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Abstract
Accurate knowledge of a patient’s disease state and trajectory is critical in a clinical setting.
Modern electronic healthcare records contain an increasingly large amount of data, and the ability
to automatically identify the factors that influence patient outcomes stand to greatly improve the
efficiency and quality of care.

We examined the use of latent variable models (viz. Latent Dirichlet Allocation) to decompose
free-text hospital notes into meaningful features, and the predictive power of these features for
patient mortality. We considered three prediction regimes: (1) baseline prediction, (2) dynamic
(time-varying) outcome prediction, and (3) retrospective outcome prediction. In each, our
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prediction task differs from the familiar time-varying situation whereby data accumulates; since
fewer patients have long ICU stays, as we move forward in time fewer patients are available and
the prediction task becomes increasingly difficult.

We found that latent topic-derived features were effective in determining patient mortality under
three timelines: inhospital, 30 day post-discharge, and 1 year post-discharge mortality. Our results
demonstrated that the latent topic features important in predicting hospital mortality are very
different from those that are important in post-discharge mortality. In general, latent topic features
were more predictive than structured features, and a combination of the two performed best.

The time-varying models that combined latent topic features and baseline features had AUCs that
reached 0.85, 0.80, and 0.77 for in-hospital, 30 day post-discharge and 1 year post-discharge
mortality respectively. Our results agreed with other work suggesting that the first 24 hours of
patient information are often the most predictive of hospital mortality. Retrospective models that
used a combination of latent topic features and structured features achieved AUCs of 0.96, 0.82,
and 0.81 for in-hospital, 30 day, and 1-year mortality prediction.

Our work focuses on the dynamic (time-varying) setting because models from this regime could
facilitate an on-going severity stratification system that helps direct care-staff resources and
inform treatment strategies.

1. INTRODUCTION
In a fragmented healthcare system of patients, doctors, caregivers, and specialists, an
accurate knowledge of a patient’s disease state is critical. Electronic monitoring systems and
health records facilitate the flow of information among these parties to effectively manage
patient health. However, information is not knowledge, and often only some of the
information will be relevant in the context of providing care. Expert physicians want to sift
through these extensive records to discover the data most relevant to a patient’s current
condition. As such, systems that can identify these patterns of relevant characteristics stand
to improve the efficiency and quality of care.

This work focused on the task of on-going mortality prediction in the intensive care unit
(ICU). The ICU is a particularly challenging environment because each patient’s severity of
illness is constantly evolving. Further, modern ICUs are equipped with many independent
measurement devices that often produce conflicting (and even false) alarms, adversely
affecting the quality of care. Consequently, much recent work in ICU mortality models [8,
10, 17] has aimed to consolidate data from these devices (primarily structured data and
physiological waveforms) and transform these information streams into knowledge.
However, these works omit perhaps the most descriptive sources of medical information:
free-text clinical notes and reports.

The narrative in the clinical notes, recorded by expert care staff, is designed to provide
trained professionals a quick glance into the most important aspects of a patient’s
physiology. Combining features extracted from these notations with standard physiological
measurements results in a more complete representation of patients’ physiological states,
thus affording improved outcome prediction. Unfortunately, free-text data are often more
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difficult to include in predictive models because they lack the structure required by most
machine learning methods. To overcome the obstacles inherent in clinical text, latent
variable models such as topic models [1, 2] may be used to infer intermediary
representations that can in turn be used as structured features for a prediction task.

We demonstrate the value of incorporating information from clinical notes, via latent topic
features, in the task of in-hospital mortality prediction as well as 30 day and 1 year post-
discharge mortality prediction. Specifically, we evaluated mortality prediction under three
prediction regimes: (1) baseline regime, which used structured data available on admission
(2) time-varying regime, which used baseline features together with dynamically
accumulated clinical text using increasigly large subsets of the patient’s narrative record,
and (3) retrospective regime, which used all clinical text generated from a hospital stay to
supplement the baseline features. In all targeted outcomes, we demonstrate that adding
information from clinical notes improves predictions of mortality.

2. RELATED WORK
Mortality models for acute (i.e. ICU) settings constitute a broad area of research. Siontis et
al. [16] reviewed 94 studies with 240 assessments of 118 mortality prediction tools from
2009 alone. Many of these studies evaluated established clinical decision rules for predicting
mortality, such as APACHE [9], SAPS-II [10], and SOFA [17] (with median reported AUCs
of 0.77, 0.77, and 0.84, respectively). Sionitis et al. also noted a large variability of these
measures across various diseases and population subgroups. Other acuity scores have also
been proposed, including the recent OASIS score [8] which uses machine-learning
algorithms to identify the minimal set of variables capable of yielding an accurate severity
of illness score (AUC 0.88).

