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ABSTRACT
....................................................................................................................................................
Objective Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic
research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by do-
main experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting
informative features, which can be comparable to expert-curated ones in classification accuracy.
Materials and methods Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased
fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of
informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was
trained to classify the target phenotype.
Results The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases
among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for
classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and
0.929 by models trained with expert-curated features.
Discussion Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher ac-
curacy than those trained with expert-curated features. The majority of the selected model features were interpretable.
Conclusion The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a
significant step toward high-throughput phenotyping.

....................................................................................................................................................

INTRODUCTION
Electronic health record (EHR) adoption has increased dramatically in
recent years. By 2013, 59% of private acute care hospitals in the
United States had adopted an EHR system, up from 9% in 2008.1

Secondary use of EHR data has emerged as a powerful approach for a
variety of biomedical research, including comparative effectiveness
and stratifying patients for risk of comorbidities or adverse out-
comes.2–10 More recently, the linking of genotype and biomarker data
to EHR data has facilitated translational studies, such as genetic asso-
ciation studies.11–17 Compared to conventionally assembled epidemio-
logic and genomic cohorts that require individual patient recruitment,
EHR-based studies can provide large sample sizes at a lower cost and
shorter time frames. Furthermore, results from EHR-based genetic as-
sociation studies are comparable to those obtained from traditional co-
hort studies.18

EHR-based cohorts are typically defined by a phenotype, that is, a
clinical disease or condition, such as coronary disease. To create an
EHR cohort, researchers must develop an algorithm incorporating fea-
ture data from the EHR to determine whether a subject with a particu-
lar set of features fulfills the phenotype definition. These features may
come from codified EHR data, such as billing codes, procedure codes,
electronic medication prescriptions, and laboratory values, which are
easily extracted and computed. Additional features may be derived
from the codified data, such as the occurrence of two events within a
temporal range. However, many of these data types serve primarily an
administrative purpose (e.g., billing codes for reimbursement), and
vary in accuracy. Features may also be derived from the clinical

narrative notes such as physician notes, text reports from radiographic
or pathologic studies, or hospital discharge summaries, which may
provide a rich source of complementary information. Natural language
processing (NLP) can efficiently extract concepts from narrative data.
Occurrences of terms of clinical concepts in the EHR can be counted
and also used as features for algorithm development. EHR phenotyp-
ing algorithms that use both codified and NLP data may yield improved
accuracy relative to algorithms using codified data alone (such as ICD-
9 billing codes).19–22

Today, algorithms that identify a desired phenotype may be con-
structed in two rather different ways. The first is a manual method rely-
ing on human expertise to suggest a logical combination (via AND, OR,
and NOT) of features that must be present and those that must be ab-
sent in order for a case to match a phenotype. This approach was
adopted by a number of early diagnostic decision support systems such
as CONSIDER,23 which used text mentions of signs and symptoms as
features in their diagnostic logic. The manual method is also currently
applied by the majority of algorithms from the eMERGE network.17,24–26

The second employs statistical or machine learning methods to select
and optimize a numerical combination of features that most accurately
identify the phenotype. Several phenotyping algorithms developed by
the i2b2 (Informatics for Integrating Biology and the Bedside) investiga-
tors adopted this approach.27–32 In either approach, clinical experts
must create a gold-standard data set by reviewing the records of a sub-
set of patients from the cohort and labeling if each patient has the phe-
notypes of interest. Part of this data set is used to develop and refine
the phenotyping algorithm and a held-out portion is used to evaluate its
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accuracy. The final algorithm is applied to the large set of patient data in
the EHR database to create a cohort that is highly enriched for the de-
sired phenotype.

Both approaches to the development of phenotyping algorithms
demand considerable work by domain experts to develop gold-
standard data sets. However, the manual technique also requires
weeks to months of effort to agree on the relevant features and to
refine the logical criteria. In this paper, we address this bottleneck
and introduce a technique to automatically identify features for
creating an EHR phenotype algorithm. We hypothesize that algorithms
using features automatically selected from medical knowledge sour-
ces will achieve comparable accuracy to those using expert-curated
features.

