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Abstract
The ability to determine patient acuity (or severity of illness) has immediate practical use for 
clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian 
process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled 
clinical data, including both physiological signals and clinical notes. The learned multi-task GP 
(MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were 
conducted with two real clinical data sets acquired from ICU patients: firstly, estimating 
cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic 
brain injury patients, by learning the interactions between intracranial pressure and mean arterial 
blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both 
cases, MTGPs provided improved results: an MTGP model provided better results than single-task 
GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP 
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hyperparameters obtained improved results when used as additional classification features (0.812 
vs 0.788 AUC).

1 Introduction
Motivation

Decisions in the intensive care unit (ICU) are frequently made in settings with a high degree 
of uncertainty based on a wide variety of data sources, such as vital signs, clinical notes, 
fluids, medications, etc. Clinical data collection is rapidly expanding, but these data are 
often sparse and irregularly sampled, and contaminated by a variety of noise interference 
and human error. The ICU is playing an expanding role in acute hospital care (Vincent 
2013), and in such data-heavy settings, a more concise representation of patient records 
would help clinical staff to quickly assess patient state and plan care.

Goal
High quality clinical care depends on the ability to combine heterogeneous clinical data to 
understand the severity of illness (acuity) in patients. Clinical research often uses risk of 
mortality as a surrogate for patient acuity, often evaluated at a single end point, such as after 
28-days post-discharge. Most acuity scores rely on static snapshots of a patient and do not 
incorporate evolving clinical information such as new notes, lab values, etc. Our goal is to 
provide a concise representation of these multiple related timeseries so that they can be 
compared and assessed.

Challenge
The general issue of comparing signals that are not aligned and irregularly sampled has been 
considered before (see 2.2). Establishing similarity metrics among timeseries data is an 
important part of many learning tasks and often is achieved using a variety of summarization 
methods. However, many modeling methods fail when applied to irregularly sampled data 
unless strong assumptions are made about the functional form present in the underlying data 
source. Furthermore, in cases where such methods work, data imputation is often necessary, 
which can introduce additional sources of error and bias. Finally, many methods work on a 
single timeseries, but fail to generalize to (or take advantage of) other related time-series 
data. In the remainder of this paper, we refer to noisy, sparse, heterogeneous, irregularly 
sampled data as “irregularly-sampled” data.

Solution
Our proposed technique transforms a variety of irregularly-sampled clinical data into a new 
latent space using the hyperparameters of multi-task GP (MTGP) models. Patients are 
compared based on their similarity in the new hyperparameter space. Our work differs from 
other work in that it: 1) uses the correlation between and within multiple time-series to 
estimate parameters instead of considering each timeseries separately; 2) infers a compact 
latent representation of the source data, rather than finding patterns that are common within 
different timeseries; and 3) leverages the information contained in the inferred model 
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hyperparameters for supervised learning, whereas others use the predicted mean function of 
the GP as a pre-processing or smoothing step (see 2.3).

Contributions
This paper makes the following contributions:

• We propose a method using MTGP for forecasting patient acuity based on 
irregularly sampled heterogeneous clinical data.

• We propose a new latent space for representing multidimensional timeseries using 
inferred MTGP hyperparameters.

• We evaluate our approach in two ways: 1) estimating and forecasting a 
cerebrovascular autoregulation index from noisy physiological time-series data in 
patients who suffered a traumatic brain injury and 2) transforming irregular ICU 
patient clinical notes into timeseries, and using MTGP hyperparameters from these 
timeseries as features to predict mortality probability.

2 Related Work
2.1 Clinical Assessment

In the clinical world, there are practical examples of data being used to infer patient acuity in 
the form of ICU scoring systems. ICU scoring systems such as SAPS (simplified acute 
physiology score) use physiologic and other clinical data for acuity assessment. However, in 
2012 scoring systems were used in only 10% to 15% of US ICUs (Breslow and Badawi 
2012). Recent work has focused on feature engineering for mortality prediction. This is 
usually accomplished by windowing or aggregating the structured numerical data so that a 
single feature matrix can be fed into a structured deterministic classifier (Hug and Szolovits 
2009; Lehman et al. 2012; Joshi and Szolovits 2012; Ghassemi et al. 2014).