Work by Hug et al. [7] used several hundred structured clinical variables to create a real-
time ICU acuity score that reported an AUC of 0.88-0.89 for in-hospital mortality
prediction. Notably, most of the predictive power of their models was from data gathered
within the first 24 hours of the ICU stay. For example, their computed acuity score reported
an AUC of 0.809 for in-hospital mortality prediction based on information during the first
24 hours of ICU stays in 1,954 patients.

Several recent works have used information from clinical notes in their model formulations.
Saria et al. [15] combined structured physiological data with concepts from the discharge
summaries to achieve a patient outcome classification F1 score of 88.3 with a corresponding
reduction in error of 23.52%. Similarly, [5] described preliminary results indicating that
topic models extracted from clinical text in a subgroup of ICU patients were valuable in the
prediction of per-admission mortality. They found that common topics from the unlabeled
clinical notes were predictive of mortality, and an RBF SVM achieved a retrospective AUC
of 0.855 for in-hospital mortality prediction using only learned topics. Finally, Lehman et al.
[11] applied Hierarchical Dirichlet Processes to nursing notes from the first 24 hours for
ICU patient risk stratification. They demonstrated that unstructured nursing notes were
enriched with clinically meaningful information, and this information could be used for
clinical support. Using topic proportions, the average AUC for hospital mortality prediction
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was 0.78 (± 0.01). In combination with the SAPS-I variable, their average AUC for hospital
mortality prediction was 0.82 (± 0.003).

3. METHODS
Figure 1 gives a general overview of our experimental process. First, we extract clinical
baseline features, including age, sex, and SAPS-II score, from the database for every patient.
We also extract each patient’s de-identified clinical notes. We use these notes as the
observed data in an LDA topic model, and infer a total of 50 topics. We normalize the word
counts associated with each note, so that each note is represented by a 50-dimension vector,
summing to 1. These per-note topic distributions are then aggregated on a 12 hour semi-
continuous timescale (e.g. notes within 0-12 hours, notes within 0-24 hours, etc.). A linear
kernel SVM is trained to create classification boundaries with combinations of the structured
clinical features and latent topic features to predict in-hospital mortality, 30 day post-
discharge mortality, and 1 year post-discharge mortality.

3.1 Data and Pre-Processing
We used ICU data from the MIMIC II 2.6 database [13], a publicly-available, de-identified
medical corpus which includes electronic medical records (EMRs) for 26, 870 ICU patients
at the Beth Israel Deaconess Medical Center (BIDMC) collected from 2001 to 2008. Patient
age, sex, SAPS-II scores, International Classification of Diseases-Ninth Revision (ICD-9)
diagnoses, and Disease-Related Group were extracted. Medical co-morbidities were
represented by the Elixhauser scores (EH) for 30 co-morbidities as calculated from the
ICD-9 codes. Patient mortality outcomes were also queried to determine which patients died
in-hospital, or lived past the most recent query of Social Security records.

We extracted all clinical notes recorded prior to the patient’s first discharge, including notes
from nursing, physicians, labs, and radiology. The discharge summaries themselves were
excluded because they typically stated the patient’s outcome explicitly. Vocabularies for
each note were generated by first tokenizing the free text and then removing stopwords
using the Onix stopword list 1. A TF-IDF metric [14] was applied to determine the 500 most
informative words in each patient’s notes, and we then limited our overall vocabulary to the
union of the most informative words per-patient. This pre-processing step reduced the
overall vocabulary down to 285,840 words from over 1 million terms while maintaining the
most distinctive features of each patient.2

Patients were excluded if they had fewer than 100 non-stop words or were under the age of
18. Specific notes were excluded if they occurred after the the end of the day in which a
patient died or was discharged (e.g. radiology or lab reports whose results were reported
afterwards). The resulting cohort consisted of 19,308 patients with 473,764 notes. We held
out a random 30% of the patients as a test set. The remaining 70% of patients were used to
train our topic models and mortality predictors. Table 1 summarizes the number of notes and
patients in the training and test sets.

1Onix Text Retrieval Toolkit, API Reference, http://www.lextek.com/manuals/onix
2Some medical term canonicalization parsers were also examined, but we found their outputs to be fairly unreliable for this task.
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3.2 Structured and Derived Features
In total, we extracted and derived 36 structured clinical variables for each patient: the age,
gender, SAPS II score on admission, minimum SAPS II score, maximum SAPS II score,
final SAPS II score, and the 30 EH comorbidities. Data were scaled to avoid the range of a
feature impacting its classification importance. This formed a feature matrix v, where the
element vp,f was the value of feature f in the pth patient.