Previous studies have made progress toward automating the man-
ual creation of features. Much of the work in information retrieval rests
on finding discriminative terms in text, using a term frequency, inverse
document frequency (TF-IDF) measure.33 This identifies useful terms
as those that appear often in a relevant document (TF) but rarely in
others (IDF). RECONSIDER34 improved on CONSIDER by introducing a
numerical “selectivity score” based on the IDF of sign and symptom
terms in the CMIT35 description of each disease, thus leveraging the
work of other experts who had written these descriptions. Wright
et al.36 mined codified EHR data to look for possible associations be-
tween problems, medications, and lab tests.37 However, the remaining
work of creating the algorithms was done manually, involving manu-
ally looking for truly associated medications and lab tests, collecting
problem phrases for free-text search, and consulting clinical experts
for classification rules. Several studies attempted to use all the possi-
ble NLP features from clinical notes of a cohort, which usually mea-
sures in the tens of thousands. Pakhomov et al. used all the unigrams,
MeSH, and HICDA38 (Hospital adaptation of International Classification
of Diseases) concepts, and other information as features to identify
heart failure with Naive Bayes and perceptron models.39 Bejan et al.
used all possible unigrams, bigrams, and Unified Medical Language
System (UMLS)40 concepts to classify pneumonia with support vector
machines (SVMs), with additional feature selection based on signifi-
cance test scores obtained from the gold-standard labels.41 Carroll
et al.42 used all possible ICD-9 codes, UMLS concepts, medication
mentions, and additional features with frequency-based screening to
classify rheumatoid arthritis (RA) using SVM. Their algorithms per-
formed well, but have lower accuracy than those from the refined
models using only expert-curated features. The reason why a large
model does not perform as well as a small model with expert-curated
features is that the additional variation induced by including a large
number of uninformative features leads to a reduction in the accuracy
of the resulting algorithm, especially when the training sample size is
not very large. Other disadvantages of large models include: (1) they
are not as interpretable as small models, (2) collecting a large number
of features could be computationally expensive and resource intensive,
and (3) the joint distribution of the tens of thousands of features may
vary across cohorts and hospital systems, limiting the portability of
certain complex machine learning models, such as the SVM, that de-
pend on the joint distribution of features.

Unsupervised methods such as latent semantic indexing43–45 have
also been applied to medical document classification in information re-
trieval and can potentially be used for phenotyping. These are de-
signed to classify documents into a large number of classes and thus
have the advantage of being broadly applicable. However, the weights
of their individual features are based on naı̈ve rules and tend to have
limited accuracy in classifying specific phenotypes compared to super-
vised learning algorithms.

Here, we describe Automated Feature Extraction for Phenotyping
(AFEP), a novel method that addresses many of these limitations by (i)
automatically identifying features from publicly available resources us-
ing NLP, and (ii) automatically selecting informative features for phe-
notype classification with data-driven screening using EHR data. By
leveraging domain knowledge through existing publicly available
knowledge sources, AFEP creates parsimonious, interpretable, and ac-
curate phenotyping algorithms without necessitating labor intensive
manual creation of candidate features. We apply AFEP to identify RA
cases and coronary artery disease (CAD) cases among those with RA,
and show that AFEP can produce phenotype algorithms with accuracy
comparable to, or higher than, algorithms developed using expert
curation.

METHOD
Figure 1 shows the work flow of AFEP, which automatically identifies
features and generates phenotyping algorithms using the following
steps: (1) concept collection; (2) drug grouping; (3) note parsing; (4)
data-driven concept screening; and (5) model training. This section in-
troduces each step in detail.

Concept collection
The goal of concept collection is to search publicly available knowl-
edge resources and extract medical concepts that can be potentially
used as predictors in the classification algorithm. These concepts typi-
cally involve the signs and symptoms of the target phenotype, diag-
nostic procedures, laboratory tests, therapeutic medications and
procedures, associated risk factors or co-morbidities, and differential
diagnoses. Publicly available online knowledge sources such as
Medscape, Wikipedia, and Merck Manuals are generally suitable for
this purpose, as their articles contain sufficient detail and use medical
terminology that would be found in EHR notes.

Although a few existing software packages, such as MetaMap,46

cTAKES,47 KnowledgeMap,48 and HITEx49, are able to detect medical
terms and map them to UMLS concepts, we adapted techniques from
NILE50 for term detection, using all the terms in the UMLS
Metathesaurus51 as the target dictionary. AFEP uses a customizable
list of UMLS semantic types to only extract candidate concepts that
are relevant to the target phenotype. For example, concepts that are
organizations, animals, food, etc., are typically excluded. The
Supplementary Material lists the semantic types that we used for the
test cases. When creating the list, we only excluded those types that
were obviously irrelevant to the target phenotypes. This exclusion cri-
terion is manually implemented based on common sense, which re-
quires little domain knowledge.

