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Abstract
The Severe Acute Respiratory Syndrome (SARS) epidemic, the growing fear

of an influenza pandemic and the recent shortage of flu vaccine highlight the

need for surveillance systems able to provide early, quantitative predictions of

epidemic events. We use dynamic Bayesian networks to discover the interplay

among four data sources that are monitored for influenza surveillance. By inte-

grating these different data sources into a dynamic model, we identify in children

and infants presenting to the pediatric emergency department with respiratory

syndromes an early indicator of impending influenza morbidity and mortality.

Our findings show the importance of modeling the complex interplay of data

collected for influenza surveillance, and suggest that dynamic Bayesian networks

could be suitable modeling tools for developing epidemic surveillance systems.

Keywords: Dynamic Bayesian networks, influenza surveillance, syndromic

data.

Submitted to: Journal of the American Statistical Association (March 8, 2005).



A Bayesian Dynamic Model for Influenza Surveillance

Address: Paola Sebastiani. Department of Biostatistics, Boston University, 715 Albany Street,

T-E417, Boston, MA 02118. PHONE: 617 638 5877, FAX: 617 638-6484, EMAIL: se-

bas@bu.edu, URL: http://people.bu.edu/sebas.

1



A Bayesian Dynamic Model for Influenza Surveillance

1. Introduction

The worldwide spread of SARS during the Winter of 2002-2003, the 2001 Anthrax attacks,

the current shortage of flu vaccine, and the looming threat of an influenza pandemic motivate

the urgent need for surveillance systems able to provide early quantitative predictions of acute

respiratory infections. Although less lethal than SARS, influenza is the seventh leading cause

of death for people above 65 and below four years of age, and among the top ten in almost

all age groups [1]. Every year influenza infects up to 40 million Americans, causes the hos-

pitalization of over 114,000 [31], kills approximately 36,000 [2] and costs the United States

between two and five billion dollars in physician visits, lost productivity, and lost wages [29].

This cost could grow to 160 billion dollars in the event of an influenza pandemic: a sudden

and widespread outbreak of a new strain of the influenza virus that has significant morbidity

and mortality [20]. Historically, the periodicity of pandemics has ranged between nine to 39

years, with the last one in 1968-1969. A new pandemic in the next few years is considered

today a looming if not inevitable threat [22], which is reinforced by the increasing number of

outbreaks caused by the H5N1 bird-flu strain [10].

Because influenza viruses change continuously by antigenic drift and shift, nobody is

immune and surveillance efforts are in place to detect changes in the viruses, to monitor

their effects on hospitalization and death rates, and possibly to forecast the resurgence of a

new influenza pandemic. The influenza surveillance system in the United States is managed

by the Centers for Disease Control and Prevention (CDC) Influenza Branch, which collects

and reports weekly information on influenza activity in the United States from September

through May. Distribution of influenza activity and identification of viral types is ascertained

through about 75 laboratories of the World Health Organization and 50 laboratories of the

National Respiratory and Enteric Virus Surveillance System located throughout the United

States. About 650 sentinel physicians report the weekly number of patients they have seen

and the number of those patients with influenza like illness (ILI) by age group that is defined

as fever (temperature above 100oF) plus either a cough or a sore throat. The effect of in-
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fluenza on mortality is monitored through weekly reports filed by the vital statistics offices of

122 cities that contain the total number of death certificates and the number of those for which

pneumonia or influenza (P&I) were listed as a contributing cause of death.

The use of poor epidemiology methods and the lack of timeliness of the data limit how-

ever the influenza surveillance effort. The current influenza surveillance system monitors all

these data streams individually, as shown in Figure 1. For example, ILI data are monitored

to detect surges of influenza morbidity nationwide by comparing weekly data to a national

baseline defined by a fixed threshold. It is acknowledged by CDC that the national baseline

does not provide a useful threshold for local influenza surveillance so that the issue of local

monitoring of influenza morbidity is still open [24]. The aggregate mortality data from the

122 cities are monitored to detect influenza epidemics. The detection consists of comparing

the aggregated mortality data to an epidemic threshold that is calculated for each week using

a baseline defined by a cyclic regression model [30]. To the best of our knowledge, no attempt

is made to use and possibly integrate ILI and P&I data to forecast the course of an epidemic.

