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Abstract

Intensive care monitoring systems are typically developed from population data, but do not take into account the variability among
individual patients’ characteristics. This study develops patient-specific alarm algorithms in real time. Classification tree and neural net-
work learning were carried out in batch mode on individual patients’ vital sign numerics in successive intervals of incremental duration to
generate binary classifiers of patient state and thus to determine when to issue an alarm. Results suggest that the performance of these
classifiers follows the course of a learning curve. After 8 h of patient-specific training during each of 10 monitoring sessions, our neural
networks reached average sensitivity, specificity, positive predictive value, and accuracy of 0.96, 0.99, 0.79, and 0.99, respectively. The
classification trees achieved 0.84, 0.98, 0.72, and 0.98, respectively. Thus, patient-specific modeling in real time is not only feasible
but also effective in generating alerts at the bedside.
! 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the intensive care unit (ICU), an arsenal of medical
devices continuously monitor each patient. The most com-
putation-intensive of these devices is the bedside monitor,
which takes in patients’ physiological measurements from
biosensors and other devices, converts the incoming electri-
cal signals into digitalized waveforms and vital sign
numerics, displays these to caregivers, stores and analyzes
them to track patients’ physiological state, and sounds
alarms whenever its built-in algorithms detect a physiologi-
cal abnormality. While new biosensors have increased the
number and quality of available physiological signals [8],
and color touch screens have made bedside monitors more

user-friendly, the clinical utility of alarm algorithms that
are central to timely detection of adverse conditions has
continued to advance at a slower pace than other medical
technologies [10,16,5,9,7].

Until the 1990’s, most alarms were triggered when a spe-
cific physiological measurement fell outside pre-set thresh-
old boundaries, without any specific dependence on other
signals or, more importantly, the overall state of the
patient, which was not represented. Even the most sophis-
ticated algorithms, such as those interpreting electrocardio-
gram (ECG) variations, examined only one source of data,
from ECG leads. Alarm detection in the newer generation
of patient monitoring systems is more sophisticated than
previously. Although the details of the new algorithms
have not been disclosed, from publicly available informa-
tion we know that they include sensitive artifact detection,
noise elimination, pattern recognition of specific disease
conditions, such as ventricular fibrillation, and some multi-
ple-signal/multi-channel data analysis. Indeed, we perceive
a gradual shift in emphasis of ICU monitoring from issuing
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alarms toward creating alerts that are part of a larger deci-
sion support infrastructure. We will use alerts when we
mean this expanded view.

In this paper we address another potential source of
improvement: tuning alerting models to specialized patient
populations, or, indeed, to the individual patient. After all,
in critical care no two patients are the same.1 In fact, many
patients behave in highly individual ways that might devi-
ate significantly from the average patient in population-
based models. What counts as ‘‘normal” for one patient
may be highly abnormal if seen in another, and patients’
dynamic responses to changing circumstances also vary
greatly from individual to individual [11].

Alarm algorithms today are developed retrospectively,
by using previously collected datasets that encompass
thousands of patients to build models that detect adverse
clinical events, namely medical conditions that could
become life-threatening. Once built, these algorithms are
applied without further improvement to many patients in
the ICU. Yet, a previous study from our laboratory found
that some models built from one patient population per-
formed significantly worse on data from two other groups
of patients, but simply optimizing the thresholds used in
these models to fit data from 9% of these other patients
greatly improved the models’ performance [17]. This find-
ing suggests that for patient monitoring to be robust, its
algorithms must be able to adapt to a focused patient
population or even to the individual patient.

The research reported here explores the most aggressive
form of this hypothesis, that we can build effective patient-
specific alarming models from a specific individual’s own
data. Our preliminary findings were reported in [19,20].
Obviously, such a ‘‘pure” strategy will be quite ineffective
before any individual data are collected, so we also study
the rate at which this approach can learn to produce accu-
rate detection of clinically relevant events at the bedside,
using the system presented in [19]. As an initial investiga-
tion of this approach, the present study has numerous lim-
itations, which we address in the discussion.

