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ABSTRACT
Objective To evaluate state-of-the-art unsupervised
methods on the word sense disambiguation (WSD) task
in the clinical domain. In particular, to compare graph-
based approaches relying on a clinical knowledge base
with bottom-up topic-modeling-based approaches. We
investigate several enhancements to the topic-modeling
techniques that use domain-specific knowledge sources.
Materials and methods The graph-based methods
use variations of PageRank and distance-based similarity
metrics, operating over the Unified Medical Language
System (UMLS). Topic-modeling methods use unlabeled
data from the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC II) database to derive models for
each ambiguous word. We investigate the impact of
using different linguistic features for topic models,
including UMLS-based and syntactic features. We use a
sense-tagged clinical dataset from the Mayo Clinic for
evaluation.
Results The topic-modeling methods achieve 66.9%
accuracy on a subset of the Mayo Clinic’s data, while
the graph-based methods only reach the 40–50%
range, with a most-frequent-sense baseline of 56.5%.
Features derived from the UMLS semantic type and
concept hierarchies do not produce a gain over bag-of-
words features in the topic models, but identifying
phrases from UMLS and using syntax does help.
Discussion Although topic models outperform graph-
based methods, semantic features derived from the
UMLS prove too noisy to improve performance beyond
bag-of-words.
Conclusions Topic modeling for WSD provides superior
results in the clinical domain; however, integration of
knowledge remains to be effectively exploited.

INTRODUCTION
The past decade has seen a surge of interest in data
mining and information extraction over clinical
text such as admission notes, nurses’ notes, and dis-
charge summaries. Despite the pervasive presence
of domain-specific lexical ambiguity in clinical text,
which significantly impedes such efforts, there has
been a lack of a unified concerted effort to address
this problem. In this paper, we address this meth-
odological gap by conducting an evaluation of
some of the most promising word sense disambigu-
ation/induction (WSD/WSI) methods that have
been developed for the general-domain English
text as well as for the domain of biomedical
literature.
While there is a large body of research on WSD

in general English and some recent efforts in the
biomedical literature domain, lexical ambiguity in

clinical text has received much less attention. While
some of the principles and methods may translate
well between different domains, such success is not
guaranteed with techniques that use domain-
specific knowledge resources or text-processing
tools that need to be trained on domain-specific
text. Clinical prose is remarkably different from
both general-domain English and biomedical text.
In the clinical domain, institution-specific tem-
plates, abbreviation conventions, and non-standard
sentence structure and phrasing create additional
difficulties for information extraction and reasoning
over text.1 The following examples from the
Multiparameter Intelligent Monitoring in Intensive
Care (MIMIC II) database, which contains patient
records from intensive care units at the Beth Israel
Deaconess Medical Center,2 illustrate some of the
typical problems, including lexical ambiguity, in
particular:
‘PAIN: MEDICATED WITH TOTAL 4 MG IV
MS, C/O INCISIONAL PAIN, SOME RELIEF
WITH IV MS’

‘slides down freq. in bed or chair. ms- confused,
cooperative. poor short term memory’.
In the first example, the acronym ‘ms’ corre-

sponds to ‘morphine sulfate’, while in the second
example, ‘ms’ should be interpreted as ‘mental
state’.
Any task that uses machine learning methods to

extract information from clinical text, such as auto-
matic cohort selection and compilation of disease
presentations, stands to benefit directly from a
more accurate representation of relevant text. The
latter includes both the disambiguation of lexical
ambiguities and the related task of abbreviation/
acronym expansion. The largest barrier to accurate
WSD is the cost of annotating data used by super-
vised learning methods. Clinical text annotation
must be performed by medical experts, and creat-
ing an annotated dataset for every ambiguous word
is prohibitively expensive. Many efforts in WSD
therefore focus on unsupervised or semi-supervised
methods, requiring few or no annotated data, while
also attempting to leverage expert-curated knowl-
edge bases in order to incorporate human
expertise.
One disadvantage of unsupervised word sense

induction, in which sense clusters are induced
purely from unlabeled data, is that these clusters of
examples are not mapped to an existing inventory
of senses. Whether or not this mapping is necessary
depends on the practical applications; for further
implications of this, see the discussion section
below. In this paper, we compare the graph-based
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WSD methods that use the Unified Medical Language System
(UMLS) with the bottom-up induction techniques that adopt a
Bayesian topic-modeling approach to the problem of lexical
ambiguity. We show that the latter provide superior results even
when only simple bag-of-words (BOW) features are used. We
further investigate the impact of incorporating syntactic and
knowledge-based features into the topic model. We evaluate the
performance of these approaches on ambiguous clinical terms
from Mayo Clinical Corpus (MCC), a sense-tagged dataset from
the Mayo Clinic.3

The rest of this paper is organized as follows. In the next
section, we give an overview of related work. We then describe
the data used in experiments, followed by a presentation of the
methods used in both graph-based and Bayesian topic-modeling
experiments. We then discuss the results for each set of experi-
ments. We conclude with some discussion of the implications
and future directions for this work.