2.2 Timeseries Abstraction
The timeseries abstraction/summarization literature deals more directly with the time-
varying nature of data. Dynamic time warping measures similarity between two temporal 
sequences that may vary in time or speed (Li and Clifford 2012). Another approach is time-
series symbolization, which involves discretizing timeseries into sequences of symbols and 
attaching meaning to the groupings of the symbols (Lin et al. 2007; Saeed and Mark 2006; 
Syed and Guttag 2011). These approaches rely on some known regularity underlying a 
signal (e.g. ECG signals), and are often unsuitable for irregularly sampled timeseries. Full 
latent variable models have been applied to abstracting signals into higher level 
representations. For example, Fox et al. used beta processes to model multiple related time-
series (Fox et al. 2011), and Marlin et al. used Gaussian mixture models on the first 24 hours 
of monitor-signals data with hourly-discretization (Marlin et al. 2012). Nevertheless, latent 
variable approaches are unable to cope with missing and unevenly-sampled data as is, and 
require either strong assumptions about observations when they change asynchronously, or 
the computationally expensive approach of modeling time between observations directly as 
another latent variable.
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2.3 Gaussian Processes
Gaussian processes (GP) form the basis for a Bayesian modeling technique that has been 
used for various machine learning tasks (Rasmussen and Williams 2006). Most commonly, 
GPs are used to predict a single output (denoted here as “task”) based on one or more input 
timeseries. We refer to this model as a single-task GP (STGP). Lasko et al. attempted to use 
Gaussian process regression as a smoothing function of irregularly-sampled signals (Lasko, 
Denny, and Levy 2013). This is a common usage model for GPs on clinical timeseries: GPs 
are used to model observed data through the predicted mean function of the timeseries. 
Clifton et al. used GPs as a framework for coping with data artifacts and incompleteness in 
mobile sensor data (Clifton et al. 2013b). In a related work (Clifton et al. 2013a), a 
functional version of extreme value statistics was proposed for physiological data in order to 
compare different timeseries. Similarly, GPs were used for robust regression of noisy heart 
rate data (Stegle et al. 2008). The remainder of the related work has used STGP models to 
predict a single output based on one or more input variables.

3 Methods
In the present study, we explore the potential of a novel approach using MTGP models 
(Bonilla, Chai, and Williams 2007) to learn the correlation between and within time-series, 
and obtain a concise representation of time-varying physiological and clinical data based on 
the inferred hyperparameters.

Here, we motivate the use of MTGPs and describe the method (source code is available on-
line1) that we have adapted for hyperparameter construction (Durichen et al. 2014).

3.1 Multi-Task Gaussian Process Models
The general STGP framework may be extended to the problem of modeling m tasks 
simultaneously where each model uses the same index set x (e.g., physiological or clinical 
timeseries). A naïve approach is to train a STGP model independently for each task, as 
illustrated in Figure 1(a). We introduce instead an extension to multi-task GP models 
proposed in (Bonilla, Chai, and Williams 2007), which makes use of the covariance in 
related tasks to reduce uncertainty in the inferred signal.

Let  and  be the 
training indices and observations for the m tasks, where task j has nj number of training data. 
We consider the regression model y⃗n = g(x⃗n) + ε, in which g(x) represents the latent function 

and  is a noise term. GP models assume that the function g(x⃗n) can be 
interpreted as a probability distribution over functions such that 

, where m(x⃗n) is the mean function of the process 

(assumed = 0) and  is a covariance function describing the coupling among the 
independent variables x⃗n as a function of their kernel distance. To specify the affiliation of 

index  and observation  to task j, a label lj = j is added as an additional input to the 

1http://www.robots.ox.ac.uk/davidc/publications_MTGP.php
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model, as shown in Figure 1(b). To model the correlation between tasks as well as the 
temporal behaviour of the tasks within a unified GP model, two independent covariance 
functions are assumed, and the covariance matrix KMT for all m tasks can be written

(1)

where ⊗ is the Kronecker product, l = {j | j = 1,…, m}, Kc and Kt represent the correlation 
and temporal covariance functions, and θc and θt are vectors containing hyperparameters for 
Kc and Kt, respectively. Within geostatistics, this approach is also known as the intrinsic 
correlation model (Wackernagel 2003).