3.3 Topic Inference
Instead of considering each note separately, we used the set of all of notes that occurred in a
particular time period as features for that period. We examined the distribution of note
times, and found three peaks in note entry for any given day in a patient’s stay (e.g. day 1,
day 2, etc.): around 06:00, 18:00 and 24:00.3 Given this distribution, we used 12-hour
windows for our time windows.

Topics were generated for each note using Latent Dirichlet Allocation [2,6]. Our initial
experiments found no significant difference in held-out prediction accuracy across a range
of 20 to 100 topics. We set hyperparameters on the Dirichlet priors for the topic distributions

(α) and the topic-word distributions (β) as , .
We used 50 topics in our final experiments, and topic distributions were sampled from an
MCMC chain after 2,500 iterations. This topic-modeling step resulted in a 50-dimensional
vector of topic proportions for each patient for each note.

We concatenated the topic vectors into a matrix q where the element qn,k was the proportion
of topic k in the nth note. Of particular interest was whether certain topics were enriched for
in-hospital mortality and long-term survival. We used an enrichment measure defined by
Marlin et al [12], where the probability of mortality for each topic is calculated as

, where yn is the noted mortality outcome (0 for a patient that lives, and 1
for a patient that dies). These enrichment measures are reported in section 4.1.

The time windows were used to construct feature vectors for each prediction task, where (at
each step) we extended the period of consideration forward by 12 hours. From the
previously constructed per-note matrix q that describes the distribution over topics in each

note, we collapse into another matrix q’ where  describes the overall proportion of topic

k in time-window m. The element  is given by the mean of that topic’s proportions of all
the notes in time-window m: meann∈mqn,k.

3The increases in note submission at 06:00 and 18:00 were likely due to the current 12 hour nursing shift cycle. The large number of
notes submitted at end-of-day were likely due to a previously common 14:00 - midnight nursing shift.
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3.4 Prediction
We considered three prediction regimes with the inferred topic distributions: baseline
prediction, dynamic (time-varying) outcome prediction and retrospective outcome prediction
for the outcomes of in-hospital, 30-day, and 1-year mortality.

A separate linear SVM [4] was trained for each of the three outcomes, and each set of model
features evaluated. The loss and class weight parameters for the SVM were selected using
five-fold cross-validation on the training data to determine the optimal values with AUC as
an objective. The learned parameters were then used to construct a model for the entire
training set, and make predictions on the test data.

All outcomes had large class-imbalance (mortality rates of 10.9% in-hospital, 3.7% 30 day
post-discharge, and 13.7% 1 year post-discharge4). To address this issue, we randomly sub-
sampled the negative class in the training set to produce a minimum 70%/30% ratio between
the negative and positive classes. Test set distributions were not modified to reflect the
reality of class imbalance during prediction, and reported performance reflects those
distributions.

First, we established a static baseline model using only structured features present at
admission (i.e. clinical baseline features and derived features thereof). We then ran dynamic
outcome prediction in intervals of 12 hours at each step by including larger sets of patient
notes in a step-wise manner. We finally performed retrospective outcome predictions, where
we included structured features and all notes written during the stay as a static entity for
prediction. Significantly, predictions of mortality with this type of feature set are a
retrospective exercise only: it is not possible to first select all notes that occur before a
patient’s death, and then predict in-hospital mortality, because the time of mortality is not
known a-priori. The observer would have to “know” that the patient’s hospital record was
about to finish (either by death or discharge). The following settings were evaluated:

• Admission Baseline Model: A baseline model using the structured features of age,
gender, and the SAPS II score at admission. These baseline features are extracted
from the data present at patient admission only. (3 features total)

• Time-varying Topic Model 1 - 20: Outcome prediction performed by including
notes in a step-wise fashion, extending the period of consideration forward by 12
hours at each step. For example, Time-varying Topic Model 1 includes topic
features derived from all notes written during the first 12 hours of a patient’s stay in
the ICU, while Time-varying Topic Model 20 includes those derived from the first
240 hours. (50 features total)

• Combined Time-varying Model 1 - 20: Outcome pre diction using the same setup as
Time-varying Topic Model 1 - 20, but with the static structured features from
Admission Baseline Model (gender, age, admitting SAPS score) included. (53
features total)

