame-tiep but makes the assumption that slot-frame-tie is either a
symbol or a concept.

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Slot Frames

2.7.2 Slot Frame Names

Just as certain attributes about a slot frame can be determined from the tie, some can be
determined from the slot frame name. One is what tie should be used in creating a slot
frame when one is being copied down from a superior concept. This also is for use in
evaluating and setting slot frames.

When a slot frame is being copied down from a superior concept, a tie may have to be
chosen for the newly created slot frame. A slot frame name should have (or inherit) a
slot-frame-name property, which should be a list of two things:

(I) The tie to be used when the superior's slot frame is an ordinary attached slot
frame (i.e., its tie is a slot frame tie, as in the !pontiac-engine example)

(2) The tie to be used when the superior's slot frame has its value embedded in the
hierarchy (i.e., its tie is the slot frame name, as in the !chevrolet-engine
example)

slot-frame-ties (concept slot-frame-name)
This searches slot-frame-name and its superiors for a slot-frame-name property,
which is returned. If none is found, nil is returned.

For convenience in defining slot frame names, the following concepts are pre-defined:
(absorb

[slot-frame-name = ! hsiang*t slot-frame-name
&slot-frame-name q roq]

[single-valued-slot-frame-name =
!slot-frarne-narneut single-valued-slot-frame-name
&slot-frame-name uq rouq]

1

2.7.3 Routines for Manipulating Slots

The routines available, and/or their semantics, may be changed as experience with their use
dictates.

make-or-find-slo t (concept slot-frame-name) (concept concept)
(Optional (slot-frame-tie slot-frame-tie))

If concept has a slot for slot-frame-name, that is returned; otherwise, one is created,
with a tie of slot-frame-tie, which is determined from slot-frame-name if nil or not
specified.

DSK:BXOWLD:OWL PUBDOC

Brand X Interpreter 9 Online Aids

make-slot (concept slot-frame-name) (concept concept-to-make-slot-in)
(Optional (slot-frame-tie slot-frame-tie))

Creates a slot-frame-name slot in concept-to-make-slot-in. It is an error if one
already exists. Slot-frame-tie is determined from slot-frame-name if nil or not
specified.

look-for -slot (concept slot-frame-name) (concept concept)
Looks for a slot of type slot-frame-name in concept. Nil is returned if none is
found.

fetch-slot (concept slot-frame-name) (concept concept)
Like look-for-slot, but requires that a slot be found.

find-generic-slot (concept specifc-slot)
This finds the generic slot which spctific-slot is the corresponding slot in some
individual/instantiation of. That is, if we have

(absorb
[f o o = !barus foo

&h [!baz*u :]]
[f o o - 1 = ! f o o x i foo-1

&h [! bazuu :]]
1

spefic-slot should be [!baz*u !Too-11, and this will return [!baz*u !fool. This
routine trivially utilizes find-slot-in-superiors, below.

find-slot-in-superiors (concept slot-frame-name) (concept starting-with)
This searches through all the h properties of starting-with and its superiors for a slot
frame of type slot-frame-name. A concept with a tie of slot-frame-name causes
satisfaction, and will be returned if encountered.

slo t-exis tsp (concept slot) (concept in-concept)
If there exists a slot in in-concept (or its superiors) with slot-frame-name of slot, that
slot frame is returned.

2.8 Online Aids

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Online Aids

2.8.1 Undefined Labels

OWL utilizes the *dummy-label-creator hook in Brand X. The object created for an
undefined label will be a concept whose ilk is the concept !dummy-label-definition,
whose tie is t, and whose cue is the label - typically an atomic symbol. !dummy-label-
definition is defined as:

[dummy-label-definition = !tao*t dummy-label-definition]
Thus, if one references the label foo before defining it, it will be the concept

[foo = !dummy-label-definitiomt foo
&dummy-label t]

defugl (Optional ilk) (Optional tie) (Optional labels-to-define)
This routine is useful for defining undefined labels. Ilk, if supplied and not nil,
should be a concept; otherwise it will default to the concept !default-definition,
defined as

[default-definition = !tao*t default-definition]
Tie, if not supplied or nil, defaults to t. If labels-to-define is not specified or nil,
then the result of (ugl) is used. Thus,

(defugl '!frob nil '(chair table))
is like

(absorb
[chair = !frob*t chair]
[table = !frobst table])

and
(defugl /!feline Is '(cat leopard tiger lion))

is like
(absorb

[. !feline
& () [cat = :us cat]

[leopard = :*s leopard]
[tiger = :*s tiger]
[lion = :*s lion]])

except that each of the labels are assumed to already exist but not be defined, and
(defugl)

is like
(defugl '!default-definition t (ugl))

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Online Aids

2.8.2 Printing the Structure

print-tree (Optional start) (Optional (fixnum start-pos))
This prints out the tree, starting at start, which defaults to !tao. One concept is
printed per line; inferiors are printed two spaces to the right of their superior. A
starting indentation may be specified as start-pas. The long form of the concept is
printed, but without properties. Note that this can only find unique concepts, since
it must get from a concept to those which have it as their ilk.

print-structure (concept conccpt) (Optional number-of-levels-to-consider)
This shows the structure of concept and its superiors. Try it.

DSK:BXOWLD;OWL PUBDOC

Brand X Interpreter Lisp Extensions

3. Lisp Extensions

This chapter describes some of the "extensions" to Maclisp which the Interpreter
environment makes use of. These are primarily features extracted from the Lisp Machine
Lisp dialect. They themselves are not related to Brand X or the Brand X interpreter; in
fact, they could be used separately from it.

3.1 Condi t ions and Signalling

The following two paragraphs are excerpted from the Lisp Machine manual (November
1978 version).

Programmers often want to control what action is taken by their programs
when errors or other exceptional situations occur. Usually different situations
are handled in different ways, and in order to express what kind of handling
each situation should have, each situation must have an associated name. In
Lisp Machine Lisp, there is the concept of a condition. Every condition has a
name, which is a symbol. When an unusual situation occurs, some condition is
signalled, and a handler for that condition is invoked.