RELATED WORK
The UMLS,4 which is the dominant knowledge source in the
biomedical domain, assigns a unique identifier (CUI) to each
medical concept. UMLS maps strings to their possible meanings
(CUIs) and connects CUIs to each other with relations such as
‘broader than’ and ‘narrower than’. It also assigns each CUI to a
‘semantic type’, a broad category such as ‘Finding’ or ‘Disease
or Syndrome’. This information is largely sourced from other
medical vocabularies.

One widely used application that processes clinical text is
MetaMap,5 which includes an optional WSD step6 that disam-
biguates mainly at the semantic-type level using statistical asso-
ciations between words and ‘Journal Descriptors’.7

The UMLS has been widely used for WSD in the biomedical
domain.8–10 When a knowledge base or an ontology is used for
WSD, in both the general domain11 and the biomedical
domain,8 10 12 it has been treated as a graph whose nodes are
concepts (CUIs in UMLS) and whose edges are relations
between them. Graph-based methods that derive relative
ranking of UMLS nodes corresponding to senses have been
found to outperform other approaches.10 Agirre et al8 have run
a variant of PageRank13 over this graph to distribute weight
over CUIs and pick the target’s CUI with the most weight.
Other work9 restricts UMLS to a tree and uses tree similarity
measures to assign scores to CUIs of the target based on CUIs of
context words. All approaches that use the graph-like properties
of UMLS are susceptible to shortcomings in UMLS’s structure,
and tend to improperly favor senses that are more connected
and thus more easily reachable.

Clustering has also been applied to WSD in the general
domain and beyond.14 One of the challenges in this is to deter-
mine the number of clusters to create—that is, the stopping con-
dition for the clustering. Savova et al15 investigated this on
biomedical text. One of the recent evaluations of the state of the
art in word sense induction in the general domain was conducted
at SemEval-2010,16 where the top-performing systems achieved
an accuracy of 62% using supervised evaluation. The participant
systems focused on a variety of WSI improvements including
feature-selection/dimensionality-reduction techniques,17 experi-
ments with bigram and co-occurrence features17 and syntactic
features,18 and increased scalability.19 Clustering over word
co-occurrence graphs20 and second-order co-occurrence vectors17

was used by the top-performing systems, with measures such the
Gap statistic21 used to predict the number of clusters.17

Supervised machine learning methods have been tested in
both clinical and biomedical domains. Savova et al3

experimented on the biomedical dataset from the National
Library of Medicine containing Medline abstracts, as well as the
Mayo WSD dataset containing clinical text, beating the
most-frequent-sense (MFS) baseline. The task of abbreviation/
acronym expansion has attracted some recent attention in the
clinical domain.22 23 Moon et al24 conducted experiments
aiming to determine a good window for BOW features, a good
supervised classifier type, and the minimum number of instances
needed to achieve satisfactory performance.

In the general domain, Brody and Lapata25 have adapted a
Bayesian topic-modeling method, latent Dirichlet allocation
(LDA),26 to WSI by treating each occurrence context of an
ambiguous word as a document, and the derived topics as sense-
selecting context patterns represented as collections of features.
Yao and Van Durme27 followed their work by applying to this
task a non-parametric generative model, the hierarchical Dirichlet
process (HDP).28 The advantages of HDP over LDA lie in its
ability to avoid tuning the number of clusters to create by model-
ing new cluster creation in addition to cluster selection as part of
the algorithm. Both LDA- and HDP-based models outperform
the systems that competed in the WSI task for nouns in the
general domain in the 2007 SemEval competition.29

DATA
Mayo Clinical Corpus
MCC3 consists of 50 ambiguous clinical term targets; 48 have
100 instances and two have 1000 instances. Each instance contains
a sentence or two of context and a manually assigned CUI repre-
senting the sense of the target or ‘none’ if there is no such CUI.