Our method for disambiguating the identified terms and mapping
them to UMLS concepts is also customized. The detected terms
can usually map to multiple concepts in UMLS, that is, there are
multiple possible meanings for a term. To disambiguate the term
senses, observe that the same concept can appear in the article in
the form of different terms, that is, multiple terms can share a
common concept. Thus, we search for a minimum set of concepts
that cover all the identified terms and select them as the intended
concepts. (See Supplementary Material for details of this
procedure.)

After the concept mapping, the program uses heuristic rules to re-
move certain terms and concepts, including known uninformative or
highly nonspecific concepts, such as C0037088 Signs and Symptoms,
C0332293 Treated, and C0087111 Therapy, and terms whose map-
pings are not reliable to reduce the chance of false detection.
(See Supplementary Material for detail.)
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Drug grouping
We utilize the rich information on the relationship between drug con-
cepts in the UMLS to improve the features on drugs. There are three
types of drug concepts: generic drugs, brand names, and drug clas-
ses. For example, C0000970 Acetaminophen (Paracetamol) is a ge-
neric drug, C0699142 Tylenol is one of the over 700 brand names of
acetaminophen, and acetaminophen belongs to the class C0002771
Analgesics. It is helpful to identify brand names when parsing the clin-
ical notes, but in a classification model, it is not wise to use over 700
hundred features for each brand name of acetaminophen, because
they are not expected to have different association with the phenotype,
and including these brand names as distinct features would result
in poor model generalizability. Thus, instead, it would be preferable for
the NLP program to count acetaminophen when it sees Tylenol or any
other brand names. Similarly, for typical phenotyping applications it is
beneficial to use a single feature to represent all the drugs in the
same class (e.g., a single feature to combine all the analgesics).

The UMLS Metathesaurus includes relationships among concepts
drawn from its various source terminologies, and the hierarchic rela-
tions provide a basis for aggregating drug brand names to generics
and specific drugs to drug classes. AFEP retrieves all the “isa,”
“inverse_isa,” “has_tradename,” and “tradename_of” relations of
each extracted drug concept to create the hierarchy, and also uses
“has_ingredient” and “has_active_ingredient” relations to help deter-
mine whether a concept is a drug or a drug class. Figure 2 shows
a portion of the grouping result of drugs for RA (See Supplementary
Material for more details.). All of the generic drugs and drug classes are
retained as candidate features. Subsequent feature selection steps will
decide which ones to use.

Note parsing to obtain NLP data
To use features derived from narratives in the EHR, we must extract
those from the text. We use NILE for the NLP task due to its simplicity
and computational efficiency, though other previously mentioned NLP
software could also be used.

Identifying these concepts in the narrative text also serves an-
other important purpose. Above, we described methods to identify
medical concepts from articles about the phenotypes of interest in
public knowledge sources. This process typically yields hundreds of

concepts, and only a small subset will be informative predictors in the
phenotype classification model. Prior to fitting the model, it is impor-
tant to remove uninformative concepts because they lower the mod-
el’s accuracy and generalizability. We employ an additional screening
step, described in the next section, to further remove such concepts
using occurrence data in the clinical notes.

We parse all the clinical notes in the EHR database and identify oc-
currences of the UMLS terms of the concepts extracted from the knowl-
edge sources. For an occurrence of a concept to be counted, it has
to be mentioned positively—for example, the mention confirms the
presence of a problem, the performance of a procedure, or the use of a
drug or device, depending on the semantic type of the concept.
Examples of nonpositive mentions include negated assertions, concepts
mentioned in the family history, and drug allergy. When counting
the occurrence of a drug or chemical, all of its direct and indirect
super-classes are counted as well, using the drug hierarchy described
earlier.

Figure 1: AFEP flow chart.