When a condition is signalled, the system (essentially) searches up the stack
of nested function invocations looking for a handler established to handle that
condition. The handler is a function which gets called to deal with the
condition. The condition mechanism itself is just a convenient way for finding
an appropriate handler function given the name of an exceptional situation. On
top of this is built the error-condition system, which defines what arguments are
passed to a handler function and what is done with the values returned by a
handler function. Almost all current use of the condition mechanism is for
errors, but the user may find other uses for the underlying mechanism.

signal condition-name (any-number-of args)
Signal searches through all currently established condition handlers, starting with the
most recent. If it finds one that will handle the condition condition-name, then it
calls that handler with a first argument of condition-name, and with args as the rest
of the arguments. If the handler returns nil, signal will continue searching for
another handler: otherwise, signal returns whatever the handler returned. If signal
doesn't find any handler that returns a non-nil value, it will return nil.

c o n d i t ion-bind Special Form
The condition-bind special form is used for establishing handlers for conditions. It
looks like:

(c o n d i t ion-bind ((cond-I hand-1)
(cond-2 hand-2) . . .)

body 1
each cond-n is either the name of a condition, or a list of names of conditions, o r

Brand X Interpreter 13 Multiple Values

nil. If it is nil, a handler is set up for all conditions (this does not mean that the
handler really has to handle all conditions, but it will be offered the chance t o d o
so, and can return nil for conditions which it is not interested in). Each hand-n is
a form which is evaluated to produce a handler function. The handlers a re
established such that the cond-I handler would be looked at first. All of the hand-i
forms are evaluated before any of the handlers for the conditions are established.
Example:

(c o n d i t i o n - b i n d ((unvalued-concept
'my-unvalued-concept-handler)

((l o s s a g e - 1 lossage-2) l o s s a g e - h a n d l e r))
(p r i n c ' IHe l lo t h e r e . 1)
(do-some-computing))

This establishes the function my-unvalued-concept-handler as the handler for the
unvalued-concept condition, the value of the symbol lossage-handler as the
handler of the lossage-1 and lossage-2 conditions, then prints a message and does
some computing with those handlers established. Condition-bind makes use o f
ordinary variable binding, so that if the condition-bind form is thrown through, the
handlers will be disestablished. This may also matter if one is using funargs.

Note that the signal formalism makes no demands on what the arguments going with a
condition are. An additional layer needs to be built on top of it, tailored to the particular
use. For the Brand X Interpreter, signal is utilized via the fail routine, which provides a
default action when the condition is not handled. The failure mechanism is described later.

In this particular Maclisp implementation of signal, the condition binding environment is
re-bound to the "null" environment in a break loop. (Explain this? This parallels the Lisp
Macltine, where entering the error handler switches stack grows, thus changing binding
environments.)

3.2 Mul t ip le Values

Sometimes one has a relatively complicated computation which produces a value, and
may happen to produce other information which may be of interest to the caller. In cases
like this o n e often returns some data structure containing the various results, e.g. a list. A n
alternative is to have a protocol for passing back and receiving multiple values. The facility
provided for this is derived from Lisp Machine Lisp, and is documented fully in chapter 8.
It is noted here because all of the Brand X Interpreter supports the passing back of multiple
values, and this behaviour is part of the description. Thus, if something is described as
"returning a list of the values from the evaluation of,..", these multiple values are being
refered to.

The existence of the multiple value mechanism in the Brand X Interpreter is experimental.
If it is deemed to be useless, it may be flushed Note however that the overhead of having
multiple values is very very small when they are nor used.

Brand X Interpreter The Failure System

4. The Failure System

The Brand X Interpreter, being essentially an extension of the Lisp environment it exists
in, is constrained by the control flow allowable in that environment. It does not support
backtracking or continuation passing (although since it supports downward funargs t o
approximately the same extent that Maclisp does one could inefficiently and painfully do
some continuation passing). To compensate for this it uses a failure mechanism which is sort
of an extension of the Lisp error system. This uses as a protocol the Lisp Machine derived
signalling convention, described in section 3.1.

4.1 Causing Fai lure

fa i l condition-name format-string (Any-number-of other-arguments)
This is the entry which defines the protocol by which the failure system interacts
with signal. Condition-name is signaled with the same arguments given t o fail. If
the condition is not handled, then the a Lisp error occurs, which should
informatively describe the condition, the reason for the error, and tell where the
failure was signaled from. Note that the mapping from the arguments t o fail t o the
arguments to signal, and the behaviour when the condition is not handled, is
defined by fail; signal would simply return nil if the condition were not handled.
The arguments to the condition handler are different for failure than in the Lisp
Machine error system primarily for efficiency reasons; when an unhandled condition
is signaled via fail, there may be a noticible pause while fail figures out where it
was called from - hence the "caller" is not included in the arguments t o the
handler. Thus, if the Brand X Interpreter existed on the Lisp Machine, it would
not work to call fail with conditions defined by the error system.

The argument convention is that the second argument to fail (and thus t o the
condition handler) is a symbol which can be given to the f o r m a t routine with the
remaining arguments, to construct a legible description of the reason for failure. In
general, some subset of the third through last arguments are defined to be particular
things by the condition handler; for example, the unvalued-concept condition
handler requires this first "data" argument to be the concept for which a value could
not be calculated, as in

(fail 'unvalued-concept
' I The concept -S i s not valuedl
concept- which-is-unvalued)

Additional arguments may be given. A severly abbreviated f o r m a t reference is
included as chapter page 33; full documentation is available in the Lisp Machine
manual, and may be made available separately at some later date if there is sufficient
demand.

DSK:BXOWLD;FAIL PUBDOC

Brand X Interpreter Trapping Failure

4.2 Trapping Failure

Sometimes one desires to "trap" certain kinds of failure. Here are some special forms
which may be used to d o so. They are similar in syntax to the Maclisp *catch routine.