We remove the 140 instances labeled ‘none’ in our experi-
ments. The mean number of CUIs used to label each target is
4.7, with SD 2.2. The average κ value (Cohen’s κ) across all
targets in MCC is 0.54, representing moderate agreement.3 We
refer the reader to the original paper for the discussion of the
agreement rate on MCC. For topic-modeling experiments, we
split MCC into a mapping set (70%) and a test set (30%). We
created these sets with similar proportions of senses in each, but
chose instances randomly among those labeled with the same
sense. The mapping set is used in evaluation and also in cross-
validation to tune topic-modeling parameters and select feature
types. In the graph-based experiments, we use a subset of 15
out of 50 targets, for which all of the CUIs assigned to them in
the labeled data appear in Systematized Nomenclature of
Medicine—Clinical Terms (SNOMED CT), one of the UMLS
source vocabularies. SNOMED CT provides a path up its hier-
archy for each CUI, simplifying the calculations necessary for
these methods.

Training data
We obtain unlabeled training data for the topic-modeling algo-
rithms from nurses’ notes and discharge summaries in the
MIMIC II database. At the time of data extraction, MIMIC con-
tained 27 059 deidentified patient records with multiple notes
per record. Instances are collected for each target by comparing
the targets with whitespace-delimited tokens with punctuation
removed in MIMIC; if a target matches, an instance is created
from the surrounding 100 tokens. Instances that overlap in
content are allowed. We collect up to 50 000 instances per
target, reduced if fewer instances are available. In the resulting
dataset, four targets have fewer than 1000 instances (232 being
the fewest), 26 targets have between 1000 and 10 000 instances,
and 20 targets have over 10 000 instances. The mean number of
instances is 16 026. The collection process is case-insensitive,
except for the abbreviations, such as ‘it’, which can be a
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pronoun or may have a specialized sense (eg, ‘intrathecal’). For
the abbreviations that have a general English sense, we only con-
sider uppercase matches.

Data preprocessing
The generation of features to use in the topic models requires
some preprocessing of the data. For each instance, we tokenize the
text, find sentence boundaries, assign part-of-speech (POS) tags to
the tokens, and perform dependency parsing. Dependency parsing
identifies binary asymmetric dependency relations between lexical
items, and is typically more robust to noise.

We use the POS tagger and dependency parser from
ClearNLP,30 which provides models trained on clinical text. We
also identify the clinical phrases (CPs) present in the text. Each
string of up to six tokens is normalized using the Lexical Variant
Generation program (LVG), which tokenizes, stems, and alpha-
betizes the resulting tokens.4 The normalized string is looked up
in the English normalized string table (mrxns_eng) provided by
the UMLS, and, if present, that string is considered a CP. Each
token is assigned to the longest CP that it belongs to, if any.
This method allows us to capture phrases such as ‘l4 vertebral
bodies’, although it can also create false positives when stop-
words such as ‘is’ appear in UMLS.

METHODS
Graph-based methods using the UMLS
Path-based
We perform path-based experiments using the methods of McInnes
et al9 in which we use UMLS as a tree whose nodes are the CUIs
and whose edges are a subset of the relations (only broader/nar-
rower and parent/child relations). A target word, t, is disambiguated
to the CUI, c*, with the largest cumulative similarity to the context
words according to the following general formula:

c! ¼ argmax
c[cuisðtÞ

X

w[contextðtÞ
(weight(w; t) max

n[cuisðwÞ
similarity(c; n)):

The function similarity represents the similarity between nodes c
and n in UMLS measured by a tree distance metric, and the func-
tion weight represents how important this context word should be
in the calculation. Both of these functions may be varied, but we
use a uniform weight function and the similarity function, wup,31

which depends on the depth of each node, and their lcs (least
common subsumer), the deepest node that is an ancestor of both.

wup(c1; c2) ¼ 2 ! depth(lcs(c1; c2))
depth(c1) þ depth(c2)

PageRank-based
We use the methods of Agirre et al,8 which involve variants on
the PageRank algorithm.13 In these methods, PageRank is run
on a graph whose nodes are CUIs in UMLS chosen on the basis
of the target’s context and whose edges are relations present
between them. After PageRank is run, the target is disambigu-
ated to the most ‘popular’ CUI—that is, the one with the most
weight. Intuitively, each sense of each context word carries
weight that can be spread among different nodes in the UMLS
graph. The senses of the target word that are similar to the
senses of the context word (ie, closer to it in the graph) should
receive more of this weight.