By modifying the temporal covariance function we can encode our prior knowledge 
concerning the functional behavior of the tasks that we wish to model. The most frequently-
used example is the squared-exponential covariance function (Rasmussen and Williams 
2006):

(2)

where θt = {θA, θL}, and θA and θL are hyperparameters modeling the y-scaling and x-
scaling (or time-scale if the data are timeseries) of the covariance function, respectively.

To construct a valid positive semidefinite correlation covariance function Kc, we used the 
Cholesky decomposition and the “free-form” parameterization of the elements of the lower 
triangular matrix L proposed in (Bonilla, Chai, and Williams 2007), such as

(3)

where  is the number of correlation hyperparameters.

Identically to STGPs, the hyperparameters θ for a MTGP may be optimized by minimizing 
the negative log marginal likelihood via gradient descent (Rasmussen and Williams 2006), 

and predictions for test indices  can be made by computing the conditional 

probability .

Figure 2 shows an example of STGPs and an MTGP applied to a simple synthetic dataset 
with 4 sample tasks. Tasks 1 and 2 were correlated, task 1 and task 2 were both anti-
correlated with task 4, and task 3 was uncorrelated with all other tasks. For this, 4 tasks were 
sampled from a MTGP model with the following hyperparameters: θL = θA = θc,1 = θc,2 = 
θc,3 = θc,6 = θc,10 = 1, θc,4 = θc,5 = θc,0 = 0, and θc,7 = θc,8 = −1. Artificial gaps were then 
randomly created in different tasks at different time points and with different durations. The 
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STGP (Figure 2(b)), applied to each task independently, fails to adequately represent the 
functions, particularly where data are not available. Figure 2(c) shows that the MTGP 
improves the predictions in all 4 tasks by capturing the relationships between them.

The MTGP has several useful properties as compared to the traditional GP:

• We can allow task-specific training indices nj; i.e., training data may be observed at 
different times for different tasks (Figure 2);

• The correlations within and between tasks are automatically learned from the data 
by fitting the covariance function in Equation 1; and

• The framework assumes that the tasks have similar temporal characteristics and 
hyperparameters θt.

A limitation of the MTGP is computational cost: (m3n3) compared with m × (n3) for 
STGPs. This limitation is not as relevant for our application, given that we are not dealing 
with densely-sampled time-series data, but data which is sparse and irregular. Another 
limitation of the MTGP is that the number of hyperparameters can increase rapidly for an 
increasing number of tasks, which can lead to a multi-modal parameter space.

3.2 Signal Representation via Hyperparameters
We propose using the inferred MTGP hyperparameters θ that describe the temporal 
correlation within and between tasks as features that represent our set of observations: θA 
and θL which respectively govern each output scale of our functions and the input, or time, 
scale, and θc,i that correspond to the correlation between the different tasks (outputs) 
modelled. In effect, θ provides a new latent search space to examine and evaluate the 
similarity of any two given multidimensional functions. Importantly, these parameters are:

1. a means of representing the functional behavior a set of observations {y⃗n, x⃗n};

2. learned directly from data; and

3. generalizable to any type of longitudinal data, including categorical and numerical 
types.