*catch is not yet documented in the Maclisp reference manual. It has the following
syntax:

(*ca tch tag form-1 form-2 . . .)
as in the example

(*catch /negat ive
(mapcar (f u n c t i o n (lambda (x)

(cond ((minusp x)
(*throw /negat ive y))

(t (f x)))))
Y))

which rcturns the first negative element of the list y if one is found otherwise a list of the
applications of f to the elements of y. Note also that the Maclisp *catch has diferenr but
upwards-compatible syntax from the Lisp Machine *catch, in that more than one form may
be spcci'cd and one may specif~l a list of tugs in place of a single tag.

failure-trap SpecialForm
(f a i 1 u r e - tr ap condition-or-conditions

form-1 form-2 . . .)
Condition-or-conditions gets evaluated. It should evaluate to either the condition
name, o r a list of condition names. Those conditions are enabled with a handler
which will throw control back to the failure-trap which established it, causing
failure-trap to return nil. If that does not occur, failure-trap returns a list o f
values returned from the evaluation of the last form - where multiple values are
not being used, that will be a list of one element, somewhat similar to the behaviour
of errset . This may then be considered to be a more highly structured and
specialized version of errset.

failure-trap? SpecialForm
This has syntax identical to failure-trap, and similar semantics. The difference is
that this returns t rather than a list of values if it was exited "normally".

%trace-failure? Variable
This variable is examined by the handler established by failure-trap and failure-
trap?. If it is not nil, then the handler prints an informative message (similar t o
that given by fail when a condition is not handled) before performing the non-local
return to failure-trap (or failure-trap?). In this way one can "watch" failures
which are trapped by failure-trap. If the value of %trace-failure? is the atom
break, then a break loop is entered; the variable args will have some interesting
stuff in it. Note that if this tracing is being done, there may be a noticible pause
while the stack is examined to find the routine which caused the failure. Also, if
o n e desires to trace all failures, one may use the trace debugging facility t o trace
the fail routine.

DSK:BXOWLD:FAIL PUBDOC 27-OCT-80

Brand X Interpreter The Matcher

6. The Matcher

Defined herein is a mechanism for quantifying the closeness of match of a concept
variable to its value. The description here also implicitly defines the inheritance of various
attributes.

The basic premise is that we can identify features of a pattern, and require the value
being compared to satisfy those features. In the process, we can "keep score" of how well
the match is proceeding: this score is what is eventually returned by the matcher, and is
used (admittedly in an ad-hoc manner) to determine whether one value is "closer" t o a
pattern than another value is.

The features noted are those of characterization, functional restriction, and slot values.
The last has two forms; one may either require a slot to just be valued, or one may require
it to have a particular value.

The scoring mechanism for comparing a pattern against a value essentially just adds a
"point" for each feature found in both. If however the feature is not found, then the match
fails. The point score is further modified by allowing some decay baed on the proximities
of the features: if the features are found far from the original concepts, they are thus less
significant than if they had been found close; if the features are far from each other, they
are also less significant. This decay is relatively small compared to the original point scored,
so it effectively allows an ordering of similar concepts. The scoring is detailed later.

compatible-descriptionp (concept object) (concept value)
cd object value

This attempts to tell of object and value are compatible. This is used for argument
matching, value checking, etc. If they are not compatible, it returns nil: otherwise
a flonum representing the degree of matching of the two objects. Note that zero,
which implies no matching features but also no known incompatibilities, is not
returned by this routine; it returns nil instead.

possibly-compatible-descriptionp (concept pattern) (concept value)
pcd pattern value

This is just like compatible-descriptionp but will also return a zero result,
signifying a lack of incompatibility but no intersecting features.

incompatible-descriptionp (concept pattern) (concept value)
This is like

(n o t (possibly-compat ible-descr ipt ionp pattern value))
but is slightly faster because it tells the matcher it need not score the results.

DSK:BXOWLD,FAIL PUBDOC

Brand X Interpreter Primary Characterizations

5.1 Pr imary Characterizations

One notion which warrants special attention is that of the primary characterizations of a
concept. The primary characterizations are calculated as follows. The zero-order
characterizations of a concept is the concept itself. After that, the concept and its superiors
are searched for c properties and c ties. Those which have not been gathered already, and
are not mutually exclusive (hierarchically, as tested by mutually-exclusive?), are collected.
This proceeds iteratively, each iteration adding in the characterizations of the concepts and
their superiors gathered in the previous iteration. When finally none have been added on a
given iteration, the procedure stops, Note that this requires that there not be (directly o r
indirectly) looped c paths.

enumerate-character izat ions (concept concept)
This enumerates all the characterizations of concept, as described above. They are
returned in enumeration order: thus, it is guaranteed that the first element of the list
will be concept.

If we have the small environment
(a b s o r b

[b a r = !baz*t bar &c ! c2]
[f o o = !bar*t f oo &c ! c l]
[c l = !node-l*s c l]
[c2 = !node-l*s c23
[c3 = !node-1st c31
[example = !foo*c !c3]
)

then, if we presume nothing of interest other than what is shown, the primary
characterizations of !example are

(!example ! c3 ! c l)
Note that !c2 is not included because it is mutually exclusive with !cl, which is
encountered first.

5.1.1 Character izat ion Proximities

When the primary characterizations of a concept are enumerated, the proximity of the
characterization found to the original concept is noted also. This is used internally by the
matcher, hence is not returned by enumerate-characterizations (above). The proximity
of a characterization to the concept it (directly or indirectly) characterizes is essentially just
the number of ilk operations which are necessary to get to the characterization. Tracing
8 , . sideways", via the c property or tie, is not counted.

