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ABSTRACT

Objective: A key challenge in clinical data mining is that most clinical datasets contain missing data. Since

many commonly used machine learning algorithms require complete datasets (no missing data), clinical ana-

lytic approaches often entail an imputation procedure to “fill in” missing data. However, although most clinical

datasets contain a temporal component, most commonly used imputation methods do not adequately accom-

modate longitudinal time-based data. We sought to develop a new imputation algorithm, 3-dimensional multi-

ple imputation with chained equations (3D-MICE), that can perform accurate imputation of missing clinical time

series data.

Methods: We extracted clinical laboratory test results for 13 commonly measured analytes (clinical laboratory

tests). We imputed missing test results for the 13 analytes using 3 imputation methods: multiple imputation

with chained equations (MICE), Gaussian process (GP), and 3D-MICE. 3D-MICE utilizes both MICE and GP impu-

tation to integrate cross-sectional and longitudinal information. To evaluate imputation method performance,

we randomly masked selected test results and imputed these masked results alongside results missing from

our original data. We compared predicted results to measured results for masked data points.

Results: 3D-MICE performed significantly better than MICE and GP-based imputation in a composite of all 13

analytes, predicting missing results with a normalized root-mean-square error of 0.342, compared to 0.373 for

MICE alone and 0.358 for GP alone.

Conclusions: 3D-MICE offers a novel and practical approach to imputing clinical laboratory time series data. 3D-

MICE may provide an additional tool for use as a foundation in clinical predictive analytics and intelligent clini-

cal decision support.

Key words: machine learning, imputation, missing data, electronic health record, EHR, multiple imputation with chained

equations, Gaussian process, computational pathology, data mining

INTRODUCTION

Researchers are increasingly working to “mine” clinical patient data

to derive new clinical knowledge,1 with a goal of enabling greater

diagnostic precision, better personalized therapeutic regimens, im-

proved clinical outcomes, and more efficient utilization of health

care resources.2 However, clinical data quality is often one of the

major impediments to deriving optimal knowledge from clinical

data.2 Unlike experimental data that are collected per a research

protocol, the primary role of clinical data is to help clinicians care

for patients, so the procedures for their collection are not often sys-

tematic. Clinically appropriate data collection often does not occur

on a regular schedule, but rather is guided by patient conditions and
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clinical or administrative requirements. Thus, electronic health re-

cord (EHR) data are often available only at irregular intervals that

vary among patients and types of data. In turn, even with complete

EHR data, most aspects of patients’ clinical states will be unmeas-

ured, unrecorded, and unknown for most patients at most time

points. While this “missing data” may be fully clinically appropri-

ate, machine learning algorithms cannot directly accommodate

missing data.3 Accordingly, missing data can hinder EHR knowl-

edge discovery and data-mining efforts.

One approach to addressing missing data is simply to exclude in-

complete cases. However, excluding patients or cases with incom-

plete data from analyses can introduce bias4 and limit the

generalizability of findings. Moreover, in many real-world settings,

most if not all patients have some missing data, and thus excluding

patients with missing data may leave few if any patients for analysis.

Rather than excluding cases with missing data, a better strategy

usually involves applying various statistical “imputation” techni-

ques to raw datasets to “fill in” missing data elements. Imputation

uses available data and relationships they contain to predict point or

interval estimates for missing values. After the imputation step, stan-

dard machine learning algorithms can then be applied to the com-

pleted dataset using both available data and imputed data as

predictors in downstream analyses (eg,5,6). For example, a machine

learning analysis designed to predict a future clinical diagnosis based

on trends in laboratory test results might first impute the result of all

tests not performed for each patient and time point and then use the

completed dataset to predict the clinical diagnosis of interest.