4 Experiment 1: From Multiple Noisy Time-Series Data to Acuity 
Assessment

In this experiment, we use physiological signals from Traumatic Brain Injury (TBI) patients 
to test the MTGP's ability to assess and forecast multiple related signals. We examine two 
noisy timeseries: the intracranial pressure (ICP) and mean arterial blood pressure (ABP). 
Continuous monitoring of ICP and ABP has become a standard in neurological ICUs. 
Cerebrovascular autoregulation is an important mechanism to sustain adequate cerebral 
blood flow (Werner and Engelhard 2007), and impairment of this mechanism indicates an 
increased risk to secondary brain damage and mortality (Hlatky, Valadka, and Robertson 
2005).
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Cerebrovascular autoregulation is most commonly assessed based on the Pressure-Reactivity 
Index (PRx), which is defined as a sliding window Pearson's correlation between the ICP 
and ABP (Czosnyka et al. 1997). However, the ICP and ABP timeseries are often 
contaminated by artifacts and missing data, and PRx can no longer be calculated in these 
situations. Although methods have been proposed to detect and remove artifacts (Feng et al. 
2011), the artifact removal process still creates gaps of missing data in the timeseries.

In this experiment, we demonstrate how the proposed MTGP model can be applied to 
interpolate the incomplete data in ICP and ABP signals and, more importantly, to accurately 
estimate PRx.

4.1 Data
The ICP and ABP data were collected from 35 TBI patients who were monitored for more 
than 24-hours in a Neuro-ICU of a tertiary care hospital between January 2009 and 
December 2010. The continuously monitored physiological readings were sampled and 
recorded every 10 seconds. For experimental evaluation, we selected 30 ten-minute windows 
from each patient recording, where ICP and ABP signals were free from artifacts and 
missing values. We then randomly introduced artificial gaps in both signals as shown in 
Figure 3. We evaluated the PRx estimation accuracy, and we further compared the 
performance of MTGP to that of STGP, which models each signal independently. For 
implementation, priors over the hyperparameters were selected after 100 random 
initializations for each case.

4.2 Results
The quality of predictions are evaluated using the squared error loss, where we compute the 
squared residual (y* −ŷ*)2 between the mean prediction (ŷ*) and the target (y*) at each test 
point, and the squared root of the average over the test set to produce the root mean squared 
error (RMSE). As the RMSE is sensitive to the overall scale of the target values, we 
additionally evaluate the negative log probability of the target under the model, by defining 
the mean standardized log loss (MSLL) as

where the first term is the log likelihood of  given our latent function f and the test index 
. This probability is normalized by the second term, the log likelihood of  under a trivial 

model that predicts using a Gaussian with mean m(yn) and variance var(yn) of the training 
labels.

Table 1 shows the overall performance of our approach. We note that the MTGP was able to 
estimate the correlation between the ICP and ABP signals – PRx – accurately even with 
incomplete data. The average RMSE between the true correlation coefficients and the 
MTGP estimated ones with the incomplete data was 0.09 (Table 1). This suggests that the 
posterior hyperparameter of MTGP, which measures the interactions between ICP and ABP, 
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may be used as an index to model the cerebrovascular autoregulation mechanism and thus 
the risk of secondary brain injury.

We note that the scale of ICP values is normally between 1 to 20 mmHg, and the specific 
ICP value determines whether the achieved reduction in RMSE is clinically significant. If 
the ICP has already elevated to somewhere near 20 mmHg, any slight increase in ICP may 
result in secondary damage to the brain. In this case, even small reductions to RMSE are 
more desirable to guide the medical interventions.

We also observe that the MTGP provides a significant improvement in interpolating values 
for both signals, as the correlation between the two physiological variables is taken into 
account. Particularly, in periods of incomplete data (see Figure 3), the predictions are much 
more accurate compared to STGP. This shows that the proposed MTGP model can also be 
used for accurate interpolation and forecasting of ICP and ABP timeseries in the 
applications of advanced alarming and physiological trajectory analysis.

5 Experiment 2: From Heterogenous Clinical Data to ICU Acuity Forecasting
To demonstrate the effectiveness of the proposed MTGP model on features inferred from 
sparse, irregularly sampled timeseries, we applied MTGPs to clinical notes from the ICU for 
mortality prediction as summarized in Figure 4. Gold-standard clinical models typically use 
population-based acuity scores, such as SAPS-I (Le Gall et al. 1984), based on snapshots of 
the patient's status during their stay in the ICU. These scores are inherently limited because 
patient state (or severity of illness) constantly evolves.