2. Methods

2.1. Clinical setting

This research was carried out in collaboration with the
pediatric Multidisciplinary ICU (P-MICU) at Boston Chil-
dren’s Hospital, with the approval by the hospital’s Institu-
tional Review Board. The P-MICU staff allocated a
spacious bedspace to the study and assisted with clinical
annotations. Before each study session, informed consent
was obtained from the patients and their families to ensure
that they were willing to participate in the study and felt
comfortable with the presence of the computer equipment
and a trained observer. The first author served as the

trained observer. During study sessions, which took place
between 2001 and 2003, between 8 AM and 2 AM, the
trained observer sat at the bedspace with a laptop compu-
ter connected to the bedside monitor, with a curtain drawn
between the patient and the observer whenever necessary.
Patient confidentiality and privacy have been protected
according to the hospital’s guidelines.

A total of 196 h of monitoring data were collected and
analyzed from 11 different patients ranging in age from
infants to adolescents, five of whom were in especially critical
condition. Data collection took place during 23 sessions, of
which 14 were at least 8 h long, and four more lasted at least
4 h. The shortest five sessions lasted between 2 and 3.5 h.

2.2. Synchronized data collection

To support our study, we collected and recorded the fol-
lowing information during each session:

! The second-by-second numerics computed from the
measured waveform data by the HP Viridia neonatal
component monitoring system (CMS) used in the P-
MICU. These include the heart rate derived from
ECG waveforms, pulse rate from plethysmography,
respiration rate, blood pressure (systolic, diastolic, and
mean) either arterial or measured by non-invasive
means, arterial and venous oxygen saturation, and oxy-
gen perfusion.
! 1-min running averages of all numerics. These averages

are less prone to momentary noise, though they are
obviously not as quickly responsive to changing
conditions.
! Interpretations made by CMS and related information,

including (a) clinical alarm status and severity, (b)
whether any of the threshold alarms on individual sig-
nals have been triggered, (c) sensor or monitor malfunc-
tion (INOP) alarm status and severity, (d) monitor
status, and (e) alarm suspension (when an alarm has
been silenced by the nurse on duty).
! Clinical events noted and interpreted by the bedside

observer, under each of the following circumstances:
1. the bedside monitor issues an alarm other than an

INOP
2. any of our alarm algorithms under investigation

issues an alarm
3. the patient became irritated and required immediate

attention even when no alarm is issued.

For each clinical event, the bedside observer recorded
the start and end time of the event, whether the patient
was moving, whether a medical procedure (e.g., suctioning)
was in process, and the medical staff’s response to the
alarm, such as checking the patient, adjusting sensors, or
silencing alarms without other intervention. In addition,
the observer asked the nurse or physician at the bedside
to classify the event into one of three categories:1 Roger G. Mark, MIT, personal communication, 2000.
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1. true positive, clinically relevant (TP-R)
2. true positive, clinically irrelevant (TP-I)
3. false positive (FP)

Fig. 1 shows the dialog box for annotating one event, in
this case resulting from one of the algorithms under inves-
tigation issuing an alarm.

2.3. Models derived from different amounts of past data

As we described in the Introduction, we investigate the
degree to which models learned from a patient’s own data
can be effective in interpreting future data points. Rather
than doing this continually, we have chosen to construct
interpretive models based on all previously collected data
at 30 min, 1, 2, 4, and 8 h into each 12-h recording session.

After each model is built, all subsequent data (i.e., one
each second) are interpreted by each of the models and
the results are recorded. In addition, we recorded each sec-
ond the single-signal threshold alarms and the more inte-
grated CMS alarms issued. These records, along with the
clinicians’ interpretations of clinical events, are then used
both for training of our subsequent models and for evalua-
tion of these models and their comparison against the out-
puts of the monitoring system.