Figure 2: Example drug grouping result from AFEP
(brand names are not shown).
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Data-driven concept screening
Once we have identified the concepts mentioned in the patients’ clini-
cal narratives notes, we can eliminate uninformative concepts identi-
fied from external knowledge sources. A candidate concept passes
the screening if it satisfies all the following three conditions:

1. The concept is not too rare: When considering each note as a
document and limiting the scope to the notes that mentioned the
target phenotype, the IDF of the candidate concept should be at
most !log pR , that is, the candidate concept is mentioned in at
least 100pR % of the notes that mentioned the target phenotype,
where pR could depend on n , the sample size of the training data.
In our experiments, we find that pR " 1=

ffiffiffi
n
p

generally works well.
2. The concept is not too common: If the candidate concept is not a

drug or chemical, then we consider all the notes of a patient as a
document, and the IDF of the candidate concept must be at least
!log pC , that is, at most 100pC % of the patients had the concept
mentioned anywhere in their notes. We find that pC " 0:5 works
well in practice.

3. The concept is relevant: We take a sample of 10 000 notes that
positively mention the target phenotype and 10 000 that do not
mention the target phenotype. The absolute rank correlation be-
tween counts of mentions of the candidate concept and that of the
target phenotype should exceed a threshold such as 0.15.

Although the above thresholds appear to work well in practice,
they can be adjusted empirically if necessary. Criterion 3 performs
feature selection based on the rank correlation between the concept of
the target phenotype and other candidate concepts. The gold-standard
labels are not used for the screening, and hence no over-fitting bias is
induced by this screening procedure.

Features for training
To develop the final classification algorithm, we collapse the NLP data
by aggregating note level mentions of the previously selected concepts
over all visits. Thus for each concept, we count the total number of
positive mentions from all notes of each patient and use these counts
as NLP features for model building.

In addition to the NLP features, we include two easily obtained
codified features to the data: the total number of ICD-9 codes of the
target phenotype and the number of notes for each patient. Since the
features are all counts and tend to be highly skewed, an x ! log
x þ 1ð Þ transformation is applied to all the features before model fit-

ting to improve stability and prediction performance of the fitted model.

Model training
We fit an adaptive Elastic-Net52,53 penalized logistic regression model
to estimate the probability for a patient to have the target phenotype.
The penalization enables the model fitting to optimally balance the in-
sample predictive accuracy and the model complexity. The initial esti-
mates of the coefficients required for the adaptive Elastic-Net are from
ridge regression.54 The tuning parameter for the penalized regression,
which controls the penalty applied to the model complexity, is selected
based on the Bayesian Information Criterion.54 The penalized fitting
with both ridge and LASSO penalties allows us both to control for the
potential high collinearity among the predictors and to select informa-
tive features to predict the phenotype of interest.

Test material and evaluation metrics
We tested AFEP by training classification models for RA and CAD as
an outcome, using features extracted and selected by AFEP. CAD is

the leading cause of death in patients with RA.55 The risk of CAD
among RA patients is 1.5–2 fold higher than individuals of similar age
and gender from the general population.56,57 An EHR-based cohort of
RA patients with well-defined CAD outcomes allows for study of clini-
cal risk factors for the disease to inform improvements in CAD risk
management. The accuracy of the trained models was compared with
that of models trained with features curated by experts independently.
This study was approved by our Institutional Review Board.

We utilized a research database that contained EHR of 46 568 pa-
tients, denoted by X, which was created as a subset of the Partners
HealthCare EHR that included all the patients with at least one ICD-9
code for RA. Four hundred and thirty-five patients were randomly se-
lected from X to create a training set for RA with gold-standard la-
bels. In addition, 4446 patients of X were predicted by Liao, et al.’s
algorithm28 as having RA; among which 758 patients who had at least
one ICD-9 code for CAD or a free-text mention of CAD were reviewed
to create a training set for CAD. In addition to the gold-standard labels,
patients who did not fulfill the filtering criteria (e.g., at least one ICD-9
code for RA) were also randomly reviewed, and the negative predictive
value among them was above 99% for both cases. The chart review
for creating the gold-standard labels was done independently from
AFEP. Figure 3 illustrates the relation of the EHR cohort and the train-
ing sets. The prevalence of RA and CAD in the training sets was
22.5% and 40.1%, respectively. The same gold-standard labels were
used to train and evaluate the models using expert-curated features
and features extracted and selected with AFEP.

The performance of the model is evaluated with the area under the
receiver operating characteristic (ROC) curve (AUC) using the 0.632
bootstrap cross-validation58,59 to correct for over-fitting bias. In addi-
tion, we compare the AUC, as well as the true positive rate (TPR), pos-
itive predictive value (PPV), and F1 score at some prespecified
desirable false positive rate (FPR) with algorithms trained with the
same penalized logistic regression model but using expert-curated
features.