Furthermore, for both states and physicians, influenza activity reporting is voluntary and

data do not become available to health officials until approximately two weeks after the reports

have been filed. An evolving approach to more timely detection is syndromic surveillance

[19], which identifies infected individuals early in the course of their disease, generally before

a confirmed diagnosis is made. Patients are classified by syndrome, such as acute respiratory

infection or gastrointestinal illness, based on a variety of data sources ranging from purchase

of over the counter medications [9] to primary care physician and emergency department

(ED) logs [7, 26]. The primary focus of these efforts has been to provide early detection

of bioterrorism, following the Anthrax attacks of 2001, although this data could also provide

early indication of naturally occurring disease outbreaks [16].

Despite the increasing amount of data that could potentially inform about outbreaks of

disease, biosurveillance research to date has mainly focused on monitoring individual data

streams [9, 17, 26]. When multiple signals have been considered, a system architecture based
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on a set of parallel, independent surveillance systems has been envisioned [34, 35]. The intu-

ition underlying our approach is that the integration of different data streams should provide

complementary information about a disease and improve our ability for early detection of out-

breaks. This integration, however, requires a coherent modeling framework to integrate data

into a global model.

In this paper, we integrate different data streams into a multivariate model for influenza

surveillance. The novelty of our approach is in both the modeling framework that we use and

in the type of data. We build a dynamic Bayesian networks that relates pediatric and adult

syndromic data in two EDs to the traditional measures of influenza morbidity and mortality,

and we show how to use this model for “active” influenza surveillance by forecasting the

course of influenza epidemics. Our analysis shows that the use of a dynamic Bayesian network

for influenza surveillance has several advantages. By directly modeling measures of influenza

morbidity and mortality, our model can be used to forecast the beginning of epidemics, as

well as peaks of epidemics. Furthermore, the joint modeling of the four data streams shows

that pediatric patients are infected with respiratory viruses well before the general population.

In particular, the number of respiratory syndrome cases in a pediatric ED predicts influenza

morbidity in the general population as early as two weeks in advance and influenza mortality

as early as three weeks in advance. These findings suggest that children with respiratory

syndromes seen at the ED act as sentinels for surges in influenza morbidity and mortality and

that active surveillance of pediatric populations could become an important component of the

influenza surveillance effort.

The next section describes the data that we used to build our dynamic models. Section 3

gives a brief introduction to dynamic Bayesian networks and Section 4 describes how we built

the network with the data available and how we use it to forecast the course of an influenza

epidemic. Conclusions are reported in Section 5.
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2. Data

We relate variations in the weekly frequency of patients with respiratory syndromes present-

ing to two urban, tertiary care teaching hospitals in Boston, Massachusetts, to ILI data for the

influenza seasons 1997-98 through 2001-02, and to deaths for pneumonia and influenza (P&I)

in New England from January 1998 to March 2003 published by CDC1. Both ILI and P&I data

includes all age groups. The hospitals, one pediatric (CH) and the other adult (AH), share the

same catchment area and each emergency department has an annual census of approximately

50,000 visits, with an average age of approximately 6 years for CH and 48 years for AH.

Syndromic grouping was based on ED chief complaints as described in [25]. The chief com-

plaints were used to select those ED encounters that were related to respiratory illness. At AH,

chief complaints are entered as free-text during the triage process. We used two procedures

to classify complaints: a text-string search, and a publicly available nave Bayesian classifica-

tion program [34]. Default probabilities from an ED dataset, supplied with the software, were

applied to the AH data. At CH, chief complaint codes were chosen during the triage process,

from a pre-defined on-line list of 181 choices. A previously validated subset of the constrained

chief complaint set was chosen a priori for inclusion in the respiratory syndromic grouping.

The ED dataset dates back to June 1992 at CH and to June 1998 at AH. We will refer to the

number of respiratory syndrome cases in either hospitals as CH and AH data.