5.1 Data
We used 2001–2006 ICU data from the open-access MIMIC II 2.6 database (Saeed et al. 
2011), which includes electronic medical records (EMRs) for 26, 870 ICU patients at the 
Beth Israel Deaconess Medical Center (BIDMC).

For each patient we extracted the SAPS-I score, calculated from clinical variables over a 
patient's first 24-hours in the ICU. We used all notes from nursing, physicians, labs, and 
radiology recorded prior to the patient's first discharge from ICU. Discharge summaries were 
excluded because they typically state the patient's outcome explicitly. Patients were excluded 
if their notes had fewer than 100 words, fewer than 6 total notes in their record, or were 
under the age of 18. Patient mortality outcomes were measured at hospital discharge and 1 
year post-discharge.

The final cohort consisted of 10,202 patients with 313,461 notes. A random 30% of the 
patients (3,040) were held back as a test set. The remaining 70% of patients (7,162) were 
used to train topic models and mortality predictors. The test set contained 93,411 notes, and 
the training set had 220,005.

5.2 Clinical Note Decomposition to Timeseries
Beginning from sparse, irregularly sampled clinical notes, we first performed topic modeling 
as a form of dimensionality reduction as described in (Ghassemi et al. 2014). Topics 
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inference was performed on notes using T = 50 topics over the words (W) in our vocabulary 
(Blei, Ng, and Jordan 2003; Griffiths and Steyvers 2004). We normalized hyperparameters 
on the Dirichlet priors for the topic distributions (α) and the topic-word distributions (β) as 

, and .

The topic inference resulted in a 50-dimensional vector of topic proportions for each note in 
every patient's record. We concatenated topic vectors into a matrix q where the element qnk 
was the proportion of topic k in the nth note.

5.3 Hyperparameter Construction
Once notes were transformed into multi-dimensional numeric vectors, we used the MTGPs 
to model the per-note change in topic membership over a patient's stay. This is critical for 
comparing two patients' records given that patients have different lengths of stay and note 
taking intervals depend on staff, clinical condition, and other factors.

From the topic enrichment measure (ϕ), we chose the topics with a posterior likelihood 
above or below 5% of the population baseline likelihood across topics. This yielded nine 
topics (see Table 5.3 for a summary of the chosen topics, and the Appendix for more 
details). We employed MTGP to learn the temporal correlation between the nine topics and 
the overall temporal variability of the multiple timeseries.

From the available data sources, we formed a set of three feature matrices: (1) the admitting 
SAPS-I score for every patient, (2) the average topic membership for the nine identified 
topics (matrix q), and (3) the inferred MTGP hyperparameters across the nine topic vectors 
from q. Importantly, the admitting SAPS-I score and mean topic members (1 and 2) are both 
static measures. SAPS-I collapses data from the first 24 hours of the record, while the 
average topic membership collapses the entire per-note timeseries for each patient's record 
into an aggregate measure. Our proposed MTGP hyperparameters (3) complement these 
measures with information about the per-note timeseries.

5.4 Outcome Classification
We considered five feature prediction regimes that combined subsets of the feature matrices 
1, 2, and 3 as an aggregate feature matrix. We trained two supervised classifiers that were 
identical in the five feature sets used, but provided different objective functions for 
optimization: Lasso logistic regression and L2 linear kernel SVM.

Classifiers were trained to create classification boundaries for two clinical outcomes: in-
hospital mortality and 1-year post-discharge mortality. All outcomes had large class-
imbalance (e.g., in-hospital mortality rates of 10.9%). To address this issue, we randomly 
sub-sampled the negative class in the training set to produce a minimum 70%/30% ratio 
between the negative and positive classes. Test set distributions were not modified, and 
reported performance reflects those distributions. Due to space constraints, we only reported 
results on a completely held out test set. We performed 5-fold cross-validation on the 
remaining data, and cross-validation results were similar to those obtained on the completely 
held-out test set.
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We evaluated the performance of all classifiers using the area under the Receiver Operating 
Characteristic curve (AUC) on the held-out test set. Table 3 reports results from the Lasso 
model. Results obtained using the L2 linear kernel SVM were not statistically different.