RESULTS
Medical concepts were extracted from the articles on RA and CAD
from Medscape and Wikipedia, accessed on October 3, 2014 for RA
and on October 4, 2014 for CAD. After the concept extraction, 814
concepts were obtained for RA, and 522 concepts for CAD. The data-
driven screening substantially reduced the candidate concepts to 34
and 61 for RA and CAD, respectively. Figures 4 and 5 show the

Figure 3: EHR cohort and training sets.
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features for each model. Those with nonzero coefficients in the fitted
models are highlighted, with their coefficients shown next to their
names (see also Supplementary Material).

We compare the accuracy of the models using features curated by
physicians and the features selected by AFEP. The AUC of the models
based on expert-curated features was 0.938 and 0.929 for RA and
CAD, respectively (See Supplementary Material for the expert-curated
features). In comparison, the AUC of models using AFEP-selected fea-
tures were 0.951 and 0.929 for RA and CAD, respectively, which were
at least equivalent to the models using expert-curated features. Figure
6 compares the ROC curves of the AFEP and the expert-created algo-
rithms for the two phenotypes. Table 1 compares the TPR, PPV, and
F1 scores of the algorithms at fixed FPR 0.05 and 0.1, respectively.

DISCUSSION
The results showed that the algorithms using the automated features
had an accuracy that is comparable to or slightly higher than those

using expert-created features. For both cases, the counts of positive
mentions of the target diseases and their ICD-9 codes were the most
predictive features, which were followed by concepts related to dis-
ease-associated procedures, symptom, and medications. We noted in-
stances of false detection via NLP, which are explained in the
Supplementary Material.

The logistic model with adaptive Elastic-Net penalty is not the ex-
clusive model that works well in practice. Alternative modeling strate-
gies such as the SVM and Naive Bayes with principal component
transformation also perform well in many settings. We chose the
adaptive Elastic-Net algorithm for the applications due to its ability to
obtain sparse models that are more interpretable and to overcome col-
linearity, which is often present among the candidate features.

The data-driven concept screening trims the number of concepts
from hundreds down to a few dozens. In practice, it is feasible and
beneficial to manually review the concepts and terms to refine the dic-
tionary, and parse the clinical notes again to have higher quality NLP

Figure 4: Features for rheumatoid arthritis (36 in total). Features are presented in groups (phenotype, lab tests, medica-
tions, symptoms, and miscellaneous) according to their relations to the target phenotype. Features in bold italic font have
nonzero beta coefficients, which are shown after the names.

Figure 5: Features for coronary artery disease (63 in total). Features are presented in groups (phenotype, lab tests, medica-
tions, symptoms and related diagnoses, diagnostic procedures, therapeutic procedures, risk factors, and miscellaneous)
according to their relations to the target phenotype. Features in bold italic font have nonzero beta coefficients, which are
shown after the names.
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features. In this paper, however, for the purpose of demonstration, the
results that we presented were from the fully automated features with-
out any improvement from human intervention.

One limitation of this study is the limited test cases. The
articles on Wikipedia and Medscape provided comprehensive and
informative features for RA and CAD. However, it is unknown
whether for some phenotypes the online knowledge sources may
not be comprehensive enough, or the UMLS may not provide good
coverage of terms to extract the necessary concepts. Similarly, a
test of AFEP’s sensitivity to the choice of NLP technology might be
needed. Although EHR phenotyping algorithms have been largely
developed to enable genetic association studies for specific dis-
eases of interest in the EHR, the development and application of
such algorithms to other contexts such as predicting adverse out-
comes or treatment response warrant further research. In addition,
once an algorithm is established, it is important to validate its per-
formance in different patient populations or EHR systems from
other institutions.

Another limitation is that our features were mostly limited to NLP
ones, due to the need for automation. If an efficient mapping between
the coding scheme of the hospital’s EHR system and the UMLS is
available, codified counterparts of the NLP features should also be
considered. For example, codified features indicating whether lab val-
ues are out of normal range may significantly improve the algorithm’s
accuracy. Such information is typically not well captured by NLP. If
codified features are available, screening procedure should also be
performed as part of feature selection.

Finally, in the data-driven concept screening, we used thresholds
on inverse document frequency. However, other metrics that may im-
prove the screening warrant further investigation.