The four time series are displayed in Figure 2. The plot shows the apparent regularity of

the four time series that are characterized by evident winter peaks during the influenza seasons,

and more modest peaks in the fall seasons. Typically, the fall peaks correspond to increased

activity of respiratory infections that follow the opening of schools. An intriguing feature of

these time series is that the peaks do not occur simultaneously but there is an evident order

with CH data (red line) peaking first, followed by AH (blue line) and ILI data (green line) and

then P&I mortality data (black line).

To ascertain the temporal order of the four time series, we analyzed their pair-wise cross-
1http://wonder.cdc.gov/mmwr/mmwrmort.asp
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correlations over 52 weeks. We use the notation ⇢x(A, B) to denote the cross-correlation

between two time series A and B, with B shifted back by x weeks when x > 0, and A shifted

back by x weeks when x < 0. The cross-correlation plot in the left panel of Figure 3 suggests

that CH data are the earliest indicator of influenza-like illness (black-line: ⇢x(CH, ILI)> 0.5

for 1  x = week  5) and deaths in the community (red-line: ⇢x(CH, P&I)> 0.5 for

2  x  8). The largest correlation between CH and ILI data for a three week lag suggests that

the first effects of influenza emerge in CH data well before they become evident in the general

population. CH data lead AH data by 1–5 weeks (green line: ⇢x(CH, AH)> 0.5 for 1  x  5)

and the large correlations ⇢1(CH, AH)= 0.64 for a one week lag, and ⇢2,3(CH, AH)= 0.63

for a 2–3 week lag show that CH data can be used to predict a substantial proportion of the

variability in AH data.

AH data are also able to predict influenza mortality but with a shorter lead time com-

pared to CH data, while they appear to provide only slightly earlier information than ILI data

currently monitored through federal surveillance programs. This hypothesis is supported by

the cross-correlation between AH data and ILI and P&I mortality data displayed in the right

panel of Figure 3: AH data lead P&I data by 1–3 weeks (red-line: ⇢x(AH, P&I)> 0.5 for

1  x  3). Similarly, ILI data lead P&I mortality data by one week (blue-line: ⇢x(ILI,

P&I)> 0.5 for 0  x  3) thus confirming that AH and ILI data contain similar information

to predict P&I mortality. Compared to AH data, CH data show a smaller correlation with P&I

deaths, possibly because the elderly are the most at risk of dying from influenza and pneu-

monia. Nonetheless, this analysis suggests that pediatric patients are the first group to show

symptoms of respiratory infections, and that these early effects are seen in the ED.

3. Dynamic Bayesian Networks

To identify the dynamic structure among the four time series, we built a model based on a dy-

namic Bayesian network [28]. A dynamic Bayesian network is described by a directed acyclic

graph in which nodes represent stochastic variables and arrows represent temporal dependen-

6



A Bayesian Dynamic Model for Influenza Surveillance

cies that are quantified by probability distributions. Following the direction of the arrows, a

node Y1 with an incoming arrow from a node Y2 is called a child of Y2, and Y2 is called a

parent of Y1. We assume that the probability distributions of the temporal dependencies are

time invariant, so that the directed acyclic graph of a dynamic Bayesian network represents

only the time transitions that are necessary and sufficient to reconstruct the overall temporal

process. Figure 4 shows the directed acyclic graph of a dynamic Bayesian network with three

variables. The subscript of each node denotes the time lag, so that the arrows from the nodes

Y2(t�1) and Y1(t�1) to the node Y1(t) describe the dependency of the probability distribution of

the variable Y1 at time t on the value of Y1 and Y2 at time t� 1. Similarly, the directed acyclic

graph shows that the probability distribution of the variable Y2 at time t is a function of the

value of Y1 and Y2 at time t � 1. A dynamic Bayesian network is not restricted to represent

temporal dependency of order 1. For example the probability distribution of the variable Y3 at

time t depends on the value of the variable at time t� 1 as well as the value of the variable Y2

at time t� 2.

