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ABSTRACT

Objective: Phenotyping algorithms are capable of accurately identifying patients with specific phenotypes from

within electronic medical records systems. However, developing phenotyping algorithms in a scalable way

remains a challenge due to the extensive human resources required. This paper introduces a high-throughput

unsupervised feature selection method, which improves the robustness and scalability of electronic medical

record phenotyping without compromising its accuracy.

Methods: The proposed Surrogate-Assisted Feature Extraction (SAFE) method selects candidate features from

a pool of comprehensive medical concepts found in publicly available knowledge sources. The target pheno-

type’s International Classification of Diseases, Ninth Revision and natural language processing counts, acting

as noisy surrogates to the gold-standard labels, are used to create silver-standard labels. Candidate features

highly predictive of the silver-standard labels are selected as the final features.

Results: Algorithms were trained to identify patients with coronary artery disease, rheumatoid arthritis, Crohn’s

disease, and ulcerative colitis using various numbers of labels to compare the performance of features selected

by SAFE, a previously published automated feature extraction for phenotyping procedure, and domain experts.

The out-of-sample area under the receiver operating characteristic curve and F-score from SAFE algorithms

were remarkably higher than those from the other two, especially at small label sizes.

Conclusion: SAFE advances high-throughput phenotyping methods by automatically selecting a succinct set of

informative features for algorithm training, which in turn reduces overfitting and the needed number of gold-

standard labels. SAFE also potentially identifies important features missed by automated feature extraction for

phenotyping or experts.
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INTRODUCTION

Biorepository-linked electronic medical records (EMR) cohorts have

become a valuable resource for research. These “virtual cohorts”

have been utilized in a broad range of biomedical research, including

genetic association studies as well as studies of comparative effec-

tiveness and risk stratification.1–16 Performing comprehensive and

statistically powerful studies of EMR cohorts involving multiple

phenotypes is challenging, due to the difficulty in efficiently charac-

terizing accurate phenotypes with EMR. Assigning phenotypes

based on International Classification of Diseases, Ninth Revision,

Clinical Modification (ICD-9) codes often results in misclassifica-

tion and hampers the power of hypothesis tests in subsequent

genomic or biomarker studies.17–20 Rules that combine ICD-9

codes, medication prescriptions, and laboratory and procedure

codes can improve the accuracy of phenotyping,21,22 though design-

ing these rules relies heavily on expert participation. Data-driven,

machine learning–based phenotyping algorithms have become popu-

lar in recent years, in part due to their accuracy and portability and

the promise of potential automation.23–31

Yet bottlenecks still exist that limit the ability to perform high-

throughput phenotyping. To create a phenotyping algorithm, 2

important and rate-limiting steps are typically involved: collecting

informative features that strongly characterize the phenotype, and

developing a classification algorithm based on these features with

a gold-standard training set. The most commonly used features

include counts of a patient’s ICD-9 billing codes, codes of diagnos-

tic and therapeutic procedures, medication prescriptions, and lab

codes/values. In addition to the codified data, features can also be

derived from the patient’s clinical narrative notes via natural lan-

guage processing (NLP). One example of NLP features is the fre-

quency of various medical concepts mentioned in each patient’s

notes. Existing literature has proposed to use all possible unig-

rams, bigrams, and identified concepts of the Unified Medical

Language System (UMLS)32 and other terminologies as candidate

features for training with gold-standard labels.33–35 While such

approaches avoid the need for feature curation and thus facilitate

automation, they yield algorithms with poor out-of-sample classi-

fication accuracy due to overfitting induced by the huge number

of irrelevant features.36 Less overfitted algorithms with higher

generalizability can be built based on informative features man-

ually curated by leveraging the knowledge of domain experts.

However, such an approach is typically time-consuming and not

ideal for the development of large biorepositories with many phe-

notypes. Automated feature extraction for phenotyping (AFEP)37

advances the capability for high-throughput phenotyping by curat-

ing features from 2 publicly available knowledge sources, Wikipe-

dia and Medscape. AFEP subsequently selects informative features

by only including features whose non-zero frequency and univari-

ate rank correlation with the NLP count of the main concept

exceed certain threshold values. Algorithms trained using features

selected via AFEP and curated by experts were shown to achieve

similar accuracies.

The other important step (and bottleneck) in developing a phe-

notyping algorithm is creating gold-standard labels by domain

experts via chart review. Labeling is both labor-intensive and time-

consuming. The training sample sizes in previous studies typically

ranged from 400 to 600,23–25,29,31,34,35,38,39 and have occasionally

reached several thousand.28,33 Reviewing records for 100–200 gold-

standard labels would increase the feasibility of developing algo-

rithms for multiple phenotypes over the course of a year.