Several refinements can be introduced in subsequent versions of
AFEP. First, improvements can be made on the accuracy of the con-
cept mapping. However, inaccuracies in concept mapping may not
significantly impact the accuracy of the final classification models be-
cause there are frequently sufficient accurately mapped predictive fea-
tures in the algorithm to compensate the loss.

Second, a grouping hierarchy for the non-drug concepts may im-
prove the performance of the algorithm. Many concepts in the UMLS
are subtypes of more general ones, and these subtypes may be too
granular for the purposes of a classification algorithm. A grouping
strategy similar to the grouping of the drugs can concentrate informa-
tion and improve the performance of the classification algorithm. For
example, it may be helpful to group C0340288 Stable Angina and
C0002965 Unstable Angina simply as Angina.

Third, after the concept screening, it is possible to group the fea-
tures by their relationship to the target phenotype. Figures 4 and 5
provide possible groupings for RA and CAD, respectively, by relations
such as symptoms and risk factors. This grouping structure could po-
tentially be incorporated into model structure and training to improve
algorithm performance. At the moment, grouping by relations needs to
be done manually, and development of automatic methods warrants
further research.

Finally, many of the extracted features are composite concepts,
which are not as easy to capture as atomic ones due to the diversity

Figure 6: ROC curves of algorithms using AFEP and expert-curated features.
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Table 1: Comparisons of TPR, PPV, and F1 scores at fixed FPR

AFEP automated features Expert-curated features

FPR TPR PPV F1 score FPR TPR PPV F1 score

Rheumatoid arthritis
(No. of features: AFEP 36/Expert 23)

0.050 0.701 0.795 0.745 0.050 0.652 0.788 0.714

0.100 0.865 0.709 0.779 0.100 0.790 0.695 0.739

Coronary artery disease
(No. of features: AFEP 63/Expert 33)

0.050 0.711 0.903 0.796 0.050 0.701 0.900 0.788

0.100 0.811 0.844 0.827 0.100 0.808 0.842 0.825
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of their expressions. For example, Elevated Troponin could appear in
the text as “elevated troponin,” “high troponin,” “troponin level above
normal,” and many other ways that are hard to exhaust in the dictio-
nary, which means simple string matching of the surface form will
have low recall, making the features less useful in classification, while
an NER with support from semantic analysis would definitely improve
the detection.

Overall, we have demonstrated that AFEP can lead to highly accu-
rate phenotyping algorithms for RA and CAD, two disparate diseases
whose diagnosis typically relies upon a complex combination of signs
and symptoms, diagnostic tests, and clinician reasoning. This proof-
of-concept suggests that AFEP can be used to rapidly develop pheno-
typing algorithms for a wide variety of clinical conditions in an auto-
mated, unbiased manner. This has several implications for EHR-based
clinical and genetic studies. First, AFEP reduces the barrier to incorpo-
ration of NLP features into phenotyping algorithms, potentially increas-
ing algorithm accuracy (as demonstrated here and in reports using
expert-curated NLP variables). Second, the unbiased feature selection
of AFEP may lead to identification of informative features that may not
be intuitive, and thus would not be included in initial lists of expert-cu-
rated features. Third, by utilizing collectively edited resources such as
the Wikipedia as a source of concepts, AFEP enables efficient develop-
ment of algorithms for a broad range of phenotypes, and allows fea-
tures to be updated as the public consensus evolves to incorporate
new results. Fourth, by eliminating the labor intensive steps of expert
curation of potential features, AFEP enables more high-throughput
approaches to phenotyping algorithm development. For instance, an
emerging exciting area of research is the Phenotype-wide Association
Study (PheWAS), in which individual genetic loci are analyzed for their
potential association with a large number of phenotypes. PheWAS
approaches may discover heretofore unappreciated mechanistic con-
nections between disparate diseases, and are extremely challenging
to undertake using traditional clinical and genetic cohorts. Existing
PheWAS approaches have been limited to defining phenotypes using
billing codes alone, in large part because of the rate-limiting step of
complex algorithm development. AFEP may significantly increase the
power of PheWAS studies by enabling rapid and automated develop-
ment of accurate algorithms for large numbers of phenotypes.

CONCLUSION
In summary, AFEP automatically extracts and selects features for phe-
notyping algorithms in an unbiased manner and without expert cura-
tion, with accuracies that match or exceed expert-curated algorithms.
AFEP, and subsequent refinements, promise to vastly expand our ca-
pability to define and interrogate a wide variety of disease phenotypes
using EHR data.
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