The topology of the directed acyclic graph describes Markovian properties of the variables

that allow us to decompose the network into related modules. The local Markov property

asserts that a node Y is independent of its predecessor nodes, given the parent nodes [14], and

leads to a direct factorization of the transition distribution of the network variables Y1, . . . , Yk

into the product of the conditional distribution of each variable given its parents ⇧i:

p(y1(t), . . . , yk(t)|ht�1) =
Y

i

p(yi(t)|⇡i)

where ht�1 is the history of the process until time t�1, y1(t), . . . , yk(t) denotes the value of the

network variables at time t, and ⇡i are the parents of Yi. For example, we can fully describe

the transition distribution of the three variables in Figure 4 given the past history

ht�1 = y1(t�1), . . . , y1(0), y2(t�1), . . . , y2(0), y3(t�1), . . . , y3(0)

by using only the three transition distributions:

p(y1(t)|ht�1) = p(y1(t)|y1(t�1), y2(t�1))
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p(y2(t)|ht�1) = p(y2(t)|y1(t�1), y2(t�1))

p(y3(t)|ht�1) = p(y3(t)|y3(t�1), y2(t�2))

By assuming that these probability distributions are time invariant, they are sufficient to com-

pute the probability that a process that starts from known values y1(0), y2(0), and y3(0) evolves

into y1(T ), y2(T ), y3(T ), or that a process with values y1(T ), y2(T ), y3(T ) at time T started from

the initial states y1(0), y2(0), y3(0). Exact algorithms exist to perform this inference when the

network variables are all discrete, all continuous and modelled with Gaussian distributions,

or the network topology is constrained to particular structures [3, 15, 23]. For general net-

work topologies and non standard distributions, we need to resort to stochastic simulation [4].

Among the several stochastic simulation methods currently available, Gibbs sampling [6, 33]

is particularly appropriate for Bayesian network reasoning because of its ability to leverage on

the decomposition of joint multivariate distributions induced by the directed acyclic graph to

improve computational efficiency.

4. Model Building and Validation

We exploited the local Markov property to build our dynamic Bayesian network by modules.

For each variable, we identified the best multiple regression model by selecting the significant

predictors in the set defined by the variable itself observed at t� 1, . . . , t� 10 week lags, the

other variables observed over the same temporal range, and two auxiliary variables that model

the seasonal pattern of the time series. Because of their significant skewness, we modeled

the number of P&I deaths by a Poisson log-linear model and the number of patients with ILI

symptoms with a log-normal distribution, while we modeled AH and CH data with normal

distributions. We used backward step-wise regression and the Akaike information criterion

[12] to build initial models for each time series, and then selected only significant predictors.

This selection procedure returned the four models in Figure 5, one for each of the four time

series. The overall dependency model was built joining the four regression models by their
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common predictors using standard path analysis [11], and is reported in Figure 6. Each node

in the directed graphs represents one of the four variables at the time point defined by the sub-

script and the arrows define the temporal dependencies that are quantified by the probability

distributions summarized in Table 1.

We validated the model by examining the posterior probability of each selected temporal

model versus the others. The posterior probability was derived from the Akaike information

criterion as described in [13]. The dependency structure of the selected model is very strong

as shown by the plot in Figure 7 that depicts the posterior probability of 400 models describing

the dependency of the number of P&I deaths on CH and AH data, for different time lags. The

surface peaks when the time lag is three weeks for CH data and one week for AH data and,

compared to the other temporal dependencies, there is very strong evidence that this model

gives the best fit (posterior probability almost 1).

The temporal dependency structure in Figure 6 confirms some of the results suggested by

the cross-correlation analysis. CH data are predictive of AH data with a one week lag, they

are predictive of ILI data with a two week lag, and of the number of P&I deaths with a three

week lag. This result confirms that children presenting to the ED with respiratory syndromes

provide earlier signals of the spread of influenza epidemics compared to ILI data currently

monitored through federal surveillance programs. It is worthwhile noting that neither AH

data, nor ILI data or P&I deaths are predictive of CH data, thus confirming that pediatric

patients presenting to the ED are the first group to show symptoms of influenza. Both AH and

ILI data are predictive of P&I deaths with a one week lag. Note that AH data are not predictive

of ILI data, once we condition on CH data observed two weeks earlier, thus confirming that

CH data contain earlier and stronger signals of influenza morbidity than AH data.

