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Abstract

Brand x is a simple representation language implemented as a pure extension of lisp. Brand x provides
the following additional facilities over LISP: Unique and cflr/owca/stmcturcs, property lists for all objects, labels
for all objects, and a syntax to express each of these, supported by a reader and printer. Brand x is intended as
an '"assembly language" for representation languages, attempting to provide facilities generally found useful in
the simplest manner, without any strong commitment to specific representational conventions.
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1. Introduction

'Hie past decade has seen the introduction of numerous programming languages and representational lan
guages specifically intended for use by the Al community. The early seventies saw the introduction of languages
(e.g., planner, connivkr, Oa4) which incorporated higher level data structures, novel invocation and control
structures, context mechanisms, and rule-like representations of knowledge [8,14,13]. Later research, focusing
on problems of the meaning of representations, has led to a new group of languages (e.g., krl, frl, kl/one)
emphasizing the structure of representations, multiple descriptions and viewpoints, "frame-like" systems, and
procedural attachment [2, 12, 16). Despite the promise and even popularity of these languages, most Al
programs continue to be written in that robust standby which precedes the above by a decade, LJSP.

The attraction of LISP continues to be its great simplicity and mutability, allowing any user to build fea
tures of more power and incorporate them within the language. The contrasting weakness of each of the above-
mentioned languages is that they make representational and control commitments which, although appropriate
to some applications which guided the development of the language, later appear arbitrary or wrong for other
potential uses. To successive generations of Al researchers, it continues to seem more attractive to implement
their own language extensions on top of LISP than to accept a complete package of conventions provided (or
imposed) by the more recent language designers. However, some generality docs exist among the facilities
that have been repeatedly invented. It is obviously desirable to provide as powerful a set of such facilities as
possible, without overstepping the bounds of commitment which make the resulting language unacceptable.

Brand X has been designed and implemented with these observations as the guiding principle. Its im
mediate predecessor is die XLMS language of Hawkinson [7], which has been used by the authors and their
colleagues both as a data base and as the implementation medium of OWL [9, 15]. Brand x was inspired by
the observation that many of the facilities provided by XLMS appeared merely to duplicate features already
adequately provided by LISP, suggesting that its function could be greatly simplified by implementing instead a
limited, general set of extensions to LISP.

The authors are sometimes asked if they can explain in a simple way the advantage of implementing a
semantic network in brand x over implementing it directly in LISP. Typically, a semantic network is a difficult
data structure to read and print in LISP. It has backpointers which create circular strucutures, and it is so
strongly interconnected that given any piece of it to print, LISP print functions often print the whole network. In
lisp, the traditional way to meet these difficulties is to make every node of the network an atomic symbol, with
the network links on its property list. Given an atom, LISP will print just its name, not tracing down the property
list, and thus not looping through the whole network. There arc at least four difficulties with this solution.
First, these node atoms take up quite a bit of memory space. This space can be reduced somewhat if the atoms
arc not made unique in memory, but then one cannot refer to a node by typing in its atom name. Second,
if user programs create new network nodes, the nodes are typically given names such as G0001, G0002, etc.
These names do nothing to improve die intelligibility of the semantic network. I riird, because the standard
i.isp printer will print only the name of a node, the programmer must generally write a set of special purpose
print functions to print just those links which arc desired. Such code must be carefully written to avoid printing
semantic network loops. Finally, there is no declarative notation which the programmer can use to make the
task of inputting a semantic network easy. The programmer may again write special functions for this purpose.
Typically, the input notation as defined by these functions will differ from what is generated by the special-
purpose print functions. Thus, the application may lack ijsp's useful ability to read back whatever can be
printed. In brand X, we provide the user with an alternative to using atoms for nodes and we deal with the
above difficulties in a general manner. The essence of die solution is to make it possible for data structures
other than atoms to be unique and to have properties. These then become an alternative to atomic symbols for
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representing nodes. A systematic approach to reading and printing all data structures is then provided. Other
features and conventions for building semantic networks may also be useful, but the authors do not want to be
committed to them at the implementation language (BRAND x) level [10].

2. Overview
Brand x is implemented as an extension of lisp (Maclisp [11]), and thus completely includes its facilities,

and supports the following additional features:
a. unique and canonical list structures—providing a data base facility in which expressions may be

identical when composed of the same subexpressions,
b. universal property lists—permitting the attachment of property/value pairs to any object in the

language,
c. labels—providing an abbreviation for convenient reference to complex expressions,
d. an extended US? notation—allowing a convenient mechanism for reading and printing any LISP

and brand x structures.
e. triples—a special, compact data type having three components (especially for the support of

OWL), which is optionally present in the language.

The rest of this section gives a brief introduction to the concepts underlying the above features, and the
rest of this report lists the available functions which support the features.

2.1 Equality, Identity, Uniqueness and Composed Objects

The traditional definition of equality holds that two objects arc equal if they arc indistinguishable by any
known test. In that case, of course, one may as well speak of just one object, although various paradoxes based
on that interpretation have been suggested. In computation, however, the above definition of equality is not the
one usually favored. This is because computer models of the real world often permit tests of distinguishability
which arc artifacts of the implementation.'Typically, computer implementations can distinguish objects based
on their address in the memory of the computer; thus, two otherwise-equal objects may be distinguishable by
being at different addresses. For example, although we would like to think of the two numbers 999 and 999
as equal, some lisp implementations find them distinguishable under the EQ predicate, which tests equality of
address.

One standard solution to the undesirable nature of strict equality is to distinguish between identity—
true indistinguishability—and equality—flow taken to mean indistinguishable in the real world, even though
distinguishable in the implementation. Lisp's EQ and EQUAL predicates capture these notions of identity and
equality, respectively.* The distinction between identity and equality is important not only for very significant
efficiency considerations, but also because the ability of programs to cause side-effects permits them to distin
guish among EQUAL but non-identical (non-EQ) objects.