The 2 bottlenecks described above signify the need for auto-

mated feature selection methods that can choose a small set of infor-

mative features. Ideally, selection could be done without using any

gold-standard labels to reduce overfitting, and only 100–200 gold-

standard labels would be needed to train a generalizable algorithm

with the selected features. The objective of this study is to develop

such automated feature selection methods for high-throughput phe-

notyping through the use of easily available but noisy surrogates.

METHODS

The workflow of the proposed Surrogate-Assisted Feature Extrac-

tion (SAFE) procedure is illustrated in Figure 1.

The SAFE procedure
Concept collection

To form a set of candidate features, medical concepts are extracted

using named entity recognition from a small number of topical

articles from 5 publicly available knowledge sources: Wikipedia,

Medscape, Merck Manuals Professional Edition, Mayo Clinic Dis-

eases and Conditions, and MedlinePlus Medical Encyclopedia.

URLs of the articles and detailed descriptions on the named entity

recognition process are provided in sections 1–3 of the Supplemen

tary Material. These 5 sources typically yield around 1000 UMLS

concepts as candidate features for each phenotype.

Generating NLP data

We process the EMR clinical narratives with NLP (more details in

section 4 of the Supplementary Material) to search for mentions of

the candidate concepts extracted from the knowledge sources, using

their UMLS terms as the dictionary. The patient-level counts of the

concepts form a working dataset for feature selection. We only con-

sider positive mentions that confirm presence of a condition, per-

formance of a procedure, use of a medication, etc. Negated

assertions, family history, and conditional problems such as drug

allergies are not counted.

Feature selection

From the NLP output, we identify the concepts that appear in at

least 3 of the 5 knowledge sources, a majority voting as a prescreen-

ing for importance. A second prescreen uses the frequency of the fea-

ture in the narrative notes. The concept must be mentioned in at

least 5% of the notes where the target phenotype is mentioned, and

it must be mentioned in the notes of no more than 50% of all

patients. The ICD-9 and NLP counts of the target phenotype

(referred to as the main ICD-9 count and the main NLP count here-

Figure 1. Flow chart of SAFE. Improvements over AFEP include expanded

knowledge sources, majority voting selection, and surrogate-assisted selec-

tion.
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after), together with the other features that pass the voting and fre-

quency control, denoted by F cand, will serve as candidate features in

the subsequent feature selection step. Here, the main ICD-9 count

includes codes of all the subtypes of the phenotype, and the main

NLP count corresponds to the UMLS concept of the phenotype.

The key idea behind the surrogate-assisted feature selection is

that one can use the main ICD-9 and main NLP counts to create

“silver-standard” labels, S, which can be viewed as a bespoke

“probability” of having the phenotype. When S relates to a set of

features F only through Y, it is statistically plausible to infer the pre-

dictiveness of F for Y based on the predictiveness of F for S. Since

the main NLP and ICD-9 counts are the most predictive features for

most phenotypes studied thus far,23–26 we use both of these variables

to construct Ss. While it is known that the main ICD-9 and NLP

counts by themselves are noisy surrogates of Y, they can accurately

classify the phenotype status for a subset of patients who are

“textbook cases” or clearly do not exhibit that phenotype. Specifi-

cally, patients with very high main ICD-9 or NLP counts generally

have the phenotype, while patients with extremely low counts are

unlikely to have the phenotype. That is, Y can be inferred accurately

from the main NLP or ICD-9 counts within these extreme subsets.

To proceed, we consider 3 choices of S:

SICD ¼

0; if the main ICD" 9 count # LICD

0:5; if LICD < main ICD" 9 count # UICD

1; if the main ICD" 9 count > UICD

8
>><

>>:

SNLP ¼

0; if the main NLP count # LNLP

0:5; if LNLP < main NLP count # UNLP

1; if the main NLP count > UNLP

8
>><

>>:

SCOMB ¼

0; if mean SICD;SNLPð Þ < 0:5

0:5; if mean SICD; SNLPð Þ ¼ 0:5

1; if mean SICD;SNLPð Þ > 0:5

8
>><

>>:

where LICD, LNLP, UICD, and UNLP are lower and upper thresholds

that can be determined via domain knowledge or percentiles of the

observed data. For each S with 2 ICD;NLP; COMBf g, we define

extreme subsets as patients whose S take the value 0 or 1. We ran-

domly sample M patients from those with S ¼ 1, and M from those

with S ¼ 0, to form a working dataset. Then we fit an adaptive elas-

tic-net40,41 penalized logistic regression model to the working data-

set, with S being the response variable and x! logðxþ 1Þ
transformed F cand excluding the variables involved in S being the

predictors. Thus, when SICD is used as the response, the main ICD-9

count is not included as a feature; when SNLP is used as the response,

the main NLP count is not included; and when SCOMB is used as the

response, neither the main ICD-9 nor the main NLP counts are

included. The penalized logistic regression penalizes model complex-

ity (ie, the number of features included in the model) and shrinks the

coefficients of uninformative features to zero. The tuning parame-

ters controlling the amount of penalty for model complexity are

selected based on the Bayesian information criterion.36 To deter-

mine which of the features are uninformative in the presence of

uncertainty and randomness of the data, we repeatedly sample 2M

patients from the extreme subsets and train the models many times

for each S. A feature is selected only if its coefficient is not zero at

least 50% of the time, averaged over the above repeated fittings and

3 choices of S. These selected features, along with the main ICD-9

and NLP counts, the total number of notes, and the age and gender

of the patient, denoted by F select, are included as features for the

algorithm training with gold-standard labels.

Training phenotyping algorithm with gold standard labels

The final algorithm is then trained by fitting an adaptive elastic-net

penalized logistic regression, with gold-standard labels being the

response and F select being the predictors. All count variables are

again transformed by x! logðxþ 1Þ. The tuning parameter is

selected via the Bayesian information criterion.

Data and metrics for evaluation
We applied various feature selection methods to generate phenotyp-

ing algorithms for coronary artery disease (CAD), rheumatoid

arthritis (RA), Crohn’s disease (CD), and ulcerative colitis (UC). We

utilized 2 Partners HealthCare EMR datamarts, 1 for RA and 1 for

inflammatory bowel diseases (IBDs), originally used to create

machine learning algorithms for classifying these 4 pheno-

types.23,24,29 The RA datamart, created in June 2010, includes

46 568 patients who had at least 1 ICD-9 code of 714.x (Rheuma-

toid arthritis and other inflammatory polyarthropathies) or had

been tested for anticyclic citrullinated peptide, a diagnostic marker

for RA. The IBD datamart, created in November 2010, included

34 033 patients who had at least 1 ICD-9 code of 555.x (Regional

enteritis) or 556.x (Ulcerative enterocolitis). Gold-standard labels

were available for 435 patients randomly selected from the RA data-

mart. Among the 4446 patients predicted to have RA by Liao

et al.,23 758 patients who had at least 1 ICD-9 code or a free-text

mention of CAD were reviewed to create a training set for CAD. For

IBD, UC labels were obtained for 600 patients selected randomly

from those with at least 1 ICD-9 code of UC, and CD labels were

obtained for 600 patients selected from those with at least 1 ICD-9

code for CD. In the original studies, features for these algorithms

were manually curated via multiple iterations between clinical

domain and NLP experts. The prevalence of CAD, RA, CD, and UC

was estimated as 40.1%, 22.5%, 67.5%, and 63.0%, respectively.

Since one main goal of automated feature selection is to reduce

the number of labels needed for creating phenotype algorithms with

low generalization errors, we trained algorithms based on features

selected via different approaches with n¼100, 150, 200, 250, and

300 labels. For each n, we randomly selected n labeled samples for

algorithm training and used the remaining labels to assess the out-

of-sample accuracy, quantified by the area under the receiver operat-

ing characteristic curve (AUC) and the F -score at the 95% specificity

level.42 To obtain stable estimates, we repeatedly sampled the

labeled data randomly 200 times, and the results reported are based

on the average.

To evaluate SAFE and further understand the effects of the various

building blocks of the procedure (ie, the 2 main features of ICD-9 and

NLP counts, concept collection from the original 2 and expanded 5

knowledge sources, the majority voting, and the surrogate-assisted fea-

ture selection), we trained multiple algorithms using features selected

from the following procedures: expert curation; M2, the 2 main fea-

tures; AFEP; A5, expanded 5 sourcesþAFEP selection; A5V, expanded

5 sourcesþmajority votingþAFEP selection; S2, original 2 sour-

cesþ surrogate-assisted selection, and SAFE. For S2 and SAFE, the

thresholds LICD and LNLP were set to 0, while UICD and UNLP were set

to 10, and M was set to 400.
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RESULTS

The 5 source articles were accessed on April 28, 2015, for RA, on

May 20, 2015, for CD and UC, and on April 4, 2016, for CAD.