4This includes those who die within the first 30-days post-discharge, so two of the prediction targets have overlap.
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• Retrospective Derived Features Model: A retrospective model using the structured
features of age, gender, admitting SAPS II score, the minimum SAPS II score, the
maximum SAPS II score, the final SAPS II score, and all EH comorbidities. (36
features total)

• Retrospective Topic Model: A retrospective model using topics derived from all
notes written during a patient’s stay in the ICU. (50 features total)

• Retrospective Topic + Admission Model: A retrospective model combining
structured features from Admission Baseline Model (gender, age, admitting SAPS
scores) with latent topic features from Retrospective Topic Model. (53 features
total)

• Retrospective Topic + Derived Features Model: A retrospective model combining
structured features from Retrospective Derived Features Model (gender, age,
admitting/min/max/final SAPS scores, EH comorbidities) with latent topic features
from Retrospective Topic Model. (86 features total)

We compare the prediction results for all models on each of the outcomes in Figure 3 and
Table A.2. We again emphasize that retrospective models are retrospective exercises only to
establish the isolated and combined prediction ability of clinical notes and features. We also
note that our Time-varying Topic Model is time-varying only in its application. We do not
use other possible latent variable models such as “Dynamic topic models” [3], because we
do not want to model the time evolution of topics, but rather the time evolution of
membership to a given set of topics.

4. RESULTS
4.1 Qualitative Enrichment

Table 2 lists the top words for the topics which had the largest enrichment

 for in-hospital mortality, the smallest enrichment for in-hospital
mortality, and the highest enrichment for 1 year mortality. The relative distributions of the
in-hospital mortality probabilities for each of the 50 topics are shown in Figure 2. There
were a wide variation in the in-hospital mortality concentration for the different topics,
ranging from 3% - 30%. (See Table A.3 for a listing of top ten words for all topics.)

The topics enriched for in-hospital mortality presented a detailed view of the possible causes
of death in the ICU. For example, patients in a modern ICU rarely die suddenly. Often
patient life is sustained for some time in order for their family to express their wishes
regarding terminal care and death. This could be one interpretation for Topic 27, which
pertains to the discussion of end-of-life care options. Other topics with in-hospital mortality
enrichment pertained to top causes of ICU mortality: respiratory infection (Topic 7),
respiratory failure (Topic 15), and renal failure (Topic 5).

Hospital survival was also marked by topics which seem relevant to factors tied closely to
the ability to recover from physiological insults: patients who are admitted for
cardiovascular surgery (Topic 1) are often not allowed as surgical candidates until they are

Ghassemi et al. Page 7

KDD. Author manuscript; available in PMC 2014 October 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in very good health; patients who are able to respond to their care staff and the ICU
environment (Topic 26, Table A.3) are adequately dealing with the known stress of ICU
admission; patients with trauma-based injuries such as fracture and pneumothorax (Topics 8,
40); and patients with chronic conditions like diabetes (Topic 16).

The topics enriched for 1 year post-discharge mortality suggested that patients who are
discharged but die within a year have conditions with a low chance of long-term survival.
For example, cancer (Topic 4), the need for long-term IV access while in the ICU (Topic 3),
and the use of coronary catheterization (Topic 45) to diagnose activity in coronary arteries
or other valvular/cardiac issues.

4.2 Prediction
We evaluated the predictive power of each model and outcome pair. Figure 3 shows the
AUCs achieved by each model for the three targeted outcomes. Table A.2 lists a more
complete set of the SVM classification metrics.

As shown in Table A.2, the prevalent class imbalance resulted in a bias toward low
specificities in the Admission Baseline Model. The balance between sensitivity and
specificity generally leaned towards favoring higher specificities for in-hospital and 30 day
mortality prediction as time moved forward in the Time-varying models, but this was not
uniformaly true in all cases. In general, the Retrospective Derived Features Model had a
high sensitivity and low specificity, the Retrospective Topic Model had good specificity, and
the combined models tended to have a more even set of both measures.

For 30 day and 1 year post-discharge mortality prediction, the Admission Baseline Model
was very steady, averaging an AUC of 0.68 over all time windows for both outcomes. The
Combined Time-varying Model achieved an average/best performance of 0.77/0.8 for 30 day
mortality and 0.75/0.77 for 1 year mortality. In both outcomes the Time-varying Topic
Model performed strictly better than the Admission Baseline Model until the available
patient subset became minimal (the 204*** -216 hour windows), and the Combined Time-
varying Model was always better than either alone.