DSK:BXOWLD:MATCH PUBDOC

Brand X Interpreter 18 Functional Restrictors

enumera te-charac teriza tions-and-dis t a n c e (concept concept)
This is just like enumerate-characterizations, but returns the distances also. For
the example in the previous section,

(enumerate-characterizations-and-distances '!example)
would return

(!example 0 !c3 0 ! c l 1)

Compatible-descriptionp compares the primary characterizations of a pattern and value
by requiring that each primary characterization of the pattern except for the first (the pattern
itself) be satisfied by some primary characterization of the value, by being underp-or-equal.
If however one is found which is mutually-exclusive?, then the match is terminated. Each
match found is scored based on both the total characterization proximity, and the closeness
of the satisfying characterization. The scoring mechanism is described later.

5.1.2 Taming the Beast

Since in a large database the characterization enumeration process could become quite
expensive while producing ever diminishing returns, the following variable exists.

%cd-characterization-iterations Variable
This limits the number of iterations performed in enumerating the primary
characterizations of a concept. 0 means that the only primary characterization is the
concept itself. 1 means the concept itself plus all others (not excluded or already
covered) directly attached to it and its superiors. Each additional iteration adds all
the characterizations attached to the characterizations (and their superiors) added in
the previous iteration. This defaults to 1000. Setting it to be less than 1 is not
reccommended.

5.2 Functional Restrictors

The enumeration of the functional rcstrictors of a concept has similarities to, and utilizes,
the enumeration of the primary characterizations of the concept. The enumeration steps
over the primary characterizations, and for each one, looks at it and its superiors for f
properties and ties. Each one found which is neither already noted nor mutually exclusive
with one already noted, is collected.

enumerate-restrictors (concept concept)
This enumerates the restrictors of concept. It enumerates the primary
characterizations to do so.

enumerate-restrictors-from-characterizations characterizations
This enumerates the restrictors from the given primary characterizations.
Characterizations should be a list as returned by either enumerate-
characterizations or enumerate-characterizations-and-distance it is able to
figure out which.

DSK:BXOWLD:MATCH PUBDOC 27-OCT-80

Brand X Interpreter 19 Slot Comparison

Compatible-descriptionp requires that each primary restrictor enumerated for the
pattern be satisfied by some from the value, by being underp-or-equal. Additionally, if
o n e in the value is found mutually-exclusive? with one from the pattern, the match is
aborted. Each such feature compared is scored based on the proximity of the restrictor to
the pattern o r value, and the closeness of the two restrictors being compared; this is
descibed in detail later.

5.3 S l o t Comparison

Compatible-descriptionp offers two methods for matching slots.

5.3.1 Equal Values

The pattern given to compatible-descriptionp may contain somewhere along its
superiors concepts with ties which are slot frame names. For each of these, the value being
matched against is required to have a value for that slot which is equal to the cue o f that
concept in the pattern. Thus,

[!,person*! l o c a t i o n !bos ton]
could match against a person whose !location slot h a a value of !boston.

5.3.2 Required Values

If the pattern given to compatible-descriptionp is a a rg instantiation, e.g.
[!person*arg 11, then the value being matched against is required to have slots having
values for all of the slots on the pattern. Thus, the pattern

[! p e r s o n u a r g 1
&h [!nameuu :]I

matches against a person that has (or inherits) a !name slot value.

5.3.3 F u t u r e Developments

The slot sub-matching is crying out for more generality. What is probably wanted is
incorporate in the scoring a compatible-descriptionp of the values found for the slot: at
this time, n o such checking is performed at all, primarily for efficiency reasons. What is
d o n e now is to simply score a point for such a match, modified only by the distance u p the
superiors of the value which the slot value is inherited from. Thus, if we are matching the
pattern

[! person*! name B I L L]
against

[b i l l = [[! p e r s o n s f !male]*!name BILLIui I]
the score is only based on the proximity of 1.

Brand X interpreter Scoring

5.4 Scoring

5.5 Debugging the Database

Xcd-check-db? Variable
Many places in the Brand X Interpreter validate the integrity of the database based
on the value of Xrset (a flag in Maclisp which tends to increase error checking),
and some routines check their arguments no matter what. The matcher, however, i s
a special case; a few small test cases have shown that in (for example) method
selection, more than 75% of the time is spent in the matcher. The matcher thus has
its own flag for telling it whether it should check to see if things which it would
assume are concepts actually are. This includes such things as c, f, and h
properties, the cues of concepts with c and f ties, etc. Setting this variable non-nil
enables this checking. It defaults to t: putting a symbol in place of a concept on a
c property, for example, could kill the lisp if it were not discovered.

DSK:BXOWLD:M ATCH PUBDOC

Brand X Interpreter Concept Evaluation

6. Concept Evaluation

When a concept gets evaluated, there are four ways by which a value may be found.

(I) The value may already be known

(2) Some reconstruction or "canonicalization" of the concept, based on the structure
of the concept, may have a value

(3) The concept may "match" some other concept in a pool of concepts dynamically
maintained just for this purpose

(4) The concept itself, or some canonicalization of it, may have or inherit a means
of providing a default value for i t

6.1 Values and Binding

The "global value" of a concept is maintained on its v property. This property is
actually a list of values: the evaluation of a concept may return multiple values. The value
of a concept may be bound, again to multiple values. The local values are kept on an alist,
rather than by some "shallow binding" mechanism, for two reasons: there are actually two
alists maintained, so that the bindings of some concepts can be limited by method invocation
(i.e., the bindings will be "local" to some procedure, as discussed in where), and since these
alists are subject to the ordinary Lisp variable binding mechanism, the concept binding
environment is properly handled by ordinary Lisp funargs. Because of this alist binding
mechanism, it is not sufficient to check for a v property to see if a concept is valued. The
following routines are supplied for this:

concept - boundp conccpt
If conccpt is bound, this returns the binding entry - a list, the ca r of which is the
concept, and the cdr of which is a list of its values. This does not check for a
global value (v property). Eq is used for checking, since the binding alist is in
effect simulating changes in the v property of the concepts bound, and changing that
property would not affec:t an equal but not eq concept.

concep t-valuedp concept
If concept has a non-nil v property, this returns concept, else nil.

concept-bound-or-valuedp concept
This is exactly

(o r (concept-boundp concept)
(concept-valuedp concept))

This is most likely what is wanted, rather than concepl-boundp o r concept -
valuedp alone.