The challenge in imputing time series–based clinical data is that,

although numerous imputation algorithms are available,3,5–19 many

of these are designed for cross-sectional imputation (measurements

at the same time point) and are not well suited to longitudinal clini-

cal data.20 Clinical data will usually include a noncontinuous and

asynchronous time component, as patients will have different symp-

toms and findings recorded, diagnostic studies performed, and treat-

ments provided across different time points. For example, in the

case of laboratory test results, some tests (eg, germline genetic stud-

ies) are “once in a lifetime,” with results unchanging over time,

while others may vary over weeks to months (eg, hemoglobin A1c)

or even from minute to minute (eg, blood gas values). Moreover,

even for a given laboratory test, the time intervals between subse-

quent observations will vary widely between patients and clinical

settings. Thus, laboratory test results often do not coincide with one

another, let alone with other diagnostic studies or clinical observa-

tions. To address some limitations of traditional imputation meth-

ods, in this manuscript we develop a novel imputation algorithm.

This algorithm, which we name 3D-MICE (3-dimensional multiple

imputation with chained equations), combines covariance and auto-

correlative information to predict missing test results. In the follow-

ing sections, we first describe 3D-MICE and then apply it to a set of

common clinical laboratory test results obtained from a large set of

inpatient hospital admissions to evaluate its performance in compar-

ison to other imputation methods.

RELATED WORK

Recent studies have attempted to model the time dimension and im-

pute the missing data within it using several different approaches,21–29

but they are subject to various potential limitations. For example,

some authors choose to “regularly discretize” time,22–24 using

approaches such as computing summary statistics (eg, mean, fitted

slope) for each patient around a fixed time window for each

laboratory test of interest. With this approach, the data can be repre-

sented in a number of ways, including as a tensor, with regularly

spaced time points as one mode of the tensor.30 While assembling

data over multiple regularly sampled time periods may provide suffi-

cient predictive information in some cases, the missing data problem

will frequently remain, since all parameters of interest are unlikely to

be measured and documented for all patients during all regularly

spaced time periods. Studies have explored temporal augmented ten-

sor completion22–24 for imputing with regularly sampled time series.

However, due to the varying measurement frequency of clinical labo-

ratory data, regularly discretizing time at finer granularity will gener-

ally lead to an extraordinarily sparse dataset, since many analytes

(clinical laboratory tests) for many patients will be measured only

daily or less frequently. This sparsity makes it difficult to apply many

existing imputation methods to modeling of these time series data.

Regularly discretizing time at coarser granularity may lose important

predictive information (eg, fine-grained temporal trajectories in tests)

and may introduce noise or bias if, for example, some patients have

the test on the first day of hospitalization while others have it several

days into the hospital stay. Variability in factors such as inpatient

length of stay may further confound efforts to model time at regularly

spaced time intervals.

Another potential approach involves modeling time continu-

ously. Works by Liu et al.27 and by Schafer and Yucel28 extended

multiple imputation approaches based on the linear mixed model to

longitudinal data. However, this approach limits the potential tem-

poral trajectories of the variables to linear/quadratic or other simple

parametric functions. Gaussian process (GP) imputation is another

possibility. GPs relax the restrictions on the form of potential tem-

poral trajectories and only assume the locality constraint, in that

closer time points in general have closer measurements. GPs can

readily impute single-variate time series.31 For multivariate longitu-

dinal data, Hori et al.29 applied a multitask GP to impute missing

data. Inspired by functional data analysis, multiple authors have de-

veloped more general approaches to treat multivariate time series as

smooth curves and estimate the missing values using nonparametric

methods.21,25,26 These approaches can be regarded as generaliza-

tions of the GP approach. However, multitask functional

approaches (including multitask GP) require many time points with

shared observations of multiple variables to make a reliable estimate

of the covariance structure among these variables.32,33 Inpatient

clinical laboratory test time series may not satisfy such a require-

ment, as many patient admissions only record measurements a lim-

ited number of times.

DATASET

We compiled a dataset from the Massachusetts General Hospital

(MGH) to develop and validate our algorithms. Study procedures

were approved by the hospital’s Institutional Review Board. To gen-

erate our dataset, we extracted inpatient test results for the 13 analy-

tes (laboratory tests) shown in Table 1 from our hospital’s Sunquest

Laboratory Information System via a laboratory datamart. We se-

lected these specific analytes because they are frequently measured

on hospital inpatients and are quantitative. We further compiled the

results data by patient-admission, which we define as a unique

patient–date of admission combination. All MGH inpatient patient-

admissions for which relevant laboratory testing was performed in

2014 were evaluated using the inclusion criteria summarized in

Figure 1 and included or excluded accordingly. We randomly split
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the dataset into a training and a test partition, each containing half

of the patient-admissions.