The UMLS graph can be altered on the basis of the context
around the target word in the following ways: (1) create a sub-
graph based on the context and run traditional PageRank (SPR);
(2) use the whole graph but run PageRank with a non-uniform

(‘personalized’) initial weight vector (PPR). In SPR, the subgraph
is created by identifying the nodes associated with all context
CPs, finding the shortest paths in UMLS between each pair of
these nodes, and including exactly the nodes on those paths. In
our experiments, we approximate the shortest path between two
nodes as the concatenation of their paths to their least common
subsumer, treating UMLS as a tree. This would be the shortest
path in an actual tree, and we use this approximation to keep our
experiments feasible. In PPR, all of UMLS is used as the graph,
but the initial vector is weighted so that only nodes associated
with context CPs have non-zero weights. Although traditional
PageRank’s initial vector is uniformly weighted over the graph,
we also experiment with distance-based weighting, where each
node’s weight is inversely proportional to its distance from the
target in tokens. We use 40 iterations of PageRank for SPR, and
20 for PPR. Our results on clinical text suggest that that PPR is
more effective than SPR, supporting the findings of Agirre et al8

in the biomedical domain.

Bayesian topic-modeling-based methods
Models
LDA is a Bayesian topic-modeling technique which is more for-
mally defined as follows. Consider M instances of a target word
that has K ‘topics’—that is, sense-selecting context patterns. Let
the context of instance j be described by some set of Nj features
from a vocabulary of size V. LDA assumes that there are M prob-
ability distributions uj ¼ (u j1; u j2; . . . u jK );where u jk = the prob-
ability of generating topic k for instance j, and K probability
distributions fk ¼ (fk1;fk2; . . .fkV), where fkf = the probabil-
ity of generating feature f from topic k. This makes the probabil-
ity of generating the corpus where the features for instance j are
f j1; f j2; . . . ; f jNJ

PðcorpusÞ ¼
YM

j¼ 1

YNj

i¼ 1

XK

k¼ 1

ujkfkf ji

Figure 1 shows the plate representation of LDA (compare with
Blei et al26).

The goal of LDA for WSI is to obtain the distribution uj! for
an instance j* of interest, as this corresponds to the probability
of being the correct sense for the target word in this context.

The corpus generation process for HDP is similar to that of
LDA, but obtains the document-specific sense distribution via a
Dirichlet process whose base distribution is determined via
another Dirichlet process, allowing for an unfixed number of
topics because the draws from the resulting topic distribution
are not limited to a preset range. The concentration parameters
of both Dirichlet processes are determined via hyperparameters.

We train a separate model with its own set of topics for each
target. In order to reduce the effects of randomization during

Figure 1 Graphical model representation of latent Dirichlet allocation.
The outer plate represents each of the M documents. The inner plate
represents each of the Nj features in the jth document. Each feature is
assigned a topic from a document-specific distribution (uj).
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Gibbs sampling in the LDA implementation we run, we average
results over five models trained for each target using the same
parameters and data. The way we average results is described
below in the section on evaluation metrics. While randomiza-
tion is present in the inference algorithms, we perform only one
inference run per model.

Our process for training an LDA model uses the software,
GibbsLDA++,32 which uses Gibbs sampling to assign topics to
each feature in each instance. We use the hyperparameters used
by Brody and Lapata,25 who tuned the value for α and used a
known value for β from previous LDA work: a=0.02, b=0.1.
The HDP training and inference procedures are similar to LDA,
but using Gibbs sampling on topic and table assignment in a
Chinese restaurant process. We use Wang’s program for HDP33

using Yao and Van Durme’s27 hyperparameters H=0.1, a0 !
Gamma(0.1, 0.028), g ! Gamma(1, 0.1).

Feature types
In addition to the basic BOW features, we generate additional
feature classes using dependency parsing and UMLS. One class
is the similar ‘bag-of-CPs’ features—an unordered set of the
closest CPs as identified during preprocessing, represented by
their LVG normalizations. We also experiment with features
based on ontological information about CPs syntactically con-
nected to the target. We use CPs reachable from the target in
three or fewer syntactic dependencies (‘hops’). This number is
selected by manual examination of important syntactic rela-
tions. When more than one hop is involved, dependency infor-
mation for all hops is included, and the order of relations is
preserved. Purely syntax-based features are created by prepend-
ing the stemmed token from the dependency to syntactic
information.

Two types of UMLS-based features are also generated for
each of the relevant CPs’ possible CUIs: ancestor features and
semantic-type features. We define the ‘Kth ancestor’ of a CUI c
as all CUIs that have ‘parent’ (PAR) or ‘broader than’ (RB) rela-
tions to any of the ‘(K−1)th ancestors’ of c, and we define the
‘0th ancestor’ as c itself. Unlike a true tree, where each node has
exactly one parent, UMLS CUIs often have many parents.
Because of this high fan out, we only generate the 0th ancestor
through 2nd ancestors. A feature is produced from each ances-
tor by prepending the ancestor’s CUI to the syntactic
information.