A second standard solution is to adopt a convention and mechanism for uniqueness, in which objects
intended to be equal arc indeed made EQ—i.e., objects arc made unique according to the equality criteria, so
the system permits the existence of only the single unique representative of an (equivalence) class of EQUAL
objects. Lisp's interning mechanism performs essentially this function for atomic symbols. This solution is
motivated by the desire to use EQ as the standard equality test, for the reasons cited in the last paragraph.

"Both are defined more technically, of course. EQ is defined as identity of address, and EQUAL is defined as a recursive test which
checks for the identity of primitive objects and the equality of constituents of compound objects. EQUAL is further modified so
thai equality of numbers is tested by identity of type and numerical equality (ar — y = 0) of the values.
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The additional effort needed on input to create or find the unique object implied by the one actually input is
more than rewarded by the possibility of efficient algorithms based on the assumption that some class of EQUAL
objects is indeed unique (EQ) [6].

The case of LISP'S handling of atomic symbols deserves investigation in its own right, as a guide to how
interning is to be viewed in general. Suppose we intend LISP atomic symbols to be the same whenever they are
spelled the same. Then the desired equality test on LISP atomic symbols is SAMEPNAMEP, which is true just if
its two arguments arc atomic symbols which are spelled identically. The lisp reader, using the system-provided
INTERN function, chooses a unique instance of all symbols with the same spelling and assures that that same
instance is read each time a symbol of the same spelling is input* This assures that (ordinarily) all instances
read of the same-spelled symbol are EQ—thus, atomic symbols arc unique.

To understand how we might define uniqueness for composite objects, consider in detail the ideal nature
of the INTERN function. Formally, INTERN is a function which maps atomic symbols to atomic symbols such
that its result is the representative of tlic equivalence class into which its argument falls when the set of atomic
symbols is partitioned by the function SAMEPNAMEP. If I ISP interned all atomic symbols, we would say that

• atomic symbols arc unique (with respect to EQ) under the predicate SAMEPNAMEP.
We take all objects to have certain characteristics known as criteria!. These arc the characteristics used by

the partitioning predicate of an interning scheme. For example, the spelling of an atomic symbol (the sequence
of characters in its written form) is criteria^ but other characteristics such as its value, properties, and address
are not, in the above interning scheme.

Brand x introduces two new list data types with different criteria for uniqueness: ULISTs (Unique LISTs)
and CLIS1 s (Canonical LIST s). The fundamental interesting characteristic of these types is that:

• ULISTs arc unique (with respect to EQ) under the condition that their critcrial components
(CAR and CDR) are identical (EQ), and

• CLISTs arc unique (with respect to EQ) under the condition that their critcrial components
(CAR and CDR) arc equal (EQUAL).

Brand x also provides a new data type TRIPLE, and notions of uniqueness and canonicity for it. A triple
is a compound object with three critcrial parts, its ILK, TIE, and CUE. Just as ULISTs and CLISTs are defined
for list structure, BRAND X defines UTRI PLEs and CTRIPLEs.*

Other MACLISP data types (arrays and hunks) arc considered innately unique and canonical.*

3. Constructor and Selector Functions

3.1 List Structure

Corresponding to lisp's CONS, BRAND X additionally provides UCONS and CCONS to create new ULISTs
and CLISTs. As a convenience, other functions which form unique and canonical list structure are also
provided.
Even this has exceptions, as USP's INTERN actually stores its representative instances in an OBLIST or OBARRAY. of which

multiple versions may be maintained. In addition, some LISP functions can create atomic symbols without interning them. To add
to the possible confusion, USP's definition of EQUAL unfortunately yields false when two symbols arc SAMEPNAMEP but not EQ.
T BRAND X exists in versions which either include or do not include support for triples. The following documentation is for the
version including triples, but it notes where differences arise in the non-triple version.
*Thcre b no reason why notions of uniqueness and canonicity could not be extended lo these other structured objects as well, but
this was deemed unnecessary and is not currently done.
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UCONS xy
Creates (or finds) the unique ULIST whose CAR is (EQ) jc and CDR is (EQ);-. If both arguments
arc canonical, the corresponding CLIST is returned instead. The arguments are not altered, ex
cept under the control of the flags CC0NS, UATOM, and UNUMBER, described below. Except for
these circumstances, the standard form lisp conditions, that (EQ X (CAR (UCONS X Y)))
and(EQ Y (CDR (UCONS X Y))), arc satisfied.

CCONS xy
Creates (or finds) the canonical CLIST whose CAR EQUALS x and whose CDR EQUALS y.
Because die critcrial components of a canonical structure must be canonical, canonical copies of
any non-canonical arguments must be used to form the new structure (sec CANONICAL, below).
Therefore, it is not in general true that (EQ X (CAR (CCONS X Y))) and (EQ Y (CDR
(CCONS X Y))).

ULIST Xi,...,Xn
Makes a UL 1ST of its arguments by repeated application of UCONS.

ULIST* xlt...,xn
Makes a UL 1ST just as UL 1ST, except that the list ends with the final CDR being xn rather than
NIL. ULIST* is to ULIST as USP's LIST* is to LIST. Note that (ULIST* x y) is the same
as (UCONS x y), and that (ULIST* x) is the same as x, except for possible conversions due
to the flags CCONS. UATOM, or UNUMBER.

•ULIST arglist
Applies the function ULIST to its single argument, which becomes the list of arguments to
ULIST.

*ULIST* arglist
Applies the function ULIST* to its single argument, which becomes the list of arguments to
ULIST*.

CLIST *!,...,-x,,
Makes a CLI ST of its arguments by repeated application of CCONS.

C L I S T * X i , . . . t X n V
Makes a CLIST of its arguments, whose final CDR is Xn. Sec ULIST* for more details.