As shown in Figure 1, the final dataset includes 3 130 501 test

results across 266 112 patient-collections and 19 008 unique

hospital-admissions. These 3 130 501 results represent 76% of the

total inpatient test results generated in our laboratory in 2014 for

the 13 included analytes.

METHODS

General approach
We applied mean, MICE, GP, and 3D-MICE to our data to impute

missing data. The missing data we imputed stemmed from 2 sour-

ces. The first source of missing data, which we call natively missing

data, was data missing from the original dataset (ie, tests not per-

formed). In addition to the natively missing data, we also randomly

masked one result per analyte per patient-admission, representing

the second source of missing data. Thus, all included patient-

admissions had 13 results masked across the various time points.

The purpose of the data masking was to create test cases with

known ground truth results (ie, measured values) that could be

used to evaluate imputation algorithm performance. We imputed

natively missing and masked data together and compared imputed

to measured values for masked data elements to evaluate imputa-

tion method performance.

Gaussian processes

GPs extend the multivariate Gaussian distribution to infinite dimen-

sions by representing the probability density P f tð Þð Þ over a continu-

ous function f(t) over time t where any finite number of

f tið Þ; t ¼ 1; . . . ; n have a joint Gaussian distribution. GPs typically

assume a locality constraint on the covariance structure, in that

closer time points have more similar measurement values. A com-

mon covariance choice is a squared exponential as cov f t1ð Þ; f t2ð Þð Þ
¼ k t1; t2ð Þ ¼ aexp ð$ t1 $ t2ð Þ2=lÞ where a; l are parameters. We

extracted a separate univariate time series for each patient and ana-

lyte. To fit each time series with GP, we used observations to per-

form maximum likelihood estimation over parameters and then

infer values at unobserved time points. Our implementation of GP

imputation uses the R package GPfit34 with default parameters.

MICE

MICE has been described in detail in prior literature.7,35 Briefly,

MICE assumes a conditional model for each variable to be imputed,

with the other variables as possible predictors.7 For example, a

regression-based implementation of MICE might impute the value

Figure 1. Construction of the primary dataset. Shown are the exclusion criteria used to construct our dataset and the impact of each criterion.

Table 1. Characteristics of clinical analytes

Analyte Units Interquartile range Native missing rate (%) Missing rate after masking (%)

Chloride mmol/L 98–105 14.2 21.39

Potassium mmol/L 3.7–4.4 12.98 20.17

Bicarb mmol/L 22–27.2 14.46 21.65

Sodium mmol/L 135–140 13.13 20.32

Hematocrit % 25.8–34.5 18.34 25.52

Hemoglobin g/dL 8.4–11.3 18.34 25.53

MCV fL 86.2–94.3 18.34 25.53

Platelets k/mL 124–274 18.32 25.51

WBC count k/mL 6.1–12.2 18.3 25.49

RDW % 14–17.1 18.46 25.65

BUN mg/dL 12–34 13.78 20.96

Creatinine mg/dL 0.69–1.56 13.9 21.09

Glucose mg/dL 98–149 23.76 30.95

Native missing rate denotes the missing rate of the original data. Missing rate after masking denotes the missing rate after we randomly masked measurements

to use in evaluating the performance of the imputation methods.
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of each missing data element by first performing linear regression to

predict the missing values for one variable using the nonmissing and

the imputed (or, in the first iteration, initialized) values of the other

variables, and then repeating this process to predict missing results

for the other variables.35 The process just described would then be it-

eratively repeated with each iteration using the predicted values of the

missing data from the prior iteration (along with the nonmissing val-

ues) as the predictors. Regression-based implementations of MICE

usually add random noise to each prediction to capture prediction er-

ror, with the specific quantity of noise sampled from a normal distri-

bution with a mean of zero and a standard deviation equal to the

regression standard error. Since imputed values will be used as predic-

tors in subsequent regressions, random noise will impact more than

just the value to which it was added. Taking “snapshots” of imputed

results from various iterations will generate multiple “bootstrapped”