Note that the above three routines only attack the first case of concept evaluation. They
may be phased out and replaced by a more general mechanism for testing to see if a value
can be calculated for a concept,

Brand X Interpreter Concept Reconstruction

6.2 Concept Reconstruction

This is more the general case of concept evaluation. The tie of the concept is
examined, and some possibly new concept is constructed in a manner dependent on that,
and this new concept is evaluated as above. There is one built-in mechanism for doing this,
plus a protocol for defining others. What is important, however, is that the canonical
reconstruction of a concept be a fixed point - that is, it should re-canonicalize to itself
(eel).

6.2.1 Slot Frame Evaluation

If the tie of a concept being evaluated is a slot frame tie, then this evaluation
procedure occurs. The intent is to find the value of some slot in some concept. The slot
frame nanre searched for will be the ilk of the original concept if the ilk-evaluable
keyword is not present in the slot-frame-tie property of the tie, otherwise the evaluation
of the ilk. The concept on which the slot will be searched for will be the cue of the
original concept if the cue-evaluable keyword is not present, otherwise the evaluation of
the cue.

The concept which is the canonical representation of this is the slot frame on the
(possibly evaluated) cue which has an ilk of the (possibly evaluated) ilk. That slot frame
need not exist; the value can be inherited, as discussed earlier, and if the canonical
representation is needed, that slot frame will be created if it does not exist. If we have

[person = ! animate-enti ty*s person
&h [!location*u :]I

[b i l l = !person*i b i l l]
then an attempt to find the canonical representation of

[! location*q ! b i l l]
will cause a new concept to be created and attached to !bill:

[b i l l = !person*i b i l l
&h (!locationuuq :) I

The tie used for the creation of this new concept is determined from the slot-frame-
name property of !location. The slot frame tie uq results in a fixed-point because it h a
neither the ilk-evaluable nor cue-evaluable keywords in its slot-frame-tie property,
thus causing a re-canonicalization of it to refer to itself by refering to the !location slot of
!bill.

Brand X Interpreter Available Objects

6.2.2 Programmable Evaluation

Discussion defered under development.

6.3 Available Ob jec t s

This is an experimental mechanism by which one can cause a concept to be evaluated
finding a "best match" out of a pool of concepts dynamically maintained for that purpose. It
is used for concepts which do not have "special evaluation" indicated by their ties, and
which d o not already have values. There are two different ways in which one can add o r
delete concepts from this pool. One way is specific to evaluation of a form whose c a r is a
concept: discussion of this is defered. The other is to use one of the following special
forms for the purpose. Note that all four of these special forms evaluate their first argument
t o determine the object or list of objects they will hack.

using-ob jec t Special Form
using-ob jec t s Special Form

(u s i n g - o b j e c t object
form-1 form-2 . . .)

(u s i n g - o b j e c t s list-of-objects
form-1 form-2 . . .)

evaluates each of the form-i in an environment where the objact(s) specified a re
made "available for use".

inhibi ting-use-of-object SpecialForm
inhibiting-use-of-objects Special Form

(i n h i b i t ing-use-of -objec t object
form-1 form-2 . . .)

(i n h i b i t i ng -use -o f -ob j ec t s list-of-objects
form-1 form-2 : . .)

evaluates each of the form-i in an environment where the object(s) are no longer
"available for use".

One may then, for instance, do
(u s i n g - o b j e c t ' !knife-1

compute)
and presumably if compute attempts to evaluate !knife, it would evaluate to !knife-1 rather
than causing an unvalued-concept error (assuming, of course, that !knife does not already
have a value!).

This mechanism is subject to change. At this time it is unclear whether it is reasonable
the "use" of an "object" to be scoped as it is. It is also possible that a more specific
mechanism, such as "offering" objects to specific procedures rather than to "just anyone" may
be a better strategy.

Brand X Interpreter Default Values

6.4 Default Values

If a concept or its canonical reconstruction has no value, has no match from the
available object mechanism (previous section), and inherits (via look-for-inherited-
properties) a get-default-values property, then the first element of that property should
be a Lisp function. That function is called with two arguments: the concept (or
reconstruction), and the cdr of the property (which could be additional information for the
function). It should return a list of the values of the concept. If it so desires, it could give
the concept a value using the cset special form (page 24).

This hook could therefore be used for driving question asking, or simply to provide a
default value.

6.5 Modifying Values

Here is where the fixed-point of concept canonicalization comes in. If it is desired to
change the value of a concept, it is necessary to find the concept whose value is to be
changed. The mechanism by which this is done is to pseudo-evaluate, or canonicalize, the
concept. This result is then the concept whose value is to be modified. The reason a fixed
point is desired is that this canonicalized concept may be passed around and get recursively
re-processed, by perhaps cset from within a routine which asks for the value.

cse t f Special Form
(c s e t f concept value)

This changes the value of concept to be value. Specifically, this finds the canonical
representation of concept, which is not evaluated other than subevaluations performed
for canonicalization purposes, and sets its bound or global value (as appropriate) to
value. If value returns multiple values, all of them will be transfered.