♦CLIST arglist
Explicit list of arguments version of CLIST. See *ULIST.

•CLIST* arglist
Explicit list of arguments version of CLIST*. See *ULIST*.

The selector functions for unique and canonical list structure arc simply USP's CAR and CDR.

3.2 Triples

The data type TRIPLE, provided in some versions of brand X, is a three-component structure, whose
components arc called ILK, TIE, and CUE. The following functions compose and decompose such objects:



8 B r a n d X M a n u a l

T R I P L E i l k t i e c u e ,
Creates a non-unique, non-canonical triple whose three components arc ilk, tie, and cue.

UTRIPLE ilk lie cue
Creates (or finds) the unique TRIPLE with components each EQ to the given arguments. The
flag CCONS, if non-NIL, causes CTRIPLE to be used instead. The flags UATOM and UNUMBER
have the same effect as for UCONS.

CTRIPLE ilk tie cue
Creates (or finds) the canonical TRIPLE with components each EQUAL to the given arguments.
Because the components of canonical structures must be canonical, the CANONICAL versions of
the three arguments arc used.

ILK triple
This function returns the ILK component of a triple. The function +ILK has the same effect but
performs no error checking.*

TIE triple
This function retrieves the TIE component of its argument +TIE may be used more efficiently
if the argument is known to be a triple.

CUE triple
This function retrieves the CUE component of its argument +CUE exists for the same effect
without error checking.

3.3 Control Rags
ITie following flags control whether unique lists (and triples) are formed at all or always made canonical,

and whether atomic symbols and numbers must be interned before being used as components of unique
structures.

CCONS
If this flag is non-NIL, UCONS always acts like CCONS—this eliminates ULISTs from brand x.

UATOM
If this flag is non-NIL, then INTERNcd versions of all atomic symbol arguments are used by
UCONS—this eliminates the use of non-interned atomic symbols from unique list structure.

UNUMBER
If this flag is non-NIL, then NINTERNcd (see below) versions of all numbers are used by
UCONS—this assures that all numbers appearing in unique structure arc also unique.

Each call to UCONS, CCONS, UTRIPLEand CTRIPLE causes the created cell to be added under Uic CAR-
1 (inverse CAR) property of its CAR (ILK, in the case of triples). This structure is necessary to maintain unique
ness and canonicity, and is also often useful for other indexing and searching applications. The function CAR-1
retrieves the list of objects so indexed under its argument.

CAR-1 object
Retrieves the list of objects whose CAR (or ILK) is known to be object. These will typically
be only unique or canonical objects, because others are not cross-indexed by the creation func-
tions.

"in the current implementation, the ILK is in fact the CAR of the MACLISP structure used lo represent triples. Thus, (CAR triple) is
identical with (ILK triple), and this fact may be useful for writing efficient algorithms. It is better programming practice, however,
to use UK or +ILK when a triple is involved, because of the desire for data abstraction.
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4. Unique and Canonical
The functions UNIQUE and CANONICAL arc provided to return the unique and canonical versions of their

inputs. Listed here are
1. die brand X types to which each function applies,
2. the components of those types considered critcrial by the function,
3. the equality predicate used on objects of that type, and
4. a description of the resulting value returned by the function.

4.1 UNIQUE

a t o m i c s y m b o l p r i n t n a m e S A M E P N A M E P
Atomic symbols are made unique by the I JSP primitive INTERN. The representative clement of
the equivalence class under SAME PNAMEP is the first symbol seen with that name.

n u m b e r t y p e a n d v a l u e E Q U A L
Numbers arc interned by NINTERN, which uses a hashing scheme defined by BRAND x and also
used by the property list mechanism. ITie representative is the first number of that type and
value which is NI NT E RNed.

L I S T o r U L I S T C A R a n d C D R E Q - C A R - C D R
Yields the unique ULIST (or CLIST if the components are canonical or the flag CCONS is
nonNIL) formed of the CAR and CDR of the input If the input is a ULIST, it is unchanged. If a
LIST, its CAR and CDR arc UCONScd. The representative clement cannot be EQ the first LIST
made unique because brand x implements LISTs and ULISTs as different LISP data types.

T R I P L E o r U T R I P L E I L K , T I E a n d C U E E Q - I L K - T I E - C U E
Yields the unique UTRIPLE (or CTRIPLE if the components arc canonical or if the flag CCONS
is non-NIL) formed of the ILK, TIE and CUE of the input. If the input is a UTRIPLE, it is itself
returned. If it is a TRIPLE, its components arc combined by UTRIPLE.

C L I S T o r C T R I P L E s e l f E Q
CLISTs and CTRIPLEs arc innately unique because there is no mechanism for forming other
copies of tiicm—EQUAL implies EQ.

o t h e r s e l f E Q
Hunks, arrays, and other LISP data types are considered to be unique, forming singleton classes
under the chosen equivalence relation. A relatively straightforward extension of the ideas used
for the creation of unique list structure could also be applied to hunks and arrays, but this has
not been done in brand X.

4.2 CANONICAL

a t o m i c s y m b o l p r i n t n a m e S A M E P N A M E P
Atomic symbols are made canonical by the USP primitive INTERN. The representative element
of the equivalence class under SAMEPNAMEP is the first symbol seen with that name. This is the
same as under UN IQUE.

n u m b e r t y p e a n d v a l u e E Q U A L
Numbers arc interned by NI NT E RN, which uses a hashing scheme defined by BRAND X and also
used by the property list mechanism. The representative is the first number of that type and
value which is NI NT E RNed. ITiis is the same as under UN IQUE.