replicates of each imputed result, differing due to the added random

noise. A sampling-based implementation of MICE relies on a similar

framework but uses a stochastic sampler such as a Gibbs sampler,

which is an iterative Markov chain Monte Carlo algorithm for

obtaining a sequence of observations that are approximated from a

joint probability distribution.7 We used the R MICE package7 for im-

putation in this study due to its wide adoption. To apply this package

to our data, we ignored the longitudinal covariance and “flattened”

the data into a single matrix (Figure 2), with rows representing

collections (patient-collect date/time combination) and columns rep-

resenting analytes. This flattening step allowed us to accommodate

patient-admissions with different numbers of time points. In applying

MICE, we also required that the conditioning variables moderately

correlate (correlation at least 0.5) with the target variable where the

threshold was tuned using the training dataset. We computed the

“variance” of the MICE estimate for each prediction based on

the sample variance of the 100 predictions.

3D-MICE algorithm

As schematized in Figure 2, the 3D-MICE algorithm imputes miss-

ing data based on both cross-sectional and longitudinal information

by combining MICE-based with GP-based predictions. To perform

3D-MICE, we first flattened the data and applied MICE, as de-

scribed above, to perform cross-sectional imputation. We next used

a single-task GP to perform longitudinal imputation, adding the lon-

gitudinal covariance. This way, MICE and GP utilized orthogonal

cross-sectional and longitudinal information, respectively. We next

combined their estimates by computing a variance-informed

weighted average. We weighted the estimates in inverse proportion

to their standard deviation, based on the intuition that the less cer-

tain (larger standard deviation) a MICE or GP imputation is, the less

weight we assign to it. To this end, we took a sampling-based ap-

proach by first drawing nGP samples from N ðlGP;rGPÞ, where the

parameters were estimated in the GP step. In this study, we fixed

nMICE at 100 (using all available MICE predictions) and then calcu-

lated nGP according to the following equation:

nGP ¼ nMICE %
rMICE

rGP

! "
¼ 100 % rMICE

rGP

! "

where rMICE is the standard deviation of the MICE prediction, rGP

is the standard deviation of the GP prediction, and the square brack-

ets indicate rounding to the nearest integer. We then combined all

nMICE MICE predictions for the missing value with nGP GP predic-

tions. From our combined sample of 100 MICE estimates and nGP

GP estimates, we then computed the mean result from this sample as

the point estimate and used the central 95th percentile of values

(2.5–97.5th percentile) as the prediction intervals. We applied the

same parameter settings (eg, default parameters for GP and a re-

quirement that MICE conditioning variables had a correlation with

the target of at least 0.5) when using MICE and GP within the

3D-MICE algorithm as we used when evaluating MICE and GP

alone and as we describe in the sections above on MICE and GP.

Normalization
Before the MICE, GP, and 3D-MICE imputation, we normalized the

measurements so that for each patient and variable, the measure-

ments throughout the time points (denoted as ts) were scaled be-

tween 0 and 1 using the following formula, where minð:Þ and maxð:Þ
are the minimizer and maximizer, respectively:

tsn ¼
ts$min tsð Þ

max tsð Þ $min tsð Þ

This is to ensure that the GP imputation can be properly carried

out,34 and upon the completion of 3D-MICE the imputed results are

denormalized with the inverse mapping from tsn to ts. We empiri-

cally compared the MICE imputation with and without

normalization-denormalization, and found that the overall differ-

ence in performance was negligible.

Evaluation of performance

The performance of MICE, GP, and 3D-MICE was evaluated using

several metrics, including normalized root-mean-square deviation

(nRMSD) and normalized percentile absolute deviation (nPAD).