(c s e t f [! location*q ! b i l l] / ! b o s t o n)
Note the use of the q tie to inhibit any subevaluation of !location or !bill.

cset Special Form
(c se t concept value)

This is just like csetq, but the concept form is evaluated in order to get the concept
which is to be canonicalized. That is, the example under csetq could be re-written
as

((lambda (v a r)
(c s e t var / ! b o s t o n))

'[! location*q ! b i l l])

Brand X Interpreter Modifying Values

6.5.1 Checks

When a concept is being assigned a value or values, some checks are made on the
assignment. One of the checks made is whether or not the concept may have as many
values as it is being assigned. Currently the only time this check actually gets made is when
the concept is a slot frame; in that case, the number is determined from the s lo t - f rame-
t i e property of the tie of the (canonicalized) concept. The only distinctions made are none,
one, or many, as determined from the presence or absence of the single-valued and
multiple-valued keywords. If the number is incorrect, then the wrong-number-of-
values condition will be signalled (via fail, as always); that condition gets extra arguments
of the concept being assigned, and the list of values. Another check made, also only t o
slot frames, is whether or not the concept is read-only. If this keyword is present, then the
assignment-to-read-only-concept is signalled, in the same manner. Both of these checks
are of questionable utility by being applicable only to slot frames, and may be flushed in
favor of a more comprehensive mechanism.

check-value-compatibilities (:concept concept) value-list (Optional sum-up-matches?)
Another check made during concept assignment (and binding) is that of value
compatibility. This routine attempts to determine if each of the values in value-list is
compatible with concept. Additionally, if sum-up-matcha? is not nil, it attempts t o
quantify the closeness (ala compatible-descriptionp). If the concept inherits a
value-restrictions property, then that alone is used to determine if each of the
values is compatible with the concept. The property should be a list of functions,
which will be called in order on three arguments:

concept
The (canonicalized) concept which is being assigned

value The value (or one of the values) it is being given

sum-up-matches?
This flag is passed along. If i t is given and it is not obvious what should
be returned, 1.8 is a good default.

The function should return nil if the value is not compatible with the concept,
otherwise something else, which should be a flonum if quantify-match? was not nil.
There should be some initially supplied value-restriction functions for common cases such
as jixnum. jlonum, number.
If a value-restrictions property was not found, then each value must be a
concept, and possibly-compatible-descriptionp (or incompatible-descriptionp,
depending on sum-tp-mntches?) is used.
If an incompatibility is found, then the incompatible-description condition is
signalled. This gets extra arguments of the value which is incompatible, and the
concept.

DSK:BXOWLD;CSETF PUBDOC

Brand X Interpreter Interpretation

7 . Interpretation

When a form (either a list, clist, or ulist) is encountered by the Lisp evaluator and its
c a r is a concept, control is passed to the concept evaluator. The concept evaluator then
evaluates the arguments (if any) to the concept, and attempts to find a procedure which is
suitable for both the arguments, and the external environment. The mechanism for this is
accomplished by having partial definitions or methods for the concept being applied, each of
which can have multiple procedura with prerequisita. The prerequisites, in turn, can
optionally have subgoals which are to be recursively evaluated to attempt to satisfy the
prerequisite if it is not already true.

7.1 The General Behaviour

(def ine-methods !hit
([!hit !physical-object]

(requ ire requirement-1 requirement-2 . . .)
(prerequisites prerq-1 prereq-2 . . .)
(steps step-1 step-2 . . .))

([!hit !person]
(require requirement-I requirement-2 . . .)
(prerequisites prerq-1 prereq-2 . . .)
(steps step-l . . .)) . . .)

The evaluator looks at the concept being applied and its superiors. At each level, it
selects those partial definitions (methods) whose formal parameters "match" the argument and
whose requirements are satisfied, and orders them according to an estimation of the number
of matching features in common.

The requirements of a method are simply concepts which must be evaluable for this
method to be viable. This test effectively uses the normal concept evaluation procedure,
described earlier. The "closeness of fit" of the value(s) found to the required concepts is
quantified and aids in selecting the "best" method.

Once the methods have been pruned and ordered by this matching procedure, they are
tried in order. A binding environment is established, pairing the elements of the formal
parameter list to the calling concept and its arguments. Then, each of the prerequisi tes t o
the method are evaluated, in order. A prerequisite is simply a form to be evaluated as a
predicate: if it evaluates to nil then it is not satisfied, and that method will be aborted. If
however the prerequisite has a subgoals property, then that is a list of forms which should
be evaluated in order to "satisfy" the prerequisite. They will be evaluated, and the
prerequisite evaluated again to see if it has indeed become satisfied. During the evaluation
of the subgoals of a prerequisite, the prerequisite-failure condition is enabled such that if
fail is called with that condition, the subgoal evaluation will be aborted, and the method
being tried will be punted.

Brand X Interpreter 27 Matching and Selection

Finally, when all of the prerequisites of a method have been satisfied, the s t eps are
evaluated, in order. If all goes well, the value of the last step will be returned as the value
of the original application. During the evaluation of the steps, the method-fai lure
condition is enabled. If it is signaled, then that method will be aborted and the next
method tried. Note that it is up to the user to restrain the usage of this condition so that
harmful side-effects d o not occur before it is used in a method body.

7.2 Matching and Selection

An argument is said to match a formal parameter in a partial definition if it satisfies
compatible-descriptionp (page 16) of that formal parameter. A method is considered t o
match the call if all of the formal parameters of the method match the calling concept and
its arguments, respectively. It is deemed not to match if the number of formal parameters is
not the same as the number of arguments. It also does not match if some of the requi red
concepts could not be evaluated. The quantification of the fit of the method t o the
application is the sum of all of the compatible-descriptionps performed:

(I) The first element of the formal parameter list against the calling concept

(2) Each of the arguments of the application against the corresponding remaining
elements of the formal parameter list

(3) The value(s) of each of the required concepts against that concept.
The methods thus pruned are ordered by this sum.

Note also that the above occurs for each superior of the concept being applied until a
method gets successfully executed. I'ossibly what should happen is that the entire set o f
partial definitions of all the superiors will be considered at once.

In order to allow partial definitions which need to contain "identical" formal parameters
for matching, the formal parameters may be individualized by making a new concept with a
t i e of the atom arg. That is, if one needs a partial definition of the form

[! f r o b n i c a t e ! o b j e c t ! o b j e c t]
one mag use instead

[! f r o b n i c a t e [! o b j e c t s a r g 1 1 [!ob j ec t s a rg 233
The matching (proximity calculation) will be performed on !object, but the concepts bound
will be [!object*arg 11 and [!object*arg 21.

Brand X Interpreter Events

7.3 Events

The interpreter maintains its own "stack" in a structure known as the event s t ructure .
An event is a concept: its ilk is the "previous" or "calling" event, i.e. the next frame up the
stack. The tie is a concept which describes what that stack frame was created for, and the
cue is data the interpretation of which depends on the tie.