1 0 B r a n d X M a n u a l

L I S T , U L I S T , o r C L I S T C A R a n d C D R E Q U A L
The canonical representative of any form of list is a CLIST. The canonical form of a CLIST
is itself. That of a LIST or ULIST is the CCONS of the CANONICAL versions of its CAR and
CDR. Note that this may require the complete copying of LIST or ULIST structure into CLIST
structure. CLISTs are easily recognized in the implementation, so that EQUAL tests can be
performed by EQ and canonicalization is trivial.

T R I P L E . U T R I P L E o r C T R I P L E I L K , T I E a n d C U E E Q U A L
'ITic canonical representative of any form of triple is a CTRIPLE. The canonical form of a
CTRIPLE is itself. That of a TRIPLE or UTRIPLE is the CTRIPLE of the CANONICAL versions
of its ILK, TIE and CUE. Note that as for list structure, this may require the extensive copying
of TRIPLE and UTRIPLE structures. EQUAL tests on CLISTs may also be performed by EQ.

o t h e r s e l f E Q
Hunks, arrays, and other LISP data types are considered to be canonical as well as unique,
forming singleton classes under the chosen equivalence relations. A relatively straightforward
extension of the ideas used for the creation of canonical list structure could also be applied to
hunks and arrays, but this has not been done in BRAND x.

4.3 Interning of Numbers

The function NINTERN is used to intern numbers in brand x. NINTERN guarantees that any two
NINTERNcd numbers of the same LISP type (i.e., FIXNUM, FLONUM, or BIGNUM) will be EQ. Under control of
the UNUMBER flag, numbers may be automatically interned when used as part of any structure in the brand x
notation.

5. Predicates
Brand x provides a number of predicates to test objects for their types. The most general of these is

BRAND-X-OBJECTP, which returns NIL except for BRAND X objects, for which it returns the type of the
object. Hie first group of predicates test their argument for being of a particular type or types. The next
arc general tests for the uniqueness or canonicity of their argument Finally, the predicate KNOWN is used to
determine if a structure of a given form is already present in the brand x database.

5.1 General Type-Testing Predicates

BRAND-X-OBJECTP object
Yields NIL for any argument unless it is one of the BRAND x types ULIST, CLIST, TRIPLE,
UTRIPLE, or CTRIPLE (the latter three only in BRAND x with triples). In this case, the atomic
symbols listed above arc returned, as an indication of the value. A generalization of LISP'S
TYPEP function, which always returns the type of its argument would be (OR (BRAND-X-
OBJECTP x) (TYPEP x)).

UCONSP object
This predicate tests whether its argument is a Unique cons cell (ULIST).

CCONSP object
This predicate tests whether its argument is a canonical cons cell (CL 1ST).
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CUCONSP object
This predicate tests whether its argument is cither a unique or a canonical cons cell (ULIST or
CLIST). If true, it returns the atoms ULIST or CLIST, respectively. It could be defined as (OR
(AND (UCONSP x) 'ULIST) (AND (CCONSP x) 'CLIST)), but is implemented more
efficiently. In BRAND X without triples, this function is identical to BRAND-X-OBJECTP.

The following predicates are defined only for brand X with triples:

TRIPLEP object
This function returns NIL for any object which is not a triple, and it returns one of the atoms
TRIPLE, UTRIPLE, or CTRIPLE if its argument is a non-unique, unique, or canonical triple,
respectively.

NUTRIPLEP object
This predicate tests whether its argument is a non-unique triple.

UTRIPLEP object
This predicate tests whether its argument is a unique triple.

CTRIPLEP object
This predicate tests whether its argument is a canonical triple.

5.2 Tests for Unique and Canonical Structure

The predicates UNIQUEP and CANONICALP test whether their arguments are unique and canonical
respectively. The meaning of these predicates is that any object which passes one would itself be returned by the
functions UNIQUE and CANONICAL. INTERNP and NINTERNP arc special cases of these for atomic symbols
and numbers.

UNIQUEP object
A predicate which determines whether its argument is unique. It is the case that (UNIQUEP
(UNIQUE x)) is T. Also, for any object which passes this predicate, it is also the case that
(EQ x (UNIQUE x)). From this follows that atomic symbols are UNIQUEP just when they
arc the representative of their equivalence class chosen by INTERN, numbers when chosen by
NINTERN, LISP lists and non-unique triples are never unique, and all other objects are unique.
Note that all canonical objects arc also unique, but not the other way. ,*

CANON ICALP object
A predicate which determines whether its argument is unique. It is the case that (CANON ICALP
(CANON I CAL x)) is T. Also, for any object which passes this predicate, it is also the case that
(EQ x (CANONICAL x)). Atomic symbols and numbers arc canonical if they arc unique,
lists, unique lists (UCONSP), non-unique and unique triples (NUTRIPLEP and UTRIPLEP) are
not canonical, and everything else is.

INTERNP atomic symbol
Determines whether its argument is the canonical representative of its equivalence class chosen
by INTERN. This function depends on the internal method used by MACLISP'S INTERN func
tion.
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N INTERNP number
Determines if its argument is the canonical representative of its equivalence class chosen by
NINTERN.

5.3 KNOWN
Brand x provides a special form, KNOWN, for the convenient operation of testing to sec whether a unique

or canonical brand x object of a certain form has already been created or not This form is also useful for
testing the presence of properties and labels, which are described below.