UMLS’s semantic types have IDs (TUIs) and are arranged in a
hierarchy, in this case a true tree, so each type has only one
parent. We distinguish two feature classes generated from CUIs
of context CPs: one includes the CUI’s semantic type; the other
also includes additional features for all of the type’s ancestors.
Each single feature corresponds to a TUI associated with a par-
ticular syntactic dependency found by the parser.

Figure 2 illustrates some of the feature types generated for
the following instance of the target ‘compression’:

‘4). Unchanged appearance of sclerotic metastases involving the
L3 and L4 vertebral bodies, with L4 compression deformity.
Subsequently, an MRI was performed and showed’

Evaluation metrics
Following the established practice in SemEval competitions and
subsequent work,16 25 27 29 we conduct supervised evaluation.
A small amount of labeled data, the mapping set, is used to map
the induced topics (corresponding to sense-selecting patterns) to
real-world senses. The mapping produced is probabilistic;
for topics 1; . . . ; K and senses 1; . . . ; S, we compute the KS
values P(s | k) = count(instances predicted k, labeled s)/count
(instances predicted k). Then, given uj!, we can make a predic-
tion for instance j* that is better than just the most likely
sense for its most likely topic. Instead, we compute

argmax
1& s& S

PK

k¼ 1
u j!kPðsÞ, the sense with the highest probability of

being correct for this instance, given the topic probabilities and
the KS mapping probabilities.

The supervised evaluation measures traditionally reported in
natural language processing tasks include precision, recall,
F-measure, and accuracy. For WSD, these measures are defined in
terms of the number of correct predictions (C), the number of
total predictions (P), and the total number of instances (T).
Precision is the percentage of instances with predictions that are
correct —that is, C/P. Recall is the percentage of all instances that
are correct—that is, C/T. F-measure is the harmonic mean of pre-
cision and recall. Accuracy is the percentage of correct instances
—that is, the same as recall, C/T. Since our WSI system assigns a
sense to every instance and no instances are left uncategorized,
P=T, so precision, recall, F-measure, and accuracy are all equiva-
lent, and we will report accuracy throughout this paper.

In cross-validation, the reported accuracy for a given configur-
ation is averaged over five trained models. On the test data, we
report the accuracy obtained by assigning to each instance the
sense that the majority of the models predicted for it. The
results we report use averages taken over all targets, since results
for individual targets may vary.

RESULTS AND DISCUSSION
Graph-based results
Table 1 shows our best graph-based results on the SNOMED
CT subset of MCC. We report the micro-average (in this case,
the same as the macro-average) over all the targets’ accuracies,
as well as the micro-average 95% CI. The accuracies are 42.5%
for the path-based and 48.9% for the PageRank-based method.
As the table shows, these graph-based methods fail to reach the
MFS baseline performance (56.5%). For comparison, we also
show a result on this subset obtained by the topic-modeling
approach using the best number of topics for this subset and a
similar context window (66.9%).

Figure 2 Examples of feature classes
generated for an instance of the target
‘compression’.
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Topic-modeling results
We use 50-fold cross-validation to maximize the use of labeled
examples. Following standard practice, we perform cross-
validation on the mapping set, leaving a held-out dataset for
testing. Table 2 shows micro- and macro-averages from selected
cross-validation runs. We do not report CIs for cross-validation
accuracies, since they are only used to select system
configurations.

For LDA, the number of senses and the size of the context
window were selected over the BOW and bag-of-CPs features,
which we refer to as ‘base configurations’. We compared the fol-
lowing base configurations: (1) 20 closest words (20w) or six
closest words (6w) to the target, excluding the stopwords; (2)
20 closest CPs (20c) or six closest CPs (6c) to the target.

The 20w/20c configurations were chosen for comparison
with some of the graph-based methods, as well as with the
similar work in the general domain, which used 20-word con-
texts.25 The 6w/6c configurations were selected in contrast with
the larger window size in order to investigate the impact of a
near-minimal context, and are similar to some of the small
window sizes used in the general domain.25 For each context
window, the number of latent topics was fixed at the point
where the performance plateaued. This number was tuned over
all targets, rather than per target. Note that in a practical appli-
cation, the number of topics can be tuned separately for each
target word, likely improving the quality of the resulting clus-
ters. Motivated by the similar topic range over which Brody and
Lapata25 tuned topics for their general domain LDA work, we
started at four topics and increased to seven. The 6w and 20w
LDA configurations performed comparably, achieving best per-
formance at six topics.