Table 1 shows the numbers of concepts/features selected from each

procedure. SAFE generally selects fewer features than AFEP and

domain experts. Figure 2 compares the selected features from SAFE

and AFEP and their coefficients in the fitted models. While the fea-

tures selected by AFEP and SAFE had overlaps, SAFE tended to

select more clinically meaningful features, with the majority of non-

informative features removed during the feature selection process.

Section 5 of the Supplementary Material gives a comparison of the

SAFE and expert-curated features.

Figure 3 shows the out-of-sample AUC and the F-scores for the

algorithms trained using various features with n¼100, 150, 200, 250,

and 300 labels (a tabular presentation is shown in section 6 of the Sup

plementary Material). The algorithms trained with features selected by

SAFE outperformed those using features selected by AFEP or experts

by varying degrees, and the improvements are most significant when n

is small. The out-of-sample performance of SAFE-based algorithms

tended to stabilize with 150 labels, while 200–300 labels were typically

required for algorithms based on AFEP to achieve similar performance.

For CAD, the algorithm using expert-curated features attained a

slightly higher AUC than the SAFE-based algorithm for larger n, but

their F -scores are nearly identical. This is due in part to the inclusion of

a feature covering several CAD-specific procedures manually created

by domain experts, while automated procedures such as SAFE and

AFEP do not have such a feature. For UC, SAFE resulted in consistently

more accurate algorithms compared to those based on AFEP or expert-

curated features. The algorithms trained using all gold-standard labels

are shown in section 7 of the Supplementary Material.

DISCUSSION

SAFE is built upon the framework of AFEP, but with major innova-

tions in how feature selection is performed. The key idea behind

SAFE is that the noisy surrogates, the main ICD-9 and NLP counts,

can be used to create silver-standard labels, Ss, to well approximate

the gold-standard labels for patients in extreme subsets. Using data

from the extreme subsets, we can effectively select additional fea-

tures that are predictive of Y by fitting penalized regression models

using S as the response. The results showed that SAFE was highly

effective in removing noninformative or redundant features, result-

ing in feature sets typically smaller in size when compared to those

from AFEP. In contrast, AFEP uses univariate rank correlation anal-

ysis, which limits its ability to remove redundant features. The

smaller size of the feature set reduces overfitting and hence the num-

ber of gold-standard labels required to train a generalizable

(a) (b)

(c) (d)

Figure 2. Comparison of features selected by SAFE and AFEP for (A) CAD, (B) RA, (C) CD, and (D) UC. Left and right circles include features from SAFE and AFEP

methods, respectively. Edges indicate features with non-zero beta coefficients in the final SAFE- or AFEP-based algorithms, trained with the entire training set,

where coefficients are shown as weights.

Table 1. Comparison of feature numbers across the methods

Phenotype

CAD RA CD UC

Number of concepts extracted

from source articles

805 1067 1057 700

Number of expert-curated features

(after frequency control)

36 23 49 50

Number of features from AFEP 68 42 35 20

Number of features from A5 75 43 37 23

Number of features from A5V 30 22 23 15

Number of features from S2 19 16 10 16

Number of features from SAFE 21 17 18 19

Numbers in bold are the numbers of features used for the final training

with the gold-standard labels
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algorithm. The advantage of using a small candidate feature set was

most evident when the training sample size n was small and became

less apparent as n increased. This is expected, since overfitting is

generally less concerning for larger n. SAFE also potentially selects

important features not identified by AFEP or domain experts. This

was evident in the UC example, where “Crohn’s disease” and

“weight loss” were both missing in AFEP, and the latter was also

missed by the expert. Crohn’s disease is a differential diagnosis of

UC, and weight loss is a common symptom in patients with CD but

rare in those with UC. Including these 2 important features enabled

SAFE to consistently outperform algorithms using AFEP or expert

selected features. Moreover, SAFE is not very sensitive to the choice

of parameters like UICD and UNLP in defining the silver-standard

labels (see section 8 of the Supplementary Material). Interestingly,

features curated by domain experts generally led to worse or compa-

rable algorithm performance compared to SAFE. This further high-

lights the advantage of the automated feature extraction procedure.

The use of silver-standard labels to select additional features

plays an important role in the SAFE procedure. Both the main ICD-

9 and NLP counts are obvious choices for creating the silver labels.