KNOWN expression
ITie expression is evaluated in an environment wherein none of the BRAND x functions which
normally form new structures, add property values, or assign labels (see below) is allowed
to do so. Instead, each checks whether the requested formation, property, or assignment is
already present If yes, the specified object is returned; otherwise, NIL. For example, (KNOWN
(CCONS 'A ' B)) will return T if and only if the canonical cons of ' A and * B has previously
been made. Lisp's backquote facility, as extended to brand x objects, is convenient for specify
ing the expression argument to KNOWN. Thus, the typical use of KNOWN is to check for the
presence of some form, label, or properties in the same syntax in which they would be input:
(KNOWN * [BALL , NUM &COLOR RED] ).* Note that this macro serves to check only BRAND
x facilities supported in the brand x syntax: specifically, those functions which ultimately
use UCONS, CCONS, UTRIPLE, CTRIPLE and ASSIGN-LABEL, and internal functions which
cause properties to be added in response to input expressions. It docs not control other BRAND X
functions nor basic LISP ones such as CONS.1

6. Properties
Brand x extends the lisp notion of properties to all objects of the language, including all MACLISP data

types and other BRAND X objects. Thus, any object may have a property list [1]. The functions GETP, GETPL,
PUTP, REMP, PROPLIST, and SETPROPLIST arc extensions of and subsume the corresponding MACLISP func
tions GET. GETL, PUTPROP, REMPROP, PLIST, and SETPLIST. GETPL1 is provided as an efficient alternative
to GETPL. In addition, brand X supports two functions, ADDP and DELP, which assume the convention that
a property has a list of values rather than a single value. In this case new values are added at the front of the
list; if an existing value is again added, it causes that value to come to the front of the list but is not duplicated.
Attempts to use ADDP or DELP on properties which do not have list values is in error.

GETP item prop
Retrieves the prop property of item, or NIL if it has none. This corresponds to lisp's GET. Note
that although prop may be any object, searching of the property list is by EQ; therefore, typically
only canonical objects should be used as property indicators.

GETPL item lisl-of-props
Retrieves part of item's property list starting with the first property found that is among list-of-
props, or NIL if none is found. This corresponds to USP's GETL.

'This syntax will be explained below.

internally. KNOWN establishes a CATCH tag. NO-ULIST-CRCATION-TAG. and binds the variable •DO-NOT-CREATE-ULIST to T,
then evaluates its argument in that environment. When one of the above-mentioned functions detects a failure or the form lo match
existing structure, it throws NIL.
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GETLl itempropi propn
A variable-argument version of GETPL, which avoids the need to create the list-of-props list As
implemented, this is most efficient when n is 1, which is a common case.

PUTP item valprop
Puts (or replaces) val as the prop property of item, and returns val. This corresponds to USP's
PUTPROP.

RE MP item prop
Removes the prop property of item. The returned value is that part of the former property list
whose CAR is the removed property, or NIL if the property was not present

PROPLIST item
Returns the whole property list of item, or NIL if it has no properties. This corresponds to LISP'S
PLIST.

SETPROPLIST itemproplist
Sets (or replaces) the property list of item with proplist. This corresponds to USP's SET PL 1ST.
Note that this operation is generally poor programming practice, as it may destroy information
on the property list of an item needed by some package independent of the one doing the
SETPROPLIST.

As described above, ADDP and DELP manage properties with lists as their values. These lists are main
tained as non-duplicating, in reverse order of addition. Duplication is checked for by the predicate EQ, but
under control of the UNUMBER and UATOM flags, numeric and atomic symbol arguments may be made canoni
cal before they arc added or deleted. For example, if UNUMBER is non-NIL, then (ADDP ' X 999 ' P) done
twice will leave only die single NI NT E RNed 999 among X's P properties. If UNUMBER is NIL, however, the
same double addition would leave two (in Maclisp, where two instances of 999 are not EQ).

ADDP item val prop
Adds the value val to the prop property of item. That property must cither already be a list or
must not exist before the ADDP, or else this is an error. If val is a number or atomic symbol, its
canonical instance may be used under control of die UNUMBER and UATOM flags. The new value
is added at the front of the value list but if that value is already present (by EQ), it is simply
pulled to the front of the list. The function returns the new list of values.

DELP item val prop
Deletes the value val from the prop property of item. That property must be a list or must
not exist If val is not among the values, no action is taken. Comparison of val to the existing
values is by EQ, except that if val is a number or atomic symbol, its canonical instance may be
used under control of the UNUMBER and UATOM flags. If the last value in a list is deleted, the
corresponding property is removed. ITie function returns the new list of values (possibly NIL).

A note on implementation: brand x properties for atomic symbols arc implemented using LlSP's property
list mechanism. Property lists for UCONS, CCONS, TRIPLE, UTRIPLE, and CTRIPLE objects arc included as
one component of the internal representation of the object. Property lists for numbers arc stored in a hash
array which is also used by NINTERN; hashing is by SXHASH and comparison by EQUAL. Property lists for all
other lisp objects, including ordinary CONS cells, are stored in a separate hash array, hashed by MAKNUM and
compared by EQ.
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7. Labels
Any brand X object may be labeled. When printed, an object's label may (under user control) be printed

instead of the object itself.

ASSIGN-LABEL label item
Assigns the label label to the object item. Label must not already have been assigned to another
object

REASSIGN-LABEL label new-object
Assigns the label label to the object new-object and removes label as the label of whatever
object it had been assigned to previously. In addition, an attempt is made to alter a\\ accessible
past uses of label to now use new-object instead of what label previously labeled. Note that
diis operation may have very undesirable side-effects and should be used only as a temporary
measure, e.g., to correct the state of a data base. It is dangerous to use, because not all previous
uses of label can be found and therefore those not found (e.g., in non-unique, non-canonical
structure, in the CDR position of any structure) will continue to use the old object

LABEL-1 label
Retrieves the object labeled by label, or NIL if the argument is not in fact the label of anything.

GET-LABEL label
Retrieves the object labeled by label, or creates a dummy object whose label is label if label
labels no object.

•DUMMY-LABEL-CREATOR
If this variable is NIL, brand x's standard method is used for creating dummy label objects.
In BRAND X with triples, a dummy label object is formed by (UTRIPLE label nil ' DUMMY-
LABEL); in BRAND X without triples, by (UCONS label 'DUMMY-LABEL). In cither of these
cases, a value of T is added as the DUMMY-LAB EL property of the object If die variable is non-
NIL, it is a function of one argument (the label), which is called to create dummy label objects.
Default is NIL.