As expected, the four Retrospective models were generally more predictive than any of the
Time-varying models. Retrospective models tended to increase performance as more features
were added. For in-hospital and 30 day mortality prediction, the Retrospective Topic Model
performed better than the Retrospective Derived Features Model (AUCs increased from
0.90 to 0.94 and 0.75 to 0.78 respectively). For 1 year mortality this was reversed (AUC
decreased from 0.78 to 0.76).

In the in-hospital mortality setting, it seemed that admission features were not needed once
latent topic features are known, but the derived features did provide extra information6.
However, in the 30 day setting, latent topic features were similarly improved by either the
admission features or the derived features7. This is likely because the derived features

6Adding the admission features did not improve the Retrospective Topic Model, but adding the derived features boosted AUC slightly
to 0.96.
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included EH comorbidities derived from the ICD-9 codes, and the ICD-9 codes themselves
are often transcribed after a patient’s discharge with the most actionable (or billable)
conditions a patient presented. It is possible that these features are most relevant to in-
hospital mortality risks (e.g. EH scores for myocardial infarction, congestive heart failures,
etc.).

5. DISCUSSION
Models that incorporated latent topic features were generally more predictive than those
using only structured features, and a combination of the two feature types performed best.
Notably, the combination provides a robustness that is able to perform well initially,
leveraging primarily the structured information, and then continue to improve over the first
24 hours by incorporating the latent topic features. This resilience is particularly important
since we observed that the first 24 hours of clinical notes appear to be the most meaningful
toward predicting in-hospital mortality, while the baseline begins to steadily decrease.

Our observation of the importance of early data agrees with other reported results. Recall
that, using topics derived from the first 24 hours of notes only, Lehman et al obtained an
average AUC for in-hospital mortality prediction of 0.78 (± 0.01), and this was increased to
0.82 (± 0.003) with the SAPS-I variable. Further, Hug et al. obtained an AUC of 0.809 for
in-hospital mortality prediction based on information during the first 24 hours of ICU. As
such, we examined our results for in-hospital mortality when using topics derived from the
first 24 hours of notes only (prediction time of 36 hours in Figure 3), and obtained
corresponding AUCs of 0.77 for the Time-varying Topic Model, and 0.841 for the Combined
Time-varying Model. Compared to Lehman et al’s result, this implies that (with enough
data) neither the extra hierarchical machinery added with HDPs nor the knowledge-based
cleansing of medical terms before modeling improve prediction results (i.e. an AUC of 0.78
vs. 0.77). Compared to Hug et al’s results, this implies that the addition of clinical text
provides reasonable performance boosts to the power of gold-standard structured
information like SAPS-II score (i.e. an AUC of 0.809 vs. 0.841).

Further, when predicting in-hospital mortality, we observed that the Admission Baseline
Model’s predictive power (i.e. information acquired on admission) becomes much less
valuable to predicting mortality as patients stay longer. This is likely because those who are
not discharged within the first day of hospital admission are significantly sicker than those
who are. Note that the average ICU stay time in the MIMIC II database is 3 days, and Figure
3 shows that after this time there was no additional predictive power gained by adding the
structured admission information to the latent topic features (i.e., the Time-varying Topic
Model and the Combined Time-varying Model converge).

This convergence draws attention to another interesting observation. Namely, both of the
Time-varying models trended up in their ability to predict in-hospital mortality until 120
hours, and then trended down until the end of prediction. While initially counterintuitive,

7Adding the admission features to the Retrospective Topic Model improved AUC to 0.81 but adding the derived features did not
improve AUC further.
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this is likely due to the loss of a significant number of patients (from both death and
discharge) in the available patient cohort. For example, the test set population goes from
4,030 patients (3,626 control/404 positive for in-hospital mortality) to 3570 patients at this
point (3,210 control/360 positive for in-hospital mortality).

Additionally, the predictive power of each topic changed depending on the target outcome.
This appeals to intuition asIn a modern ICU, conditions that lead to in-hospital mortality are
very different from those that would allow for a live discharge leading to a 30 day or 1 year
mortality. As such, information about which topics tend to bias a patient towards any set of
outcomes in useful for clinicians, when compared to the typical “black-box” approach to
feature selection.

Finally, much work focuses on retrospective prediction of mortality outcomes. We also
performed these predictions to compare the relative predictive power of different feature
types and were able to achieve retrospective AUCs of 0.9, 0.94 and 0.96 for in-hospital
mortality prediction using the Retrospective Derived Feature Model, Retrospective Topic
Model, and combined Retrospective Topic + Dervied Features Model. However, we re-
emphasize that predictions of mortality with retrospective feature sets are not helpful or
relevant for clinical staff because statistical functions of signals or features (e.g. min/max)
and other structured data (such as ICD-9 codes and EH comorbidities) are not known a-
priori.