The best LDA configuration was selected by successively
adding syntactic and ontological features to the best base config-
uration. Word-populated syntactic features within three hops are
denoted ‘Synt’. Syntactic features populated with UMLS seman-
tic types that use just the direct semantic type of the CP are
denoted ‘UST’ (‘UMLS semantic type’). Features that instead use
the full path to the root of the semantic type hierarchy are
denoted ‘USTall’. Features populated with UMLS CUI ancestors
using k parents are denoted ‘UAk’ (‘UMLS Ancestors k’).
Combinations of features are denoted with ‘+’ before each add-
itional set. The best LDA configurations were 6w+6c and 6w
+6c+Synt, for six topics. HDP configuration selection was per-
formed over the BOW features and the features that performed
best for LDA.

The failure of ontology-based features UAk to help disam-
biguation may suggest noisy ‘parent’ relations. We investigated
this by using the paths-to-root that UMLS provides for CUIs in
the SNOMED CT vocabulary instead of using parent relations.
This leaves the context CPs’ CUIs not in SNOMED without any
features, but the features that are generated are less noisy. We
call USA2 the regeneration of UA2 this way and compare the
configurations (1) LDA, 6w+UA2+Synt, six topics and (2)
LDA, 6w+USA2+Synt, six topics. The former, with UA2, had
60.4% cross-validation accuracy; the latter, with USA2, had
64.5% cross-validation accuracy. This higher accuracy is still
lower than BOW, however (65.7%), so noisy relations must not
be the only problem.

We chose to test the best basic configurations (6w) and the
best configurations overall (6w+6c+Synt) for both LDA and
HDP, shown in table 3. We present both macro- and micro-
average accuracies with respect to the targets, as well as 95%
CIs for the micro-average. In general, we prefer to evaluate
using macro-averages because micro-averages heavily skew the
overall performance towards that of ‘ms’ and ‘sob’, the targets
with 1000 instances in MCC. In the LDA test runs, the extra
features showed a gain over just BOW, reflecting cross-validation
results. This gain is small but significant (p=0.0176). However,
HDP test runs showed the opposite trend; this may be partially
due to the small number of instances in the test set, as the differ-
ence between HDP, 6w+6c+Synt and HDP, 6w is not significant
(p=0.0643). The difference between the best HDP configur-
ation on the test set, 6w, and its LDA counterpart, 6w with 6
topics, is significant (p=0.0020).

Table 4 shows a direct comparison on identical data of these
best topic-modeling methods with the graph-based methods inves-
tigated earlier. This comparison was performed on our 30% MCC
test set limited to the 15 targets on which we evaluated graph-
based methods for a total of 444 instances. Again we report
macro- and micro-average accuracies and 95% CIs for the latter.

Table 1 Accuracies on the SNOMED subset of MCC for
graph-based and topic-modeling experiments

Configuration Accuracy (%) 95% CI

MFS 56.5 54 to 59
PPR, 20 closest CPs, all relations, initial vector
weighted by inverse distance

48.9 46 to 51

SPR, 20 closest CPs, relations from
path-to-hierarchy-root, initial vector weighted by
inverse distance

43.5 41 to 46

Path, CPs in 70-word window, similarity measure
wup, uniform CP weighting

42.5 40 to 45

LDA, 20 closest words, 5 topics 66.9 64 to 70

CP, clinical phrase; LDA, latent Dirichlet allocation; MCC, Mayo Clinical Corpus; MFS,
most-frequent-sense; PPR, use of the whole graph but PageRank is run with a
non-uniform (‘personalized’) initial weight vector; SNOMED, Systematized
Nomenclature of Medicine; SPR, a subgraph is created based on the context, and
traditional PageRank is run.

Table 2 MCC cross-validation accuracies

Configuration

Cross-validation
macro-average
accuracy (%)

Cross-validation
micro-average
accuracy (%)

MFS 60.1 69.1
LDA, 6w, 6 topics 65.7 73.2
LDA, 20w, 6 topics 65.7 73.2
LDA, 6w+6c+Synt, 6 topics 66.5 73.9
LDA, 6w+6c, 6 topics 66.0 73.5
LDA, 6w+UST+Synt, 6 topics 65.0 72.7
LDA, 6w+USTall+Synt, 6 topics 61.8 70.3
LDA, 6w+UA2+Synt, 6 topics 60.4 69.2
LDA, 20w+UST+Synt, 6 topics 65.5 73.1
LDA, 20w+USTall+Synt, 6 topics 63.4 71.5
LDA, 20w+UA0+Synt, 6 topics 65.6 73.1
LDA, 20w+UA1+Synt, 6 topics 64.4 72.2
LDA, 20w+20c, 6 topics 65.3 73.0
HDP, 6w+6c+Synt 70.2 76.2
HDP, 6w+6c 69.7 76.1
HDP, 6w 68.5 75.4
HDP, 20w 65.5 72.8