5.5 Results
SAPS-I had the poorest predictive power, which is understandable given that it is only an 
initial snapshot (24 hours) of the severity of illness. We used the static SAPS-I score due to 
its status as the gold-standard in clinical scoring, and our argument in the second experiment 
is that the MTGP hyper-parameter space complements this clinical score, rather than 
competes with it. The average value of the most significant topics significantly improved 
upon that predictive power. The performance of MTGP Hyperparameters on their own was 
similar to that of the Topics: AUC of 0.749 and 0.624 for in-hospital and 1 year mortality, 
respectively.

Given that the hyperparameters were optimized from per-note topic features (that are 
themselves the output of an unstructured learning problem), it is most sensible that the topics 
information should be used in combination with the MTGP hyperparameters to describe 
patient state. We obtained improved predictive performance for both mortality outcomes 
when combining both MTGP hyperparameters with SAPS-I and the significant topics. This 
is likely because the hyperparameters provide complementary information to both SAPS-I 
and the significant topics. Both SAPS-I and the topic features capture a single aggregate 
measure of membership in certain latent dimensions related to outcome, while the MTGP 
hyperparameters capture movement over the course of a hospital stay within those 
dimensions. The best predictive performance occurred when all features were combined, e.g. 
SAPS-I + significant topics + MTGP hyperparameters.

6 Conclusion
The ability to determine on-going patient acuity has immediate clinical use. But clinical data 
are often noisy, sparse and irregularly sampled. The secondary nature of medical data is also 
true in other domains of application such as social media, online retailers, and online content 
distributors (e.g., Yelp reviews, Twitter tweets, Amazon product reviews and ratings). In all 
these cases, data are likely to suffer from the same problems mentioned above, but there is 
still a need to understand how sets of information are related. A key to analyzing such data is 
representing the time-series data in a manner that allows for effective discrimination 
between two or more patterns.

The goal of this work was to transform multiple clinical data sources (e.g., notes, acuity 
scores) into a new latent space where the information could be viewed as timeseries data, 
and abstracted features represent the series dynamics. We demonstrated our method's 
applicability to physiological and clinical data using two different experiments.

MTGPs were able to estimate the cerebrovascular autoregulation index in TBI patients. The 
biggest advantage of MTGP over STGP is the ability to estimate the correlations between 
ICP and MAP, even in the presence of missing data. This allows continuous assessment of 
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the cerebral autoregulation mechanism, which is an important indicator of secondary brain 
damage and mortality.

Inferred MTGP hyperparameters were also able to increase classification performance on 
mortality prediction of ICU patients. The use of temporal information in clinical care is 
fundamental, and the large number of independent devices used in a modern ICU provides 
heterogeneous data. Using our method to summarize heterogenous clinical patient data into 
a more concise form, clinicians can leverage the collective knowledge of patient trajectories 
and outcomes. Concise representations of clinical notes are easier for clinicians to use, 
because they aggregate multi-author notes over time into topic timeseries that are more 
easily labeled (e.g. by viewing the top words) and tracked over a patient's record.

The main limitation in using this approach to characterize timeseries is computational cost. 
We conducted an exhaustive grid search over the constrained hyperparameter space. 
Computational costs may be addressed using a recently proposed Bayesian optimization for 
automatically tuning the MTGP hyperparameters (Swersky, Snoek, and Adams 2013) in 
large datasets. In a “real-time” setting, the computational cost for m tasks is O(m3, n3). An 
overview of sparse GP methods is presented in (Quionero-Candela and Rasmussen 2005), 
which aims to find a smaller set of pseudo-inputs n′ to reduce computational complexity. 
Further improvement is possible by 1) exploiting the Kronecker product (Stegle et al. 2011), 
2) limiting the training data to the same time instances of each dimension of the data 
(Evgeniou, Micchelli, and Pontil 2005), or 3) by using recursive algorithms (Pillonetto, 
Dinuzzo, and De Nicolao 2010). Applications that require close-to-real-time retraining (e.g. 
Experiment 2), would benefit from these techniques, while operating over longer time-scales 
would be less sensitive.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical model for (a) m single-task Gaussian processes with m sets of: inputs Xi, 