The model in Figure 6 suggests that the spread of respiratory infections, and particularly

influenza, in a community begins in children who report to the ED with respiratory syndromes.

This observation is confirmed by the absence of predictive signal of ILI and P&I mortality data

on CH data. Further support for this conjecture is provided by using the dynamic model for
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prediction of influenza morbidity and mortality a few weeks in advance and by quantifying the

predictive effect of pediatric patients. For this assessment, we created competitive models by

iteratively dropping each of the predictors from the selected model. We trained the competitive

models on the data from June 1998 to the end of October 1999 and then computed their two-

week ahead predictions of ILI and P&I data from November 1999 through October 2000. We

chose this test set as the virus circulating during the influenza season 1999-2000 had significant

morbidity. After each prediction, we iteratively updated the model parameters using all data

seen. We used the implementation of Gibbs sampling in Winbugs 1.4 to compute the forecasts

[32].

Figure 9 reports the BUGS code for this “two-week-ahead” forecast with the model in

Figure 6. The model formulation describes the dependency structure between the four data

streams assuming that we have initial values at week t � 2 and we wish to forecast P&I

mortality data, and ILI morbidity data at week t. To initialize the dynamic network, we need

to provide data for the parent nodes of the four variables at time t� 2. Therefore, we provide

CH data at week t � 4, and AH data, ILI data and P&I data at week t � 2 to initialize the

conditional distribution of P&I at week t� 1. Similarly, we provide CH data at week t� 2 to

initialize the conditional distribution of CH at week t�1; CH data at week t�3 together with

AH data at week t � 2 will initialize the conditional distribution of AH at week t � 1, while

CH data at week t � 3, and ILI data at week t � 2 will initialize the conditional distribution

of ILI at week t � 1. The parameters that specify the transition distributions, as well as the

time point t and the values of the covariates x1 and x2 are provided via the data file, and are

iteratively updated for each weekly forecast.

Figure 8 shows the number of patients with ILI symptoms recorded in MA between No-

vember 1999 and October 2000 by the sentinel physicians in the CDC influenza surveillance

program (black line). The red line depicts the two week ahead prediction computed by the

dynamic model, while the green line shows the two week ahead prediction when CH data are

removed from the model. The pale blue line is the two week ahead prediction when ILI data
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are removed from the model. Besides the very close match between true and predicted values

provided by our dynamic model, it is apparent that CH data alone are sufficient to forecast

the dynamics of ILI data, while the model in which CH data are removed suffers of a de-

lay. Statistical analysis of the forecasting error of our model showed no significant difference

between observed and predicted values, while removing ILI data increases the average fore-

casting error that is still not significant, and removing CH data makes the average forecasting

error significantly different from 0. Similar tests were conducted to assess the predictive effect

of both CH and AH data on influenza deaths and confirmed the early signature of syndromic

data.

5. Discussion

The increasing emphasis on biosurveillance, motivated by recent epidemic and bioterrorism

events, has stimulated the electronic collection of different sources of data that are supposed

to contain early signs of disease outbreaks. One of the major challenges that researchers in

biosurveillance face at the moment is the integration of these data streams into models that can

indeed alert public health officials of impeding disease outbreaks. To achieve these objectives,

we need models that can integrate information from different data streams and that can be

used for accurate forecasting.

Our analysis shows that dynamic Bayesian networks provide a simple but effective model-

ing tool for the integration of several time series data into a dynamic model. The modularity of

dynamic Bayesian networks makes it possible to learn them from data comprising several vari-

ables using standard multiple regression techniques. Furthermore, the availability of software

for stochastic computations with directed graphical models makes probabilistic inference with

dynamic Bayesian networks very efficient, and removes the need to impose restrictive assump-

tions on the dependency structure or probability distribution of the network variables such as

those imposed on Gaussian networks [5].