2.4. Gold standard data

The goal of our patient-specific alarm models is to make
a binary judgment at each second’s data whether an alarm
should or should not be called. To train these models, we
assume that the answer should be ‘‘alarm” during any clin-
ical event where the clinicians had called the event a true
positive, whether or not it was considered clinically rele-
vant. Conversely, if no event occurred, or if an event
occurred that was annotated as a false positive, the answer
should be ‘‘stable”. Because events could be created not

only by an alarm from CMS but also by alarms from our
own models or from observations by the clinicians or
observer, we are also able to recognize instances of false
negatives, where an algorithm should have issued an alarm
but did not do so. We assume that all data points at times
when no clinical event was recorded are true negatives (i.e.,
when none of the models, CMS, the clinicians or the obser-
ver saw an event).

We used one additional method to modify these classifi-
cations: if the patient’s condition changed within the
30 min following an event, the classification of that event
could be revised as appropriate. For example, if an alarm
for bradycardia is classified as a false positive, and the
patient becomes persistently hypotensive in the next
30 min, we would revise the classification to clinically rele-
vant true positive. Thus, the gold standard for our classifi-
cation tasks consists of human experts’ classification at the
time the data become available and either verification or re-
classification using subsequently obtained information.
When event classifications changed, we did not re-do train-
ing of models that had been built from data about that time
period; however, models built at times after the correction
would incorporate the revised classification. Such reclassi-
fication is rare, having occurred only five times in our
196 h of data collection.

2.5. Training of patient-specific alarm algorithms

We chose to investigate two machine learning techni-
ques that had shown potential in generating intelligent
alarm algorithms in earlier studies [17,18], classification
trees and artificial neural networks. Classification tree
learning is suited for the learning tasks in critical care
because it is a useful classification method for problems
in which (1) instances are represented by a fixed set of attri-
butes; (2) the classification output is discrete-valued; (3)
disjunctive description may be required; (4) training data

Fig. 1. Example of an annotation box that allows the bedside observer to record the nature and duration of an event, as well as an indication of whether
the clinical staff consider it a false positive, true positive that is clinically relevant, or true positive that is clinically irrelevant.
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may contain errors; and (5) the training data may contain
missing attribute values [14]. Neural network learning is a
general, practical method for learning real-valued, dis-
crete-valued, and vector-valued nonlinear functions. It is
especially useful for capturing nonlinear patterns. The
training examples may contain errors, and evaluation of
the learned target function is fast [12]. These capabilities
work well for learning tasks in critical care settings.

For both learning algorithms, the input data consisted
of the eight second-by-second numerics and the corre-
sponding minute-by-minute running averages, as described
in Section 2.2. The classification label for the training data
samples, as well as the output of each learned model, is bin-
ary: an ‘‘alarm” if the gold standard assignment of the data
point was ‘‘alarm”, or ‘‘stable” otherwise, as described in
Section 2.4.

For classification tree learning, we chose See5 [2] to con-
duct a top-down, greedy search through the space of possi-
ble classification trees. See5 is a Windows implementation
of C5.0, a new-generation data mining tool that is built
upon its predecessors C4.5 and ID3 for generating classifi-
cation trees and rule-based classifiers more accurately, fas-
ter, and with less memory [3]. It includes the ability to
handle discrete as well as continuous input values and a
variety of pruning methods to try to avoid overfitting.
The details of these methods are proprietary, but the soft-
ware supports a number of user-tunable parameters.

After experimenting with 5- to 15-fold cross-validation
and differential misclassification costs (see below), we chose
the following settings: 10 trials for boosting, no cross-vali-
dation (to speed up training time), no differential misclassi-

fication costs, 25% local pruning, global pruning, 2 final
minimum cases, no winnowing, no subset selection, and
no sampling to obtain more balanced and generalized clas-
sification trees. A classification tree that is produced repre-
sents a branching sequence of binary decisions that
successively subdivide the hyperspace of data points until
each terminal region contains only points whose labels
are (preponderantly) the same. Fig. 2 shows an example.