At present, events are created (pushed) at the following times:

(I) When a combination is evaluated. The tie is the concept !call, and the cue is
the form being evaluated.

(2) When a method (partial definition) is being tried. The tie is the concept
!application, and the cue is a cons of the partial definition, and the (evaluated) ,
argument list. This event formation also corresponds to a change in the binding
environment: the event will have some property or properties from which the
concept binding environment may be re-created.

(3) When a procedure is tried. The tie is the concept !procedure, and the cue is
the procedure being tried.

(4) Various other operations may produce special-purpose event frames. Eventual
design decisions will determine whether these should be flushed or documented,
or whether access to the event structure should be provided only through special
routines;

A point which needs to be settled is whether or not the event structure should be
susceptible to funarging. One can currently create and use downward funargs: they will
correctly use the concept binding environment in effect at the time of creation of the
funarg. They will also use the event structure in effect then also (and whatever else is
attached to the event structure, such as "available objects", section 6.3, page 23). Since the
event structure is intended to correspond to a "control stack" rather than the binding
environment, this is of debatable correctness. This is fixable (by using Lisp's unwind-
protect), but not without impairing efficiency by some unknown amount. Whether this is
worthwhile is dependent, like the handling of failure, on how the event structure is to be
used.

It is possible that the interpretation process as seen through the event structure will
become more finely divided, in order that the process of procedure selection may be
remembered and continued at some later point. Currently such developments are
speculative, and are dependent on decisions about what is useful and reasonable for the
evaluation process.

Brand X Interpreter Side Effects

7.4 Side Effects

Attempts to handle side effects in view of failure are being punted. (At this time the
only operation safe from side effects before failure is the binding of the formal parameters
of a partial definition.) It is probably impracticable to handle them correctly in general
anyway. Note, however, that the use of prerequisites rather than failure inside of a
procedure can be used as an optimization for the prevention of side effects, if the
convention is assumed that evaluation of a prerequisite has no side effects. This is
unfortunately not the case if the prerequisite has subgoals; more thought is needed here.

7.5 Defining Methods

Two routines are provided for defining methods for a concept.

define-method Spccial Form
(d e f ine-method on-conccpt method

(r e q u i r e require-1 require-2 . . .)
(p r e r e q u i s i t e s prerq-1 prerq-2 . . .)
(s t e p s step-1 step-2 . . .))

The require and prerequisites clauses are optional, and none of the "arguments"
are evaluated. Essentially, this gives method require, prerequisites, and s l e p s
properties of the corresponding items (or removes them if the clause is absent), and
adds mahod (using addp) to the methods property of on-concept. Because of this,
it is probably a good idea for method to be unique (if not canonical).

define-methods Macro
This allows one to define several methods at once; the format is shown in the
example on page 26.

Brand X Interpreter

8. Multiple Values

Multiple Values

T h e Brand X interpreter contains a module simulates a scheme for allowing multiple
value returns, as implemented on the Lisp Machine. It works properly as long as t he
following discipline is maintained:

(I) One only attempts to retrieve multiple values from something which returns
multiple values

(2) Expressions which ever return multiple values should always exit via a special
form (such as values) which causes return of multiple values.

T h e reason for the latter is that ordinary Lisp evaluation is totally transparent t o the passing
back of multiple values (in this particular implementation), s o in cases where (say) a
function may return o n e o r two values, the one value case needs to explicitly reset t h e
passed back extra values. There are, of course, special cases where o n e cannot know; a
mechanism for handling this is discussed in the last section of this chapter, but that is
primarily for use by the evaluator itself, or the construction of special forms.

8.1 Pass ing Back Mul t ip le Values

v a l u e s first-form (Any-number-of other-forms)
Values takes o n e or more arguments, and returns them all as multiple values.

m v - r e t u r n required-form (Any-number-of udditional-forms)
This takes o n e o r more arguments, and r e t u r n s them as values from the cu r ren t
prog, d o , o r loop.

mu1 t iple-values-from-lis t list
This returns the elements of list, which must have at least o n e element, as multiple
values.

r e t u r n - l i s t list
This returns the elements of list, which must have at least o n e element, as values
from the current prog, do (or loop) .

8.2 Receiving Mul t ip l e Values

multiple-value-l ist (Unquoted form)
(mu1 t i p l e - v a l u e - 1 i s t form)

returns a list of all the values returned by the evaluation of form.

Brand X Interpreter Other Special Forms

multiple-value Macro
(mu 1 t iple-va lue set-list form)

is one way to retrieve multiple values from the evaluation of form. Set-list, which
does not get evaluated, is a list of atomic symbols or concepts: they will be set t o
the corresponding values returned by the evaluation of form.

mv-bind Macro
(multiple-value-bind bind-list apression

form-I form-2 . . . form-n)
This is similar to multiple-value, except that the elements of bind-list are bound to
the values returned by the evaluation of expression, and each of the forms evaluated
in that environment. The value (or values) returned by the last form is returned.
By special dispensation, one may specify the data type of an atomic symbol in bind-
list by listing the data type name (which mtlrt be an atomic symbol) and the variable.
For example,

(multiple-value-bind ((fixnum quo) (fixnum rem))
(quorem foo bar)

(compute-a-lot))
This is useful for declaration purposes.

8.3 O t h e r Special Forms

mv-progl (Unquoted first-form) (Any-number-of (Unquoted other-forms))
This is like progl, but correctly passes back the all of the values returned by the
first form. P rog l should not be depended on to do so.

mv-prog2 (Unquoted first-form) (Unquoted second-form)
(Any-number-of (Unquoted other-forms))

Like mv-progl.

mv-impasse (Any-number-of (Unquoted forms))
(mv-impasse form-I form-2 . . .)

is just like progn but guarantees that only one value will be returned.