From the epidemiology point of view, our analysis identifies in the number of pediatric
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patients who present to the ED with respiratory syndromes an early quantitative indicator of

influenza epidemics. Compared to hospitalization rates [8] or school absenteeism [18] used

for monitoring or detecting ongoing influenza outbreaks, pediatric patients with respiratory

syndromes are able to predict upcoming epidemics two to three weeks in advance. The pedi-

atric sentinel signal is early enough to allow ample time to step up vaccination [21, 27] and

implement other effective control measures in the community to reduce the burden of illness

and mortality.
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Figure 1: Baseline model and epidemic threshold of P&I and ILI data used for detection

and monitoring of influenza epidemics. The left image reports the P&I data from January

2000 through the end of 2004. The blue lines are the season baseline and epidemic threshold

computed using cyclic regression. The red line depicts the percentage of P&I deaths. The

right image plots, in red, the percentage of visits for ILI reported by sentinel providers for

the influenza season 2003–2004 (week 40 of 2003 through week 20 of 2004). The green

and maroon lines are the ILI data for the influenza seasons 1999-2000 and 2002-2003. The

1999-2000 influenza season was characterized by a severe mortality and morbidity, while no

influenza epidemic was detected for the season 2002-2003. The dashed line is the national

epidemic threshold.
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Figure 2: Plots of the weekly number of respiratory syndrome cases at CH (red) and AH (blue),

patients with ILI symptoms (green) and the number of deaths from P&I (black). The x-axis

reports time in weeks from June 1998 to the end of September 2002.
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Figure 3: Left: Cross-correlation (y-axis) between the weekly number of CH and ILI data,

deaths from P&I, and the weekly number of AH data for different week lags (x-axis). For

each ordered pair of time series in the legend, the cross-correlation for x weeks lag represents

the correlation between the first time series shifted back by x weeks when x > 0, while the

second time series is shifted back by x weeks when x < 0. Right: Cross-correlation between

the weekly number of AH data, ILI cases and deaths from P&I. The line in blue displays the

cross-correlation between the series of ILI cases and deaths from P&I.
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Figure 4: A directed acyclic graph that represents the temporal dependency of three cate-

gorical variables with states - and +. The conditional probability table shows the transition

probabilities that quantify the dependency of Y3 on its parent nodes.

21



A Bayesian Dynamic Model for Influenza Surveillance

Figure 5: The regression models for each of the four time series (CH, AH, P&I and ILI). All

nodes in the graphs represent stochastic variables and arrows represent temporal dependen-

cies quantified by probability distributions. An arrow from a node A to a node B means that A

leads B by the number of weeks identified by the subscript. For example, the graph a) shows

that the number of pediatric patients seen at the ED with respiratory syndrome at week t� 1

(CHt�1) leads the number of pediatric patients at week t (CHt). This is a simple autoregressive

model of order 1. The graph b) shows that the model describing the dynamics of P&I at week t

has an autoregressive component (P&It�1) as well as the three predictors CHt�3, AHt�1, and

ILIt�1. Therefore, CH data lead P&I data by three weeks, while both AH and ILI data lead the

number of pneumonia and influenza deaths by one week only. Similarly, the graphs c) and d)

show that CH data lead AH data by one week, and the number of patients with ILI symptoms

by two weeks.
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Figure 6: The overall dynamic Bayesian network that describes the interplay between the four

data streams.
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Figure 7: Posterior probability (z-axis) for the models describing the dependency of the num-

ber of deaths for pneumonia and influenza on the number of pediatric and adult patients with

respiratory syndromes for varying lags in weeks (x and y axes). The probability is maximum

when the number of pediatric patients with respiratory syndrome is measured with a three

week lag and the number of adult patients with respiratory syndrome is measured with one

week lag and, compared to the other models, there is very strong evidence that this model

gives the best fit (posterior probability almost 1).
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Figure 8: Two step ahead prediction of ILI cases in Massachusetts between October 1999 and

October 2000: the year of a major influenza epidemic. The blue line depicts the observed

number of patients with ILI symptom (in logarithmic scale) between November 1999 and the

end of October 2000. The red line depicts the values predicted by the model using only the

data available until two weeks before. The green line shows the values predicted by the model

when the past ILI data are ignored, and the line in pale blue depicts the values predicted by

the same model using only the volume of pediatric patients with respiratory syndromes. The

synchrony between the lines in dark and pale blue shows that that the signal provided by the

pediatric respiratory syndrome data is sufficient to reconstruct the dynamics of influenza and

to identify peaks of the epidemic with two weeks anticipation. The x-axis reports the week

beginning with November 1999 till the end of October 2000.
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model
{