For neural network learning, we chose a model with a
single output node and one layer of hidden nodes in which
the number of nodes initially equalled the number of
inputs. Each input is connected to each of the hidden
nodes, and each hidden node feeds into the output node.
We employ back-propagation as the core learning algo-
rithm. Each hidden node is a sigmoid unit that takes in
individual inputs x1; . . . ; xn, calculates their weighted sum,
and generates an output using the transfer function

Ok ¼ 1 1þ e$
Pn

i¼1
wk;ixi$dk

! ".

for the k-th node. In the equation, wk;i is the weight for in-
put xi, and dk is the neuron offset. The output node, by con-
trast, is a threshold unit producing a binary result. We
employed the software EasyNN-plus because it could run
back-propagation as an embedded application in batch-
mode [1]. The learning rate was initially set at 1.0 and then
optimized over the training cycles. The momentum for the
weight-updating rule was first set at 0.8 and then optimized
over training cycles. These parameters, as well as the num-
ber of nodes in the hidden layer, were adjusted using se-
quential multi-fold leave one out validation. Thirty

Fig. 2. An example classification tree. This asymmetric tree encodes a succession of decision criteria, where each condition leads either to a classification
(0/stable or 1/alarm) or to a subsequent threshold test. For example, according to this tree, if the patient’s O2Sat exceeds 91, that is considered stable. If it
is below 87, that is considered an alarm condition. In-between, we need to examine the heart rate, which, if above 211, means alarm. Otherwise, we
continue to apply further threshold tests until we reach a classification. The numbers in parentheses show the total number of training instances that fell
into this region of the hyperspace and the number of these that were misclassified. These counts are not generally integers and the number of
misclassifications is not zero because of See5’s pruning methods, which try to avoid overfitting. This tree had the smallest training error among a
community of classifiers that were built on 14,400 training data points (from 4 monitoring hours) with 10 trials of boosting. Reproduced with permission
from [20]. Copyright ! 2007 IEEE.
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percent of the training data were used as test data for the
internal optimization of parameters. The training time
was capped at 120 s. The detailed rationale for the settings
for both learning methods is given in [19].

2.6. Implementation

All computations were performed on a Dell laptop com-
puter running Windows 2000 on a 2.2 GHz Pentium
4 CPU with 1 GB of RAM. The most demanding compu-
tational load arose during the times when new classification
models were being built. This occurred five times during
each session, and at each time both a classification tree
and a neural network model were constructed. At all times,
including while building new models, the computer was
acquiring data from the bedside monitor, storing these data
into its own database, running each previously trained
model on the current data, opening annotation windows
corresponding to newly detected events from the CMS
data, our algorithms, or the observer, and managing the
user interface, which could simultaneously display numer-
ous annotation windows if the staff were busy taking care
of the patient and had not yet had time to make their inter-
pretations of the events.

To support this highly heterogeneous workload, and to
permit interfacing to the communication programs, the
database, and the machine learning programs, our pro-
gram was multi-threaded and relied on the facilities of
the operating system to permit the simultaneous execution
of all these tasks. Some of the limits imposed on the learn-
ing algorithms resulted from the system’s inability to keep
up with all the necessary computations if the learning algo-
rithms were allowed to demand more computing power.
For example, during execution of the learning algorithms,
we did note instances where the CMS interface would miss
some incoming data points because the overall system did
not respond quickly enough to data appearing in the input
buffer.

3. Results

We were able to collect data during 23 sessions from 11
patients over a total of 196 monitoring hours, and to build
and test our learning algorithms in real time on these data.
We describe the incidence of alarm conditions for the mon-
itored patients and the computer time needed to train our
models, and we present the performance of our algorithms
in terms of sensitivity, specificity, positive predictive value,
and overall accuracy.

3.1. Adverse events

During the 196 monitoring hours, there were 325 clinical
alarms sounded by the bedside monitor and two false nega-
tives observed at the bedside by the trained observer. Of the
alarms, 290 were true positives that required clinical inter-
ventions, 20 were true positives that did not require clinical

intervention, and 15 were false positives. The 312 adverse
clinical events generally were both sparse and brief in time,
totaling 4.35% of the 196 monitoring hours. The number of
such events experienced by each patient in the study varied
significantly. Four patients had only one event in more
than 2 h, three patients experienced an average of three
events per hour, and one suffered six events per hour.
Although the typical percentage of time each patient spent
in an alarm condition was low, these also varied widely,
from essentially zero to a high of 42% of the time, for the
patient experiencing six alarms per hour.