Best-performing configurations are given in bold.
HDP, hierarchical Dirichlet process; LDA, latent Dirichlet allocation; MCC, Mayo
Clinical Corpus; MFS, most-frequent-sense. For explanation of configuration
abbreviations see paragraphs 2 and 4 of the ‘Topic-modeling results’ section.
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One of the expected effects of the increasing size of the
mapping set is that the mapping accuracy would increase until
eventually reaching a plateau. Figure 3 shows the MCC test set
accuracy as a function of the mapping set size. The accuracy has
not plateaued, suggesting that performance may continue to
improve with increased mapping set size.

In order to investigate how the topic-modeling approaches
compare with the supervised approaches using the same amount
of data, we trained a support vector machine (SVM) classifier
with BOW features derived from the entire available context
using the same 70%/30% split of the MCC data; the mapping
sets were used for training and the test sets for evaluation. Since
the total number of annotated instances was relatively modest,
we used a linear kernel. The resulting macro- and micro-average
accuracy was 62.5% and 71.9% across all targets, respectively.
The corresponding BOW-only results with six-word context for
our topic-modeling approaches on the same split were 75.0%/
82.1% for LDA and 78.1%/ 84.4% for HDP (Table 3). To the
best of our knowledge, the only other supervised learning result
available for MCC is due to Savova et al.3 They report 82.6%
micro-average accuracy across all targets, with best-performing
feature configurations selected separately for each target word.
This additional tuning contributes to better performance, but,

as they mention, is, in practice, too costly to perform for all
targets.3 In order to evaluate possible effects of the method we
used to map the derived topics into senses (cf the section on
evaluation metrics), we trained a linear SVM classifier with
topic features derived by our best LDA configuration. The
resulting macro- and micro-average accuracy across all targets
was 75.6% and 82.4%, respectively, which is very close to the
corresponding accuracies reported above for the mapping
method used in the SemEval WSI task.16

DISCUSSION
In our results on MCC, of the knowledge-based features, only
bag-of-CPs (6c) produced any gain above the BOW baselines.
This implies that UMLS only helped disambiguation in identify-
ing and consolidating CPs, and that its graphical properties,
which were used in features UST, USTall, and UAk, were unhelp-
ful or harmful. This is perhaps not surprising given the poor
performance of our graph-based disambiguation methods,
which rely completely on UMLS relations. The fact that even
limiting ancestor features to those of CUIs in the SNOMED CT
vocabulary’s hierarchy tree does not produce a higher average
accuracy than BOW suggests that something other than the high
fan-out causes problems. It is surprising that the UMLS semantic
type hierarchy did not prove helpful, because it is relatively
small and its quality is easier to control. Its clustering may be
too coarse for use in a WSI task with as fine sense distinctions
as are present in MCC (eg, three of the four senses for target
‘iv’ all relate to slightly different aspects of the same basic
meaning). Another factor affecting the poor performance of lin-
guistic features is that the ClearNLP dependency parser used in
this work was trained on longer clinical notes and pathology
reports, while the training data from the MIMIC II database
contains many examples from very abbreviated and
shorthand-rich nursing notes.

As always, comparisons between different methods should be
taken with a caveat regarding the dataset size. As Banko and
Brill pointed out in SemEval-2007,34 an increase in the amount
of training data often trumps the performance increase because
of selecting a better algorithm, until eventually a performance
plateau is reached, where adding more data no longer helps as
much. However, as Peter Norvig argues in his updated version
of Banko and Brill’s result,35 a larger volume of data does lead
to continued improvement, but on a log scale. And using a dif-
ferent technique (for POS tagging, in Norvig’s case) makes less
difference than another order of magnitude more data. Which is
to say that the argument that it is worth optimizing by choosing
the best technique makes sense if you run into limits on avail-
ability of data, where you cannot obtain 10× more. This is

Table 3 MCC test set accuracies

Configuration

Test macro-
average
accuracy (%)

Test micro-
average
accuracy (%) 95% CI

MFS 66.7 76.2 74 to 78
LDA, 6w+6c+Synt, 6 topics 76.9 83.4 82 to 85
LDA, 6w, 6 topics 75.0 82.1 80 to 84
HDP, 6w+6c+Synt 76.4 83.0 81 to 85
HDP, 6w 78.1 84.4 83 to 86

Best-performing configurations are given in bold.
HDP, hierarchical Dirichlet process; LDA, latent Dirichlet allocation; MCC, Mayo
Clinical Corpus; MFS, most-frequent-sense. For explanation of configuration
abbreviations see paragraphs 2 and 4 of the ‘Topic-modeling results’ section.