Adding the combined label SCOMB to the process is important for

increasing the robustness of the selection. Since the NLP and ICD-9

counts are highly correlated with each other, regression modeling

with response derived from one count and then the other count as a
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Figure 3. AUC and F-scores (when specificity¼ 0.95) of algorithms trained with n gold-standard labels, using features selected by EXPERT, expert-curated fea-

tures; M2, the main ICD and NLP features only; AFEP, the original AFEP procedure; A5, expanded 5 sourcesþAFEP selection (frequency controlþ rank correlation

selection); A5V, expanded 5 sourcesþmajority votingþAFEP selection; S2, original 2 sourcesþ surrogate-assisted selection; and SAFE, the proposed procedure

with 5 sources and majority voting, plus surrogate-assisted selection.
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feature tends to underestimate the importance of the remaining fea-

tures. Including SCOMB and removing both of these 2 main features

from the candidate set enables SAFE to evaluate the informativeness

of the remaining features more robustly. As an example, morning

stiffness, an important feature for classifying RA, would not be

selected if SCOMB was not used as part of the feature selection proc-

ess. In addition, other choices of S may be available for specific phe-

notypes if there are additional strong predictors. For example,

HgA1c laboratory results can be used for diabetes mellitus, the

count of disease-modifying antirheumatic drug prescriptions can be

used for RA, and percutaneous coronary intervention or coronary

artery bypass graft procedure codes can be used for CAD. However,

not all phenotypes have such strong predictors, and the selection

may require input from domain experts.

Using 5 knowledge sources followed by majority voting to create

candidate features instead of 2, as was done for AFEP, improved the

robustness of the procedure. Extracting from a larger number of

knowledge sources allows SAFE to include more candidate concepts,

thus reducing the risk of missing important features. On the other

hand, the majority voting effectively removes a large number of nonin-

formative concepts based on the assumption that more important con-

cepts are more frequently mentioned in multiple articles. Although the

S2 procedure based on the original 2 sources performed similarly to

the SAFE procedure, SAFE has the advantage of being more robust

than the choice of the knowledge sources. In the 4 examples, the algo-

rithms based on S2 and SAFE achieved similar accuracy except for

RA, where SAFE had a slightly higher AUC than S2. For RA, SAFE

also selected more clinically meaningful features. For example,

“morning stiffness” was selected as a feature by SAFE but omitted by

S2. This also explains the slightly worse prediction performance of S2.

Comparing SAFE to M2, A5, and A5V revealed more details

regarding the impact of the various building blocks of SAFE in

improving the algorithm’s performance. Among all these procedures

and across all 4 phenotypes, M2, with only the 2 main features, gen-

erally had the worst performance, highlighting the importance of

including additional informative features. On the other hand, both

AFEP and A5 generally did not perform well either, due to the inclu-

sion of too many features, resulting in a significant overfitting issue,

particularly when the training size n was small. This further con-

firms the value of feature selection. The A5V procedure with major-

ity voting performed better than AFEP and A5, but still performed

generally worse than SAFE. For UC, AFEP-based procedures per-

formed substantially worse than SAFE, due to the ability of SAFE to

identify 2 important features missed by AFEP, Crohn’s disease and

weight loss. For example, with 150 labels, the AUC was 0.95 (F -

score 0.87) based on SAFE but only 0.93 (F -score 0.77) based on

A5V. Thus, the use of multiple knowledge sources and selections

with both majority voting and silver-standard labels together make

SAFE the overall best performing and most robust method.

One limitation of the study is that the NLP data were extracted

using HITEx43 (Health Information Text Extraction) for the domain

expert curated features, but NILE44 (Narrative Information Linear

Extraction system) for AFEP and SAFE. Although the SAFE proce-

dure is not expected to be overly sensitive to the choice of NLP soft-

ware, generalizability to other NLP software as well as to additional

phenotypes and other EMR systems warrants further research.

CONCLUSION

In this paper, we introduced SAFE as a high-throughput method to

efficiently curate features for EMR phenotyping algorithms, leverag-

ing publicly available knowledge sources and a large set of unlabeled

data. SAFE advances current methods by expanding the knowledge

sources for collection of medical concepts and employs a majority

voting step to coarsely estimate the importance of a concept. The

novel data-driven feature selection process employed by SAFE

removes noninformative and redundant features via penalized

regression modeling using easily available silver-standard labels to

approximate the gold-standard labels for patients in extreme sub-

sets. The results show that the SAFE method can identify fewer but

more informative features than the AFEP method. The automation

in feature curation eliminates the need for domain experts to man-

ually create a list of relevant clinical terms and for NLP experts to

identify optimal concept mapping. The reduction in the size of can-

didate features achieved by SAFE also leads to a substantial reduc-

tion in the number of gold-standard labels needed for algorithm

training. Thus, employing SAFE in the training of EMR-based phe-

notyping algorithms can greatly improve efficiency, allowing for

high-throughput phenotyping. These types of methods will play a

key role in effectively leveraging big data for precision medicine

studies.45
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