Figure 2. Schematic 3D-MICE in modeling temporal clinical laboratory data. Shown is a schematic of 3D-MICE.
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RMSD is a frequently used measure of the differences between

values (sample and population values) predicted by a model or an es-

timator and the values observed. Normalizing the RMSD facilitates

comparisons between analytes with different scales, and we adopted

the common choice of range normalization. Thus, suppose that Xp;a

represents test result predictions for analyte a of patient p and t Yp;a

represents the actual measured values of this analyte, and we can

time index corresponding values from Xp;a and Yp;a using an index i.

Then nRMSD is calculated by the following equation:

nRMSDðaÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

p;i
Ip;a;i

jXp;a;i$Yp;a;i j
max Yp;að Þ$min Yp;að Þ

$ %2

X
p;i

Ip;a;i

vuuuut

where Ip;a;i indicates whether for patient p, analyte a at time index i is

missing (being 1) or not (being 0). The range normalizing factor cap-

tures the fluctuation of analyte a for patient p. Dividing by such factors

thus brings fluctuations of different analytes to a comparable scale.

PAD and nPAD are generalizations of the median absolute devia-

tion (MAD), where MAD represents the median across all predictions

for an analyte of the absolute value of the difference between the pre-

dicted and measured test results. PAD can be calculated for any se-

lected percentile in a way analogous to MAD; the 50th percentile

PAD would equal MAD. More specifically, to calculate nPAD, we

first calculated the absolute deviation for each predicted test result of

a patient. We then normalized the absolute deviations using the same

range-normalizing factors as in nRMSD. We then calculated percen-

tiles of the absolute deviations across all predictions for each analyte

and imputation method. Thus, the scaled percentile absolute deviation

nPAD at percentile q(eg, 75th percentile) is as follows:

nPAD a;qð Þ¼Pq
jXp;a;i $ Yp;a;ij

max Yp;a

& '
$min Yp;a

& ' j8p; i st: Yp;a;i missing

( ) !

where Pq Zf g represents the qth percentile of set Z.

Heatmap

We generated a heatmap showing correlations in test results generated

using the “heatmap.2” function within the R gplot package.36 Start-

ing with our primary dataset (including the inclusion/exclusion criteria

for patient-admissions and time points used for the imputation experi-

ments), we aligned sets of test results performed concurrently on each

patient with the most recent prior set of included test results for the

same patient (prior results were necessarily unavailable for the first

collection). We then calculated the pairwise-complete covariance ma-

trix between concurrent and prior values for each analyte. The heat-

map.2 function then hierarchically clustered analytes (current and

prior) according to similarity in covariance and represented the clus-

tered data and covariance as the heatmap displayed.

Data visualization and statistics

Data analysis, statistics, and data visualizations were performed in

R. The statistical significance of differences in performance between

imputation methods was evaluated using a 2-tailed permutation test

comparing the normalized MAD (50th percentile nPAD). A thou-

sand replicates were used per permutation test.

EXPERIMENTAL RESULTS

The final dataset included 3 130 501 test results, as described in the

Methods section.

Comparison of MICE, GP, and 3D-MICE
Table 2 compares the 4 imputation methods using normalized route-

mean-square error. Using normalized root-mean-square error,

3D-MICE outperformed MICE and GP imputation overall and for all

individual analytes except sodium, hemoglobin, and hematocrit. Like-

wise, Figure 3 compares MICE, GP, and 3D-MICE imputation in terms

of the normalized 25th, 50th, and 75th percentile absolute deviations

(nPAD, as defined in the Methods section). Mean imputation is also

shown as a trivial baseline comparator. Across a composite of all analy-

tes (“Overall” in Figure 3), 3D-MICE outperformed both MICE and

GP (P¼ .001, permutation test, 1000 replicates). In addition, for so-

dium, chloride, bicarbonate, glucose, creatinine, and mean corpuscular

volume (MCV), 3D-MICE significantly outperformed both MICE and

GP. For hemoglobin and hematocrit, 3D-MICE significantly outper-

formed GP but not MICE. For potassium, blood urea nitrogen (BUN),

white blood cell (WBC) count, red cell distribution width (RDW), and

platelets, 3D-MICE significantly outperformed MICE but not GP. The

significance of all comparisons was assessed using a permutation test

with 1000 replicates at a significance level (alpha) of 0.05.