6. CONCLUSIONS
Modern electronic healthcare records contain an increasingly large amount of data including
high-frequency signals from biomedical instrumentation, intermittent results from lab tests,
and text from notes. Such voluminous records can make it difficult for care-sta to identify
the information relevant to diagnose a patient’s condition and stratify patients with similar
characteristics.

Standard approaches to hospital mortality prediction use features such as gender, age, SAPS
and SOFA score. In this work, we examined the utility of augmenting these standard
features with textual information—specifically in the form of topic-based features—for
predicting mortality in the ICU. Features extracted by latent variable models are attractive in
this clinical application because scientific understanding is as important as clinical utility.

Qualitatively, the discovered topics correlated with known causes of in-hospital and post-
discharge death. Further, adding latent topic features to structured clincal features increased
classification performance in a variety of prediction scenarios: in-hospital mortality, 30-day
mortality, and 1-year mortality.

The models and results explored in this work could ultimately be useful for interpretable
models of disease and mortality.
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APPENDIX: A. PATIENT COHORT SIZES
Table A.1.

Table A.1

Patient cohort size at each time tested by time-varying models. Note that patients are
removed from a prediction time if they are discharged or die prior to that time.

Cohort Size (Control, Positive)

Time
(Hours) Total In-

Hospital 30 Day 1 Year

0 5784 5157, 627 5597, 187 5058, 726

12 5784 5157, 627 5597, 187 5058, 726

24 5749 5128, 621 5563, 186 5026, 723

36 5563 4998, 565 5382, 181 4855, 708

48 5497 4937, 560 5318, 179 4795, 702

60 5161 4664, 497 4986, 175 4480, 681

72 5084 4591, 493 4911, 173 4407, 677

84 4691 4241, 450 4524, 167 4043, 648

96 4587 4140, 447 4421, 166 3945, 642

108 4116 3710, 406 3963, 153 3530, 586

120 4030 3626, 404 3877, 153 3448, 582

132 3570 3210, 360 3427, 143 3023, 547

144 3496 3141, 355 3354, 142 2956, 540

156 3026 2707, 319 2898, 128 2533, 493

168 2967 2652, 315 2840, 127 2479, 488

180 2580 2291, 289 2468, 112 2138, 442

192 2541 2254, 287 2431, 110 2109, 432

204 2215 1953, 262 2117, 98 1825, 390

216 2186 1925, 261 2090, 96 1802, 384

228 1925 1681, 244 1837, 88 1575, 350

B. MODEL PERFORMANCE RESULTS
Table A.2.
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Table A.2

Detailed model prediction results for three outcomes: in-hospital mortality, 30 day post-
discharge mortality, and 1 year post-discharge mortality. This also appears in Figure 3.

Outcome Predicted Model Used AUC Sens. Spec.

In-Hospital Mortality Admission Baseline Model 0.771 0.999 0.010

Time-varying Topic Model 1 0.728 0.858 0.471

… …

Time-varying Topic Model 10 0.838 0.686 0.829

… …

Time-varying Topic Model 20 0.791 0.525 0.853

Combined Time-varying Model 1 0.840 0.638 0.85

… …

Combined Time-varying Model 10 0.854 0.666 0.844

… …

Combined Time-varying Model 20 0.798 0.299 0.950

Retrospective Derived Features Model 0.901 0.997 0.108

Retrospective Topic Model 0.944 0.856 0.892

Retrospective Topic + Admission Model 0.944 0.821 0.910

Retrospective Topic + Derived Features Model 0.961 0.915 0.870

30 Day Mortality Admission Baseline Model 0.683 0.995 0.075

Time-varying Topic Model 1 0.695 0.150 0.944

… …

Time-varying Topic Model 10 0.759 0.817 0.551

… …

Time-varying Topic Model 20 0.665 0.602 0.579

Combined Time-varying Model 1 0.761 0.348 0.885

… …

Combined Time-varying Model 10 0.796 0.641 0.770

… …

Combined Time-varying Model 20 0.75 0.011 0.991

Retrospective Derived Features Model 0.745 0.941 0.220

Retrospective Topic Model 0.783 0.342 0.909

Retrospective Topic + Admission Model 0.813 0.872 0.633

Retrospective Topic + Derived Features Model 0.818 0.096 0.985

1 Year Mortality Admission Baseline Model 0.692 0.997 0.021

Time-varying Topic Model 1 0.681 0.218 0.907

… …

Time-varying Topic Model 10 0.715 0.321 0.870
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Outcome Predicted Model Used AUC Sens. Spec.