UGL
Returns all Undefined Global Labels. A utility function which finds all those atomic symbols in
the current OBARRAY which label a dummy label object

Included here is a short discussion of a number of problems which can arise in the use of labels. These
problems arc not easily solved, and arc solved not at all or only badly by the current implementation of BRAND
X. This section, in small font, may be skipped by all but the cogniscenti and those suspecting labels as the source
of their uncxplainablc troubles.

The intent of a label is lo be simply an abbreviation for the object it labels. If labels were used only after the
object they labeled was created, and if labels were never reassigned, then these problems would not arise. However,
because of the possible need for mutual recursive reference in data structures, and because of the more frequent need
lo refer lo something in an interactive environment before having completely defined it labels do get used before they
are assigned. The implemented of a system must choose some representation for an unassigned label and must decide
how such an object can be used. One possible choice is lo ban all use of such objects, but this fails the criteria outlined
above and is also difficult lo implement in a language like lisp, in which information hiding is impossible. Another
choice allows reference lo these objects but not an examination of their components. This would permit the use of
unassigned labels in constructing other objects, but would prohibit asking for, say, the CAR of such an object This
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is also impossible lo implement in lisp, and any attempt to enforce such conventions systematically would be very
expensive; many algorithms can be significantly speeded up if they need not handle a special case of unassigned labels
because the implementor knows dial die test already in use in die algorithm will also succeed or fail appropriately for
these. Therefore, iirand x permits the examination of the representation of unassigned labels, which have the structure
described above under die definition of *DUMMY-LABEL-CREATOR.

The use of labels before they are assigned creales other very serious problems:
1. If an object and an unassigned label are both used lo construct other objects, and then if that label is

assigned lo mat object, then there is in general no good way to assure that all previous uses of the two
will indeed refer lo the identical object. Thus, formeriy-made references to die label will not be EQ to
formerly-made references to Hie object This could be fixed only by an elaborate indexing mechanism
which keeps track of the use of all unassigned labels, or by an alternative mechanism which scans (he
entire data base for uses of the label (references lo its dummy object) and replaces diem with the actual
object An alternative, possibly available on different computer architectures, would be lo define EQ
to follow data indirections ("hidden pointers") before making address comparison tests, but this is not
generally feasible. This problem is easily avoided (as it is in the current brand X implementation) if
the label is unused before its assignment; then, the dummy object is never created. If the label has
been used, but the object lo which it is assigned has not yet been created, the problem is also avoidable
if die object can be created "on lop of the dummy object representing the label. This is done in the
current rrand x whenever it am be; it fails if the underlying lisp data types of die intended object
and die dummy object are distinct—e.g., if a formerly used dummy label (whose default is created as
a UCONS or UTRIPLE. with underlying lisp data type HUNK4). is then assigned to a LIST.

2. Canonicalizalion of data structure can fail because some identity dial depends on label assignment may
not be known when it is computed. For example, (CLIST 'A 'B 'C) and (CCONS *A (GET-
LABEL TOO)) may appear to have little in common; yet, if (ASSIGN-LABEL 'F00 (CCONS 'B
' C)) is later done, die two expressions are seen lo be identical. However, the second canonical structure
was created before this was known, and cannot be simply made lo be EQ to the first The same problem
also appears when labels are used as a mechanism for creating circular structures. For instance, after
(ASSIGN-LABEL 'F00 (CCONS 'BAR (GET-LABEL 'F00))). we have a new structure whose
CAR is BAR and whose CDR is itself. Repealing this operation with different labels will create distinct
such structures, although of course mere should be only one because it is canonical. The solution to this
problem is extremely hard, requiring a fast algorithm for identifying isomorphic structures and possibly
a complete traversal of the data base any time a circular structure is formed.

8. Notation
One of the powerful simplicities of LISP is that, on the whole, any object may be printed out in such a

way that it can later be reconstituted by reading in that printed representation.* This notion is preserved and
extended to brand X objects.

8.1 Lists, Ulists, and Clists

Our goal has been to preserve I JSP syntax as much as possible. Therefore, LISTs and CONScs may be
formed as in IJSP:

reading (A . B) is equivalent to evaluating (CONS 'A ' B), and
rcading(A B C) is equivalent to evaluating (LIST 'A 'B 'C).

ULISTs and CLISTs are written in a manner similar to LISTs, but with square brackets instead of parentheses.
Thus,

reading[A . B] is equivalent to evaluating (UCONS 'A 'B),and
*T*his is not completely true, as some data types (e.g., arrays in MACLISP) have no printed rcprcscntaUon, and furthermore, circular
structures (those which include themselves as a part) cannot normally be printed.
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reading [A B C] is equivalent to evaluating (ULIST 'A 'B 'C).
ULISTs, when they are composed of non-unique components, arc shown in the appropriate mixture of paren
theses and square brackets. Thus, for example,

reading [A . (B) ] is equivalent to evaluating (UCONS 'A '(B)).
Canonical structures must always be composed only of canonical substructures; thus, their printed repre
sentation is free of parentheses. In contrast with die above example,

(CCONS 'A '(B)) yields [A B].

8.2 Triples, Utriples, and Ctriples
In a manner analogous to lists, a notation is defined for triples. The fundamental triple notation looks like a

list of three elements, the ILK,TIE and CUE. but with an asterix between the ILK and TIE. Thus,
reading (A*B C) is equivalent to evaluating (TRIPLE 'A 'B *C).

Similarly,
rcading[A*B C] is equivalent to evaluating (UTRIPLE 'A 'B *C),

and CTRIPLEs are formed when each component of a UTRIPLEis canonical.* Note that in a BRAND X without
triples, the asterix has no special significance and, for example, (A*B C) would be read as a list of two atoms,
A*BandC.