Table 4 Comparison of the methods producing the best MCC test
set accuracies with graph-based methods on the MCC test set
limited to SNOMED CT subset targets

Configuration
Macro-average
accuracy (%)

Micro-average
accuracy (%) 95% CI

MFS 58.8 59.2 55 to 64
PPR, 20 closest CPs, all
relations, initial vector
weighted by inverse distance

48.0 48.6 44 to 53

SPR, 20 closest CPs,
relations from
path-to-hierarchy-root, initial
vector weighted by inverse
distance

41.9 42.6 38 to 47

Path, CPs in 70 word
window, similarity measure
wup, uniform CP weighting

44.0 44.4 40 to 49

LDA, 6w+6c+Synt, 6 topics 75.8 76.1 72 to 80
HDP, 6w 76.0 76.4 72 to 80

CP, clinical phrase; HDP, hierarchical Dirichlet process; LDA, latent Dirichlet allocation;
MCC, Mayo Clinical Corpus; MFS, most-frequent-sense; SNOMED CT, Systematized
Nomenclature of Medicine—Clinical Terms. For explanation of configuration
abbreviations see paragraphs 2 and 4 of the ‘Topic-modeling results’ section.

Figure 3 Mayo Clinical Corpus test set accuracy versus mapping set
size. HDP, hierarchical Dirichlet process; LDA, latent Dirichlet allocation.
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definitely the case for WSD data, where sense-tagging of large
corpora for every ambiguity is simply not feasible.

Still, the data size effects are definitely relevant for the com-
parison between different topic-modeling configurations, since
the amount of data available for mapping and evaluation in
MCC does not allow the systems to reach a plateau in accuracy.
This is, perhaps, less relevant for the graph-based approaches,
since they require no training data. However, increasing the
evaluation set, particularly expanding it to other target words,
may well shift the results, since the structure of the UMLS
concept graph varies greatly for different targets. Even with the
limited amount of evaluation data, though, the difference in
performance between the topic-modeling and UMLS graph-
based approaches is evident.

The comparison we make between the unsupervised
knowledge-based approaches and the topic-modeling approach
from the general domain is a comparison between unsupervised
methods and semi-supervised methods, as our evaluation of the
topic models requires a small amount of labeled data. However,
at their core, the topic-modeling algorithms are unsupervised,
inducing clusters from the data. The labeled data make it pos-
sible to map these clusters, often many-to-one, on to real-world
senses, but this may not be necessary in all applications. For
example, while a uniform interpretation of a particular natural
language query over a set of clinical records may require
mapping to a standardized sense inventory, when an ambiguous
term is used as a part of a query, other terms from the query
may provide sufficient context to retrieve the records with the
right sense of the term. Similarly, if WSD is used as an inter-
mediate step in a particular information-extraction task, one
may benefit—for example, from using ‘disambiguated BOW’

features in place of the regular BOW. In these cases, mapping
the sense clusters to an existing sense inventory may be irrele-
vant and unnecessary.

While a full-scale comparison of the topic-modeling
approaches with the supervised techniques is outside the scope
of this paper, the experiment with an SVM classifier using BOW
features does support the notion that such semi-supervised
approaches are likely to obtain a higher accuracy with the same
amount of data.

CONCLUSIONS
The experiments we present suggest that unsupervised WSI
methods using Bayesian topic modeling outperform methods
using the UMLS directly. We have also shown that such methods
benefit from additional features, particularly syntactic relations
and clinically relevant words and phrases (‘bag of CPs’), but
these techniques would clearly benefit from better integration of
the domain knowledge sources. Since UMLS has its weaknesses,
future work on features might benefit from using automatic the-
saurus construction to more realistically represent relations
between CPs, which may then be used to aid disambiguation.

Recent work by Moon et al24 suggests that coarse-grained
acronym-related ambiguities may be resolved in a supervised
learning framework with even a small number of training exam-
ples, provided that a sufficiently large context window (80
closest words) is used. The fact that topic-modeling techniques
perform well with a restricted context window (six closest
words) suggests that this approach may prove more suitable for
clinical applications where little context is available, such as
applications supporting natural language queries over text data.
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