Inter-analyte and autocorrelation explains relative
performance of GP and MICE
Figure 4 provides a heatmap showing the correlation between analytes

measured concurrently in the same patient, and the correlation be-

tween current and prior values for each analyte. The correlation be-

tween current and prior values of an analyte (eg, “BUN” and

“BUN_prior”) provides an indicator of the autocorrelation of the ana-

lyte. While the heatmap, in contrast to GP, only shows autocorrela-

tion between specimen collections immediately adjacent in time (eg,

subsequent collections on the same patient), we would nonetheless ex-

pect analytes with significant autocorrelation between subsequent

measurements to perform well with the GP methods. Likewise, we

would expect correlation with other analytes to be closely related to

MICE performance. 3D-MICE performance should be related to the

combined information provided by inter-analyte and autocorrelation.

These expectations are in most cases consistent with the data, eg, ana-

lytes such as chloride and creatinine have both strong autocorrelation

and correlation to at least one other analyte and tend to perform par-

ticularly well on 3D-MICE. Other analytes that show particularly

Table 2. Normalized root-mean-square deviation by analyte and
imputation method

Analyte Mean MICE GP 3D-MICE

Chloride 0.785 0.326 0.374 0.325

Potassium 0.601 0.386 0.391 0.378

Bicarb 0.798 0.375 0.377 0.364

Sodium 0.734 0.332 0.379 0.333

Hematocrit 1.493 0.261 0.380 0.272

Hemoglobin 1.542 0.262 0.376 0.272

MCV 3.402 0.379 0.389 0.369

Platelets 2.968 0.385 0.363 0.351

WBC count 4.186 0.384 0.369 0.358

RDW 5.047 0.395 0.353 0.348

BUN 2.361 0.367 0.324 0.313

Creatinine 3.451 0.362 0.360 0.340

Glucose 1.030 0.402 0.405 0.394

Overall 2.612 0.358 0.373 0.342

Best performances are highlighted in bold.

All data are from the test dataset.
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strong correlation to at least one other analyte, such as hemoglobin

and hematocrit, show strong performance with MICE.

Assessment of 3D-MICE performance characteristics
and prediction interval accuracy
Figures 5 and 6 summarize 3D-MICE performance for 2 representa-

tive but not necessarily best performing analytes: chloride and plate-

lets (see Tables 2 and 3 and Figure 3 for specific analyte

performance). The box plots (Figure 5) demonstrate a close associa-

tion between measured and predicted values for both analytes and

capture the uncertainty in predictions. The vertical overlap between

boxes may serve as an indicator of the “resolution” of predicted val-

ues of the analyte in discriminating between various “ground truth”

measured values of the analyte. The scatter plots (Figure 6) likewise

demonstrate the association between measured and predicted values,

but also demonstrate an association between prediction interval

width and error. In particular, many data points with a high degree

of error demonstrate the widest confidence intervals. Table 3

describes performance characteristics of 3D-MICE for all 13 analy-

tes and the distribution of 95% prediction interval widths for all 13

analytes.

Limitations
This study is subject to potential limitations. Foremost, we devel-

oped and applied 3D-MICE only in the context of selected routine

tests on inpatients who met selected inclusion criteria. While>75%

of all inpatient test results for the 13 analytes met the inclusion crite-

ria, more than two-thirds of all inpatient admissions were excluded,

primarily because they lacked enough data points. The inclusion cri-

teria we applied are somewhat stricter than the minimum require-

ment to apply this algorithm in practice, since we needed to ensure

sufficient data even after masking points for use in testing; in real

applications, 3D-MICE could be performed without masking, and

thus some cases excluded from this analysis could have 3D-MICE

applied in the context of other applications. To better generalize

3D-MICE to a broader set of patients and data, we plan to explore

future adaptations that use methods such as linear interpolations in

place of GP for cases lacking sufficient temporal data to use 3D-

MICE. Nonetheless, even in its current form and as discussed further

below, 3D-MICE may provide a useful tool for temporal imputation

in rich datasets such as those from patients with sufficient longitudi-

nal or temporally dense data.