### initial values of the time series
d.t.2 <- pi[t-2] ### P&I at week t-2
e.i.t.2 <- exp(ili[t-2]); #### ILI at week t-2 ILI are in log-scale
a.t.2 <- bid[t-2] #### AH data at week t-2
c.t.4 <- cc[t-4]; c.t.3<-cc[t-3]; #### CH data at week t-4 and t-3

#### P&I
d.t.1 ˜ dpois( d.mean.1) ### P&I at week t-1
log(d.mean.1)<- int.d+theta.d*d.t.2+ theta.a*a.t.2+ theta.c*c.t.4+

theta.i*e.i.t.2+theta.x.1*x.1[t-1]+theta.x.2*x.2[t-1]
d.t ˜ dpois( d.mean) ### P&I at week t
log(d.mean) <- int.d+theta.d*d.t.1+ theta.a*a.t.1+theta.c*c.t.3+

theta.i*e.i.t.1+theta.x.1*x.1[t]+theta.x.2*x.2[t]

#### ILI
i.t.2<-ili[t-2]
e.i.t.1 ˜ dlnorm( i.mean.1,i.tau) ### ILI at week t-1
i.mean.1 <- eta.i*i.t.2+eta.c*c.t.3+eta.x.1*x.1[t-1]

i.t.1<-log(e.i.t.1)
e.i.t ˜ dlnorm( i.mean,i.tau) ### ILI at week t
i.mean <- eta.i*i.t.1+eta.c*c.t.2+eta.x.1*x.1[t]

#### AH
a.t.1˜ dnorm( a.mean.1, a.tau) ### AH at week t-1

a.mean.1 <- int.a + beta.a*a.t.2+ beta.c*c.t.2
a.t ˜ dnorm( a.mean, a.tau) ### AH at week t
a.mean <- int.a + beta.a*a.t.1+ beta.c*c.t.1

#### CH
c.t.1 ˜ dnorm( c.mean.1, c.tau) ### CH at week t-1
c.mean.1 <- int.c + gamma.c*c.t.2+gamma.x.1*x.1[t-1]
c.t ˜ dnorm( c.mean, c.tau) ### CH at week t
c.mean <- int.c + gamma.c*c.t.1+gamma.x.1*x.1[t]

}

Figure 9: BUGS code used for the two-week-ahead forecast. The parameters are updated at each
iteration.
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Regression model for P&I Regression model for log(ILI)

Estimate Std. Error Estimate Std. Error

(Intercept) 3.5542 0.0656 log(ILIt�1) 0.6919 0.0443

P&It�1 0.0045 0.0007 CHt�2 0.0056 0.0008

AHt�1 0.0031 0.0005 x1 0.1502 0.0579

ILIt�1 0.0006 0.0003 x2 -0.1267 0.0542

CHt�3 -0.0014 0.0004

x1 0.1153 0.0234

x2 0.1370 0.0189

Regression model for AH Regression model for CH

Estimate Std. Error Estimate Std. Error

(Intercept) 17.6199 4.4835 (Intercept) 64.8846 7.9730

AHt�1 0.5528 0.0530 CHt�1 0.5827 0.0505

CHt�1 0.1755 0.0294 x1 24.7580 3.5840

Table 1: Estimates and standard errors of the regression parameters for the four models fitted

to CH, AH, ILI and P&I data when all the data are used to induce the network. The model

fitted to P&I data is a log-linear model, so that the regression coefficients parameterize the

logarithm of the mean. The model fitted to ILI data is in logarithmic scale. The variables x1

and x2 are periodical functions defined as x1 = sin(2⇡t/52) and x2 = cos(2⇡t/52).

27


	Introduction
	Data
	Dynamic Bayesian Networks
	Model Building and Validation
	Discussion