temporal covariance hyperparameters , estimated functions fi, noise terms σi, and outcomes 
yi; and (b) a multi-task Gaussian process which relates m tasks through all prior variables, 
with the tasks' labels l and similarity matrix θc.
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Figure 2. 
(a) A sample function with 4 tasks; (b) Single-task GP (STGP) and (c) multi-task GP 
(MTGP) predictions on all tasks. The dots represent observations, while dashed lines and 
colored areas represent the predictive mean and 95% confidence interval, respectively. The 
line on the bottom represents the mean absolute error (over the 4 tasks) between the 
predictions and the correspondent reference values. We observe that the overall error 
obtained in (c) is lower than that in (b), which suggests that the use of MTGP yielded better 
predictions by taking into account the correlation between the different tasks.

Ghassemi et al. Page 15

Proc Conf AAAI Artif Intell. Author manuscript; available in PMC 2016 May 11.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 3. 
An example of a single-task GP (STGP) and multi-task GP (MTGP) applied to intracranial 
pressure (ICP) and mean arterial blood pressure (ABP) signals from a traumatic brain injury 
patient. (a) and (c) show the performance of STGP, whereas (b) and (d) show the improved 
performance of MTGP, which takes into account the correlation between ICP and ABP. Dots 
represent observations, crosses represent missing observations (test observations), the dotted 
line shows the function mean and the shaded area show the 95% confidence interval. We 
note that the timescale parameter “selected” by the MTGP, which takes into account the 
correlation between the tasks, is shorter than the one selected by the STGP, which yields to 
higher likelihood of the test observations (crosses).
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Figure 4. 
1) We perform a pre-projection step where clinical notes are transformed into timeseries 
using Latent Dirichlet Allocation; 2) the new set of topic proportion timeseries are fitted 
using the MTGPs; 3) inferred hyperparameters θL, θA, θc,1, …, θc,6 are derived, projecting 
into the new latent space; 4) latent features (hyperparameters) are used as features in 
combination with topic proportions and the SAPS acuity score to 5) forecast patient 
mortality.
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Table 1

Performance of single-task GP (STGP) and multitask GP (MTGP). PRx-PRx* refers to the difference between 
the reference PRx (Pearson correlation coefficient of ICP and ABP for a given window) and PRx*, the 
estimated PRx index (posterior MTGP hyperparameter that measures the interaction between the two tasks).

Signal Measure STGP MTGP

ICP
RMSE 0.91 0.69

MSLL 0.6 0.45

ABP
RMSE 2.77 1.98

MSLL 0.65 0.55

PRx-PRx* RMSE - 0.09
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Table 2

Top five words in chosen topics (enriched for in-hospital mortality/survival).

Top Five Words Possible Topic

In-hospital Mortality liver, renal, hepatic, ascites, dialysis Renal Failure

thick, secretions, vent, trach, resp Respiratory infection

remains, family, gtt, line, map Systematic organ failure

increased, temp, hr, pt, cc Multiple physiological changes

intubated, vent, ett, secretions, propofol Respiratory failure

name, family, neuro, care, noted Discussion of end-of-life care

Survival cabg, pain, ct, artery, coronary Cardio-vascular surgery

chest, pneumothorax, tube, reason, clip

pain, co, denies, oriented, neuro Responsive patient
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Table 3

Prediction results of hospital and 1-year mortality, AUC for various feature combinations.

Features Hospital Mortality 1-Year Mortality

SAPS-I 0.702 0.500

Ave. Topics 0.759 0.653

SAPS-I + MTGP 0.775 0.624

Ave. Topics + MTGP 0.788 0.673

SAPS-I + Ave. Topics + MTGP 0.812 0.686
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