Another potential limitation is that imputation algorithm perfor-

mance on masked data may not match the performance in imputing

natively missing data. The decision to mask one test result per pa-

tient per analyte was not intended to mimic a common pattern of

missing results in real clinical data. Indeed, the natively missing data

Figure 3. Comparison of mean, MICE, GP, and 3D-MICE imputation. Shown is the normalized percentile absolute deviation (nPAD) for MICE, GP, and 3D-MICE.

Mean imputation is also shown for comparison with a trivial imputation method. Bars represent the 25th through 75th percentile nPAD, and horizontal lines in

bars represent the 50th percentile nPAD. In 3 cases, the 75th percentile for mean imputation exceeded the range of the graph, as denoted by the ellipsis and the

actual numerical value. “þ ” and “$” symbols denote cases where 3D-MICE performed better or worse than comparison methods, as described in the legend.

Figure 4. Heatmap of cross-sectional and longitudinal correlation. Shown is

the correlation between various test results in our dataset when measured at

the same time for the same patient and when measured at successive time

points for the same patient. Analytes with the suffix “_prior” represent results

from the analyte one measurement prior (within the same patient-admission)

to analytes shown without this suffix. The dendrogram to the left of the heat-

map represents the relative similarity between variables.
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necessarily represent the actual empiric distribution of missing data

from our study set; the masked data were intended to generate addi-

tional missing data for which we had a ground truth for evaluation.

In addition, the additionally introduced missing data (by masking)

made the imputation task harder than our observed reality, and

likely rendered our performance evaluation a conservative one. Ad-

ditional work will be needed to fully validate the performance and

suitability of this algorithm in addressing various clinical prediction

challenges. Finally, the incremental improvement provided by

3D-MICE compared to MICE or GP alone was in some cases statis-

tically significant yet modest in magnitude. We are nonetheless

hopeful that this incremental improvement in performance will stim-

ulate more research into better integration of cross-sectional and

longitudinal imputation.

DISCUSSION AND FUTURE WORK

Here we demonstrate that 3D-MICE may provide a novel and prac-

tical approach to impute clinical laboratory time series data. While

we demonstrate that 3D-MICE outperforms 2 established methods,

Figure 5. Accuracy of chloride and platelet predictions and confidence inter-

vals, box plots. Shown is the distribution of predicted results (vertical axis)

corresponding to each range of measured results (horizontal axis). Horizontal

lines within each box represent median values, boxes represent interpercen-

tile ranges, and dots represent outliers. N’s represent the number of mea-

sured values falling within each range. (A) Chloride and (B) platelets are

presented as 2 representative analytes.

Figure 6. Accuracy of chloride and platelet predictions and confidence inter-

vals, scatter plots. Predicted values for (A) chloride and (B) platelets are plot-

ted as a function of measured values. Point colors represent prediction

interval width. Horizontal and vertical lines represent the upper and lower

normal reference limits. Note that less accurate predictions (points farther

from the dashed 45-degree line) tend to be less confident, as indicated by the

wider prediction interval and redder color.
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MICE and GP-based imputation, it is difficult to directly compare

our results to many other previously developed imputation strate-

gies, including those noted in the related work section, due to differ-

ences in modeling assumption frameworks. As pointed out in the

related work section, many prior imputation approaches focused on

performing only cross-sectional or only longitudinal imputation.

Most if not all previously published imputation approaches aimed at

combining longitudinal and cross-sectional information either re-

quired regularly sampled time series (eg, tensor-based methods) or

were unable to provide reliable estimates without more time points

containing shared observations of multiple variables than would be

available in clinical laboratory time series. An unusual but useful

feature of 3D-MICE is that this algorithm requires neither regularly

nor densely sampled time series. Additional work comparing 3D-

MICE to imputation methods besides MICE and GP in head-to-

head comparisons on datasets that satisfy the necessary assumptions

may be informative. Additional work will also be useful to better

understand the impact of dataset characteristics on imputation accu-

racy. Examples of dataset characteristics that may impact 3D-MICE

performance could include frequency of test result intervals, type of

inpatient admissions, and degree of patient care intensity.