8.3 Labels
Labels arc assigned by using the syntax

(<labcl> = <expression>) or [<label> = <expression>].
For example,

[AN-EXAMPLE = THIS IS AN EXAMPLE]
assigns to the canonical four-list [THIS IS AN EXAMPLE] the label AN-EXAMPLE.

A label is used by prefixing it with an exclamation point in the syntax. Thus, after the last example,
[NOW . IAN-EXAMPLE]

is entirely equivalent to
[NOW THIS IS AN EXAMPLE],

a n d w i l l b e p r i n t e d i n t h e s h o r t e r f o r m . #

8.4 Properties
Lisp does not provide any explicit syntax for the assignment or display of properties. In brand X, within

the square brackets or parentheses used in writing an expression, the critcrial expression may be followed by
any number of property assignment clauses. Each is of the form:

an ampersand (&), followed by the property indicator, followed by any number of values.
The values arc added (via ADDP) so that they appear in the order given in the syntax. Thus, if [BALL 1] has
no COLOR property to begin with, then after

[BALL 1 &C0L0R RED GREEN BLUE],
we have

(GETP '[BALL 1] 'COLOR) => (RED GREEN BLUE).
To support effective optional cross-indexing in the data base, BRAND x permits the specification of both

forward and reverse properties at the same time. To specify a reverse property link, follow the initial ampersand
and property by a second ampersand and property, before the values. For example, after

[BALL 2 &C0L0R &HAVING-THIS-COLOR RED WHITE],
we have



B r a n d X M a n u a l 1 7

(GETP '[BALL 2] 'COLOR) => (RED WHITE^and
(GETP 'RED 'HAVING-THIS-COLOR) => ([BALL 2]).

In lisp, an expression such as ( . X) is syntactically invalid, as it appears to CONS nothing onto X. In
Brand x, however, we interpret that form as equivalent to just X.* This provides a syntactic means of attaching
properties (and labels as well) to any brand x object For example, we use the following notation to attach
POSSIBLE-VALUES to COLOR:

[. COLOR &POSSIBLE-VALUES
RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET]

8.5 Anaphora
We often find it convenient to refer to parts of an expression as that expression is being written. In

specifying the representation of a frame in a semantic network, for example, we may need to refer to die subject
role of the frame in close proximity to our specification of the expression representing the frame itself. For
example,

[RUN INTO TROUBLE &ROLES
[SUBJECT [RUN INTO TROUBLE]

&C PERSON]]
to indicate that run into trouble has a subject role and that whatever satisfies that role must also satisfy the
characterization person. Note that after the above,

(GETP '[RUN INTO TROUBLE] 'ROLES)
yields

([SUBJECT [RUN INTO TROUBLE]]).
It is undesirable to have to repeat the expression [RUN INTO TROUBLE ] each time a role of that frame is to
be specified or referred to. Instead, brand X allows us to write

[RUN INTO TROUBLE &ROLES
[SUBJECT : &C PERSON]],

which is read identically with the expanded form above. Here, the colon (:) acts as an anaphor, referring to the
critcrial expression which is one level of parentheses or brackets out from the appearance of the colon.

Brand x supports a general facility for anaphora, expressed via successive colons not separated by space.
The number of colons specifics the number of levels of parentheses and brackets to move out to find the
a n a p h o r b e i n g r e f e r r e d t o . F o r e x a m p l e , t h e ( P E R S O N : : ) i n '

[RUN INTO TROUBLE &ROLES
[SUBJECT : &C (PERSON ::)]],

stands for (PERSON [RUN INTO TROUBLE]).
Spaces arc normally insignificant in Brand x except to delimit atomic symbols. In the case of colon

anaphora, however, spaces may not be placed between the colons. Thus, in the above, if we had written
(PERSON : :)

instead, it would have been read as
"The rationale for this is that MACUSF's LIST* function, which forms successive conses of its arguments (e.g., (LIST* 'A 'B
*C) is equivalent to (CONS 'A (CONS 'B 'C)), which is of course (A B . C)), yields just its single argument if given only
one argument
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(PERSON [SUBJECT [RUN INTO TROUBLE]] [SUBJECT [RUN INTO TROUBLE]]).
When writing non-unique list structure, the colon anaphor is not only a convenience but more essential,

because rewriting an expression cannot create uniquely the same one as a previous instance. ITius, if we wished
to form a structure like that of the simpler example above, but from non-unique lists, we could write

(RUN INTO TROUBLE &R0LES
(SUBJECT : &C PERSON)),

which is not equivalent to the fully writtcn-out version

(RUN INTO TROUBLE &ROLES
(SUBJECT (RUN INTO TROUBLE) &C PERSON)),

because the two expressions (RUN INTO TROUBLE) are not EQ in the second case.
Anaphora provide a form of local labeling. They also permit the printing of circular structures, and are

capable of extension to permit reading of all such structures as well/

8.6 Syntax

To recapitulate the syntax of Brand X formally, wc present an extended BNF description:

<x-expr> ::= <Lisp-atom> | (<x-expr-body>) | [<x-expr-body>] |
<label-spec> | <colon-anaphor> | <quoted-form> |
<backquoted-form> | <comma-form>

<x-expr-body> ::= {<label:x-expr>=} <criterial-expr> {<prop-specs>}*

<cr i ter ia l-expr> : := {<x-expr>}* { .<x-expr>} |
<//*:x-expr>*<//e:x-expr> <c«e:x-expr>

<prop-spec> ::= &</vop:x-expr> {&</?/»/?:x-expr>} {<va/:x-expr>}+

Oabe1-spec> ::- Kx-expr>

<co1on-anaphor> ::= {:}"*"