8.4 Mult iple Value Pairs

Here are some routines and macros for handling cases where one needs to efficiently
remember and then transparently pass back multiple values. The idea is that we collect the
multiple values in two places: the first is passed back as the value (of multiple-value-pair),
and the remainder are consed in the heap and remembered by side-effect. Thus there is n o
heap consing in the common case where only one value is returned. These routines are
primarily useful to things like the evaluator itself, and to implement such things as mv-
progl .

DSK:BXOWLD;MVAL PUBDOC

Brand X Interpreter Multiple Value Pairs

multiple-value-pair Macro
(multiple-value-pair form serf-form)

evaluates form, returning its first value, and as a side effect stores a list of the
remaining values into serf-form, using the setf special form. Typically setf-form
will simply be a variable name. The type of datum it will receive should not be
depended on.

multiple-values-from-pair first-value remaining-values
This returns multiple values as collected by multiple-value-pair.

re turn-pa i r first-value remaining-values
This effects a mv-return of multiple values as collected by multiple-value-pair.

DSK:BXOWLD:MVAL PUBDOC

Brand X Interpreter Format

0. Format

This chapter is included in lieu of a separate, more comprehensive document. It is not
intended to be complete or proper documentation of format , but is included so that
minimal use of it may be made using signal via fail.

f o r m a t dcstination control-string (Any-number-of args)
Forma t , in the simplest case, outputs the characters of control-string to destination.
When a tilde character is encountered, the following character is taken as a dispatch
command, to produce special output, possibly utilizing the extra args. (Special flags
and parameters may be inserted between the tilde and the dispatch character; they
will not be considered here.) Destination may be:

nil Rather than performing I/O, the characters which would have been
output are returned as a string (uninterned symbol in Maclisp).

t t as an output file specification means the terminal in Maclisp; however
to format , it means "the default", i.e. what you get when you p r in t
something with no file specification argument.

any other valid Maclisp ourput file specification
Just outputs the characters there.

Here are a few of the common format dispatch characters:
-A princs the next argument.

NS prinls the next argument.

-D Outputs the next argument in decimal (but with no decimal point after integers).

4 Outputs a newline

N& Does a fresh-line operation - if the destination stream of f o r m a t is already at
the start of a new line, does nothing, otherwise outputs a newline.

Examples:
(f o r m a t n i l 'IHere a r e t h r e e do t s : -A and fou r : -S1

' I . . . I 'I.. . . I)
=> IHere a r e t h r e e d o t s : ... and four : /I ... / I 1

(f o r m a t t 'I-&The number -D was no t equal t o -D.-XI
259. 403 .)

prints, at the start of a new line,
The number 259 was no t equal t o 403.

and follon?r it with a new~line

Thus,
(f a i l 'unvalued-concept

'IThe concept -S i s no t valuedl
' ! person)

could result in the following message (possibly embedded in other text):

Brand X Interpreter 3 4

The concept !PERSON i s not valued

Format

Brand X Interpreter 35

Index

Index

Sccd-characterization-iterations Variable 18 . %cd-check-db? Variable 20
%trace-failure? Variable . 15
assignment-to-read-only-concept Gndition 25 . c Property 4.17 . c Tic 4.17 . c d Function 16
characterization . 4
check-value-compatibilities Function . 25
compatible-descriptionp Function . 16 . Concept definition template 26

. concept. data type 2 . concept. definition 2
concept-bound-or-valuedp Function . 2 1 . concept-boundp Function 2 1 . concept-valuedp Function 2 1 . conceptp Function 2 . condition-bind Specialfirm 12 . cset SpccialForm 24 . csetf SpecialForm 24 . cue. as slot frame value 6 . define-method Special Form 29 . define-methods Macro 29 . defugl Function 10

. enumerate-characterizations Function 17
enumerate-characterizations-and-distances Function 18 . enumerate-restrictors Function 18
enumerate-restrictors-from-characterizations Function 18 . equal vs eq 3. 6 . fail Function 14 . failure-trap Special Form 15 . failure-trap? Special Form 15

. fetch-slot Function 9
find-generic-slot Function . 9
find-slot-in-superiors Function . 9 . format Function 3 3 . h Propcrty 6 . incompatible-description Condition 25 . incompatible-descriptionp Function 16
inheritance . 5 . inhibiting-use-of-object Special Form 23 . inhibiting-use-of-objects SpecialForm 23
look-for-inherited-properties Function . 5

Brand X Interpreter Index

. look-for-metacharacterization Function 6
look-for-slot Function . 9 . m Property 5 . make-ltm-concept Function 2
make-or-find-slot Function . 8 . make-slot Function 9 . make-stm-concept Function 2 . metacharacterization 5 . multiple values. on concepts 21 . multiple-value Macro 31 . multiple-value-list Function 30 . multiple-value-pair Macro 32 . multiple-values-from-list Function 30 . multiple-values-from-pair Function 32
mutual exclusion . 4
mutually-exclusive? Function . 4 . mv-bind Macro 31 . mv-impasse Function 31 . mv-prog 1 Function 31 . mv-prog2 Function 31 . mv-return Function 3 0 . pcd Function 16 possibly -compatible-descriptionp Function 16 . prerequisite-failure findition 26 . print-structure Function 11 . print-tree Function I I . return-list Function 30 . return-pair Function 32 . signal Function 12 . slot frame 6

. slot frame name 6 . slot frame names. in pattern matching 19 . slot frame tie 6 . slot frame. finding value 6
slot-existsp Function . 9 . slot-frame-name Property 8. 22 . slot-frame-tie Property 7. 22
slot-frame-tie-data Function . 7
slot-frame-tiep Function . 7 . slot-frame-ties Function 8 . steps Property 27 . subgnats Property 26
superiors Iteration Path . 3 . underp Function 3
underp-or-equal Function . 3 . using-object Special Form 23 . using-objects Special Form 23

Brand X Interpreter Index

. v Property 21 . value of slot frame 6 . value-restrictions Property 25 . values Function 30 . wrong-number-of-values Condition 25