Indeed, we foresee many applications for 3D-MICE. Foremost,

we expect that 3D-MICE will provide a basis to impute missing lon-

gitudinal clinical data to enable the use of these data for subsequent

computational analyses. Informaticians could use 3D-MICE to first

“complete” clinical datasets and then apply machine. Given the

comparatively strong performance of 3D-MICE across the compos-

ite of all analytes and with many individual analytes, it may repre-

sent a good starting point for laboratory imputation, and could

perhaps be applied in combination with other imputation methods

to address specific cases where other methods might outperform.

Another way to consider 3D-MICE involves the notion that lab-

oratory test results usually serve as “noisy” indicators of the

patient’s underlying clinical state, with noise introduced due to fac-

tors including pre-analytic, analytic, and biologic variability. Since

the main goal of laboratory testing is usually not to obtain numeric

test values in themselves, but rather to assess the patient’s underlying

clinical status, we would suggest that an ideal test result prediction

algorithm should predict the clinically relevant components of labo-

ratory tests while disregarding the noise. Indeed, although we

trained our algorithms to predict measured test results and assessed

their performance accordingly, in some cases, predicted test results

may better indicate the underlying clinical state than measured

ones.15 In particular, multi-analyte–based predictions may benefit

from a “regression to the mean” phenomenon, whereby measure-

ment error and pre-analytic and biologic variability would be sub-

stantially independent and thus “average out.”

CONCLUSION

We describe and demonstrate 3D-MICE, a new algorithm for imput-

ing longitudinal clinical laboratory test results across multiple analy-

tes. We show that 3D-MICE can integrate cross-sectional and

longitudinal imputation and will often provide more accurate pre-

dictions than either GP or MICE alone. We present these findings as

a basis for future research to enhance 3D-MICE and apply it to

other types of clinical and laboratory data. With additional work,

we expect that 3D-MICE will provide an additional tool for use in

clinical predictive analytic algorithms and clinical decision support.

FUNDING

This work was supported by a Massachusetts Institute of Technology–

Massachusetts General Hospital strategic partnership grant provided under

the “Grand Challenge I: Diagnostics.”

COMPETING INTERESTS

The authors have no conflicts of interest to disclose.

CONTRIBUTORS

JB and YL developed the methods, designed the study, analyzed the

data, and drafted the initial manuscript. All authors contributed to

the project framework and design and participated in manuscript

development.

Table 3. Performance characteristics of 3D-MICE

Analyte (units) Median absolute deviationb Prediction interval widtha

25th percentile Median 75th percentile

All values are expressed in the same units as the analyte

Chloride (mmol/L) 1.59 2.74 4.04 5.9

Potassium (mmol/L) 0.25 0.39 0.59 0.86

Bicarb (mmol/L) 1.42 2.32 3.48 4.94

Sodium (mmol/L) 1.44 2.47 3.59 5.02

Hematocrit (%) 0.83 1.38 2.35 3.65

Hemoglobin (g/dL) 0.27 0.47 0.79 1.24

MCV (fL) 0.82 1.26 1.92 2.85

Platelets (k/uL) 15.32 22.54 39.68 70.17

WBC count (k/uL) 1.13 1.59 2.86 5.03

RDW (%) 0.15 0.22 0.37 0.66

BUN (mg/dL) 1.79 3.09 5.17 8.75

Creatinine (mg/dL) 0.07 0.1 0.17 0.31

Glucose (mg/dL) 16.29 21.83 37.98 67.66

aRepresents percentiles of the difference between the lower and upper bounds of the 95% prediction intervals. For example, 50% of predictions were made

with a prediction interval width less than that shown in the median column.
bThe median absolute deviation represents the median across all predictions for the analyte of the absolute value of the difference between the predicted and

corresponding measured result; 50% of predictions differed from the measured result by less than the median absolute deviation.
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