<quoted-form> ::= '<x-expr>

<backquoted-form> ::= *<x-expr>

<comma-form> ::= ,<x-expr>

Technically, the formation of truly circular expressions presents some difficulUes more severe than those encountered in forming
structures thai are circular through property attachments. For example, in forming the structure [A [B :]] (whose CADADR is
EQ to itself), we appear to need the whole structure before we can form its substructure. Although partly-successful tricks such as
those involving the creation of circular structure by use of labels can be used here as well, BRAND X docs not now support an
input syntax for circular structures of the kind in which an expression is its own subexpression. If such an expression is formed
(e.g.. by RPLACA). however, the printer will print it with anaphora.
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In the above, we have used braces ({ ... }) to indicate optional phrases, * and + as superscripts on optional
phrases to. indicate zero or more and one or more permitted repetitions, respectively. Mctasyntactic variables
arc in angle brackets (< ...>); such a variable of the form <name:typc> is an expressive variant of just<type>—
thus, </>rop:x-expr> is merely <x-expr> with a suggestion of its meaning as a property descriptor. Spaces are
not significanL except as separators and as noted above between successive colons in colon anaphors. Note that
although any x-expr is acceptable as a label, by convention we will use only atomic symbols. Quotation is as in
Lisp, so that ' X is a convenient abbreviation of (QUOT E X).

Backquotcd forms and comma forms require a little explanation because, although they arc commonly
used in Maclisp, they are not innately part of LiSP. They provide a facility for abbreviating programs which are
to construct structures of a particular form. For example, the form

-(A B (C ,D) ,E (F G))
is read as

(LIST 'A 'B (LIST 'C D) E '(F G)).
Variable parts of such a structure arc preceded by a comma. Other parts are quoted if they arc constants or
formed up by the appropriate brand x operation.*

9. Reading and Printing

The USP reader and printer have been thoroughly "hacked" by brand x to produce reasonable behavior.
Nevertheless, most normal LISP uses of reading and printing should continue to work.

The most significant change in reading is the assignment of special meaning lo numerous characters which
arc treated as alphabetic in lisp. The characters [, ], &, 1, =, : and (for brand x with triples), * must be typed
preceded by a slash (/) if they arc to be taken alphabetically.

The function ABSORB is provided to permit the compilation of BRAND X data structures from a file.*

ABSORB anyforms
ABSORB simply ignores any number of arguments. It is like a variable-number-of-arguments
QUOTE, intended to quote "top level" data items.

The brand x printing functions use a combined set of functions which have the ability to perform "pretty
printing", checking for anaphora, and selective printing of the labels and properties of objects as well as their
critcrial parts. These printing facilities are controlled by a number of flags.

BRAND-X-T0PLEVEL-PRIN1 object ^optional stream)
This function prinl's object onto stream or the standard output if NIL, under control of the flags
below. This is also the function used by lisp's "top level" read-cval-print loop for BRAND X.

*PRINT-PROPS
If non-NIL, the top level printer will show the properties of an object being printed. Default
is T. Only those properties which have lists as values and which arc not among *NOPRINT-
PROPS arc printed.

'Currently, the use of nested backquotcd expressions fails to work correctly. Thus, for example, one cannot write *(A B ,C
( ,D)). which could be used to represent (LIST 'A *B C (LlST D)).

"^This Ls actually due to an error in die MACLISP compiler, which assumes mat quoted forms al "top level" in a file can have no
cflccr. it therefore throws ihcm away. Writing these as arguments to ABSORB merely protects them from this fate.
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•NOPRINT-PROPS
A list of property indicators which arc not to be used to print properties even if *PRINT-
PROPS is non-NIL. Default includes properties used internally by LISP and brand X, such as
EXPR and LABEL.

•PRINT-STM-PROPS?
If non-NIL, the top level printer will print the properties of non-unique, non-canonical objects
as well. Default is NIL.

•PRINT-SYMBOL-PROPS
If non-NIL, the top level printer will print the properties of atomic symbols. Default is T.

•PRINT-LABELS
A variable which controls whether PRINT normally prints the label of an object or the object
itself. If non-NIL, the label is printed. Default is T.

•PROPERTIES-OF-INTEREST?
NIL, ALL, or a list of property indicators which arc to be printed within nested structures (not
only at top level). Default is NIL, and the effect of this flag is overridden by *NOPRINT-PROPS
and*PRINT-STM-PROPS.

•PRINT-ALL-ANAPHORA?
If non-NIL, then circularity will be represented by anaphora in print-out at all places. If NIL,
printing will be significantly faster (one, rather than two passes), but a structure like (A . (B
(:))) will be printed less clearly because the one-pass printer will begin with (A B ...)
before realizing that a new list must start with B to provide a reference point for the anaphor.
Default is T.

•DELIMIT-TRIPLE-INDICATOR?
If non-NIL, the • delimiting the ILK and TIE of a triple is surrounded by spaces. Otherwise
not Default is NIL.

10. Using Brand X, and Relation to Other Lisp Packages
Brand x is built using lsb [5], die Layered System Building package, which is not needed by it at run

time. A brand X without LSB may be invoked by : BX in rrs, a BRAND X with isn by : BXLSB, and a brand X
with isb and the owl definitions and support [4] by :BX0WL.

Brand x supports the use of the LOOP iteration macro facility by providing die following paths:
(LOOP FOR X BEING INFERIORS OF Y DO ...)

is equivalent to
(LOOP FOR X BEING EACH CAR-1 OF Y DO ...),

which is in turn equivalent to

(DO ((XX (GETP Y 'CAR-1) (CDR XX)) (X))
((NULL X))
(SETQ X (CAR XX))
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The INFERIORS (or INFERIOR) path is special purpose, to help enumerate those objects "under" another.
The second form is general, allowing any property indicator to be substituted for CAR-1. For much more
functionality and details, refer to the documentation on the LOOP package [3].
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