… …

Time-varying Topic Model 20 0.662 0.834 0.379

Combined Time-varying Model 1 0.743 0.705 0.665

… …

Combined Time-varying Model 10 0.760 0.512 0.812

… …

Combined Time-varying Model 20 0.722 0.451 0.804

Retrospective Derived Features Model 0.776 0.999 0.045

Retrospective Topic Model 0.755 0.358 0.890

Retrospective Topic + Admission Model 0.784 0.314 0.919

Retrospective Topic + Derived Features Model 0.813 0.464 0.887

C. LIST OF INFERRED TOPICS
Table A.3.

Table A.3

Top ten most probable words for all topics.

Topic Number Top Ten Words

1 cabg, pain, ct, artery, coronary, valve, post, wires, chest, sp

2 ccu, cath, mg, am, sp, groin, bp, cardiac, hr, cont

3 picc, line, name, procedure, catheter, vein, tip, placement, clip, access

4 biliary, mass, duct, metastatic, bile, cancer, left, ca, tumor, clip

5 liver, renal, hepatic, ascites, dialysis, failure, ow, transplant, portal, ultrasound

6 ct, contrast, pelvis, abdomen, uid, bowel, clip, free, wcontrast, iv

7 thick, secretions, vent, trach, resp, tf, tube, coarse, cont, suctioned

8 chest, pneumothorax, tube, reason, clip, sp, ap, left, portable, ptx

9 remains, family, gtt, line, map, cont, levophed, cvp, bp, levo

10 name, neo, gtt, stitle, dr, sbp, resp, cont, wean, aware

11 remains, increased, temp, hr, pt, cc, ativan, cont, mg, continues

12 micu, code, stool, hr, bp, social, note, id, received, cchr

13 chest, pulmonary, bilateral, edema, portable, clip, reason, ap, pleural, effusions

14 resp, cough, sats, mask, sob, wheezes, nc, status, mg, neb

15 intubated, vent, ett, secretions, propofol, abg, respiratory, resp, care, sedated

16 gtt, insulin, bs, lasix, endo, monitor, mg, am, plan, iv

17 drainage, pain, abd, uid, draining, drain, incision, sp, intact, pt

18 heparin, afib, ptt, am, gtt, mg, rate, hr, pvcs, iv

19 name, pacer, namepattern, placement, heart, pacemaker, ventricular, av, rate, chest

20 left, lung, effusion, lobe, pleural, lower, chest, upper, ct, opacity
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Topic Number Top Ten Words

21 skin, noted, care, left, applied, changed, draining, coccyx, wound, edema

22 tube, placement, tip, line, portable, ap, reason, position, chest, ng

23 noted, shift, name, pt, patent, patient, foley, agitated, soft, mg

24 hct, pt, gi, blood, bleeding, am, stable, unit, bleed, noted

25 name, am, mg, able, bp, time, night, times, doctor, confused

26 pain, co, denies, oriented, neuro, plan, diet, po, pt, floor

27 name, family, neuro, care, noted, status, plan, stitle, dr, remains

28 clip, reason, ro, medical, examination, evidence, impression, underlying, condition, normal

29 neuro, sbp, bp, commands, iv, cough, soft, status, lopressor, swallow

30 skin, stable, social, family, intact, tsicu, id, note, support, endo

31 woman, female, husband, name, pain, patient, pm, am, hospital, noted

32 diagnosis, admitting, name, reason, please, examination, yearold, eval, findings, underlying

33 name, neck, soft, patient, noted, anterior, epidural, level, posterior, namepattern

34 ct, contrast, chest, lymph, optiray, images, lesions, iv, nodes, lobe

35 left, stenosis, disease, clip, reason, carotid, severe, report, radiology, final

36 femoral, foot, left, leg, iliac, groin, lower, patent, graft, extremity

37 acute, reason, head, clip, evidence, eval, name, wo, status, ct

38 aortic, aorta, cta, wwo, dissection, recons, contrast, left, aneurysm, chest

39 left, ivc, filter, vein, pulmonary, veins, dvt, clip, inferior, upper

40 left, fracture, ap, views, reason, clip, hip, distal, lat, report

41 spine, cervical, spinal, clip, thoracic, fall, lumbar, vertebral, contrast, reason

42 hemorrhage, head, ct, left, frontal, contrast, subdural, hematoma, clip, bleed

43 ct, trauma, contrast, injury, fracture, fractures, pelvis, clip, wcontrast, sp

44 contrast, brain, head, left, mri, images, mra, stroke, clip, cerebral

45 catheter, name, procedure, contrast, wire, french, placed, needle, advanced, clip

46 artery, left, common, distal, catheter, internal, branches, ow, name, middle

47 vein, stent, catheter, name, mm, portal, tips, balloon, venous, sheath

48 service, distinct, procedural, artery, sel, carotid, left, cath, name, clip

49 catheter, name, performed, embolization, contrast, bleeding, procedure, mesenteric, extrava-
sation, clip

50 artery, carotid, left, aneurysm, injection, vertebral, internal, evidence, clip, cerebral

General Terms

Primary Data mining for social good.

Secondary Healthcare and medicine; Topic, graphical and latent variable models; Text;
Support vector machines.
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Figure 1.
Overall flow of experiment. 1) Clinical baseline features are extracted from the database for
every patient (e.g. age, sex, admitting SAPS-II score) and derived features are computed
(e.g. maximum/minimum SAPS-II score) to form the Structured Features matrix v (vp,f is
the value of feature f in the pth patient). 2) Each patient’s de-identified clinical notes are used
as the observed data in an LDA topic model (i.e., Un-supervisted LDA Model), and a total of
50 topics are inferred to create the per-note topic proportion matrix q. 3) Per-note latent
topic features are aggregated in extending 12 hour windows (e.g. notes within 0-12 hours,

notes within 0-24 hours, etc.) and used to form matrix q’ where  is the overall
proportion of topic k in time-window m. 4) Depending on the model and time window being
evaluated, subsets of the feature matrix v and matrix q’ are combined into an Aggregated
Feature Matrix. 5) A linear kernel SVM is trained to create classification boundaries for
three clinical outcomes: in-hospital mortality, 30 day post-discharge mortality, and 1 year
post-discharge mortality (i.e. Structured SVM Model).
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Figure 2.
The probability of in-hospital mortality for each topic, indicating that topics represent

differences in outcome. Probabilities are calculated as  (see section 3.3).
Each bar shows the prevalence of a given topic k in the mortality category, as compared to
the set of all patients. Bars are shown as above (in red) or below (in green) the baseline in-
hospital mortality based on the value of θk for each topic k.
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Figure 3.
Linear SVM model performance measured via AUC on three outcomes: in-hospital
mortality, 30 day post-discharge mortality, and 1 year post-discharge mortality. In each case,
the features used are described in detail in Section 3.4. Our prediction task is different from
the usual situation where data is accumulated over time. Since fewer patients have long ICU
stays, in this case, we actually lose data points as time goes on, making the prediction task
harder. For example, at time 0 there are 5,784 patients (5,157 controls/627 positives for in-
hospital mortality) in the test set. By 72 hours, this had dropped to 5,084 patients (4,591
controls/493 positives for in-hospital mortality) and at 144 hours to 3,496 patients (3,141
controls/355 positives for in-hospital mortality). (Table A.1)
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Table 1

Cohort Composition

Train Test Total

Patients 13,524 5,784 19,308

Notes 331,635 142,129 473,764
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Table 2

Top ten words in topics enriched for in-hospital mortality, hospital survival (any number of days post-
discharge), and 1 year post-discharge mortality.

Topic Top Ten Words Possible
Topic

In-
hospital
Mor-
tality

27 name, family, neuro, care,
noted, status, plan, stitle,
dr, remains

Discussion
of end-
of-life
care

15 intubated, vent, ett, secre-
tions, propofol, abg, respi-
ratory, resp, care, sedated

Respiratory
failure

7 thick, secretions, vent,
trach, resp, tf, tube,
coarse, cont, suctioned

Respiratory
infection

5 liver, renal, hepatic,
ascites, dialysis, failure,
ow, transplant, portal,
ultrasound

Renal
Failure

Hospital
Sur-
vival

1 cabg, pain, ct, artery,
coronary, valve, post,
wires, chest, sp

Cardio-
vascular
surgery

40 left, fracture, ap, views,
reason, clip, hip, distal,
lat, report

Fracture

16 gtt, insulin, bs, lasix,
endo, monitor, mg, am,
plan, iv

Chronic
diabetes

1 Year
Mor-
tality

3 picc, line, name, proce-
dure, catheter, vein, tip,
placement, clip, access

PICC5

line inser-
tion

4 biliary, mass, duct,
metastatic, bile, cancer,
left, ca, tumor, clip

Cancer
treatment

45 catheter, name, pro-
cedure, contrast, wire,
french, placed, needle,
advanced, clip

Coronary
catheteri-
zation
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