3.2. Training time

Table 1 shows the amount of time that See 5 took to
train classification tree models using various numbers of
data points and several settings of parameters for one typi-
cal 12-h study session. Training times for other sessions
varied by as much as ±50%. We always used the 25% set-
ting for See5’s global pruning, to help avoid overfitting. A
10-fold cross-validation is useful for estimating the accu-
racy of the classification tree, but it also increased the train-
ing time approximately 3-fold for every doubling in the
number of data points. Boosting generally yields a higher
predictive accuracy for the classifier, but at the cost of a
nonlinear increase in training time.

Training neural networks in general took more time than
training classification trees. EasyNN-plus does not keep
track of training time; thus, precise estimates of training
times are not available for neural network learning. A rough
estimate based on repeated observations was in the range of a
few seconds to several minutes for 1800 to 28800 training
data points, corresponding to 30 min to 8 monitoring hours.
Training time could vary significantly with different training
specifications, such as learning rate, momentum, the number
of validation cycles, and the target error for each cycle.
EasyNN-plus was set to stop training at 120 s, despite a toll
on modeling accuracy, to prevent its computational
demands from disrupting the overall system.

3.3. Performance of learned models

We present performance data for our learned models
averaged over those 10 sessions that lasted at least 11 h,

Table 1
Training time for classification tree learning (seconds). Reproduced with
permission from [20]. Copyright ! 2007 IEEE

Data
points

Global
pruning 25%

10-fold cross-
validation, global
pruning 25%

10 Boosting trials,
10-fold cross-validation,
global pruning 25%

1800 <0.1 0.1 0.1
3600 0.1 0.2 2.5
7200 0.2 0.7 3.2
14,400 0.5 2.0 11.0
28,800 1.1 6.0 53.5
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which accounted for about 120 of the 196 total monitoring
hours. We chose this threshold so that there would be ade-
quate test data in each session after computing the final
models at the 8-h time.

Performance of the models learned purely from previous
data about the individual patient is shown in Tables 2, for
models using classification trees, and 3, for models using
neural networks. For comparison, we also show the perfor-
mance (in each table) of the CMS algorithm built into the
bedside monitor and of a simple threshold algorithm repre-
sentative of the previous generation of monitors. Both clas-
sification tree and neural network derived models have
extremely low sensitivities based on only the first half hour
of data, and gradually improve as more data become avail-
able. With 8 h of data, the two methods attain average sen-
sitivities of 0.84 and 0.96, respectively. Positive predictive
value (PPV) starts high for both methods based on very lit-
tle data, drops dramatically, and then recovers to exceed
the PPV of the threshold algorithm after training on 8 h
of data. Both specificity and overall accuracy start high,
drop slightly, and then increase to close to 1.0 with addi-
tional training data. Comparing the average performance
measures of the two learning methods shows that for each
length of training data the neural network learned models
seem better than the classification tree ones.

4. Discussion

Our goal in this work was to explore the hypothesis that
effective classification models for identifying when it is
appropriate to alarm during ICU monitoring could be
learned from the individual patient’s own history in the
ICU and from annotations by the clinical staff of those ear-

lier data. If this approach is valid, we would expect that
more sophisticated systems than the ones we have built
would combine the best current population-based monitor-
ing algorithms with patient-specific learned models such as
we explore here to produce better combined monitors. We
have not directly studied this broader expectation, but we
believe that our results make a good plausibility argument
for it.

4.1. Learning curve for patient-specific learning

At the onset of this research, we expected that patient-
specific learning would exhibit the characteristics of a
standard learning curve. Indeed, we see a number of such
characteristics in Fig. 3, which shows the data in Tables 2
and 3 as plots that demonstrate the changes in average
sensitivity, specificity, positive predictive value, and accu-
racy of the patient-specific models as a function of the
amount of training data. Although our models as trained
on 2 h or less of patient data generally perform much more
poorly than either CMS or a simple threshold model, our
models, especially those based on neural networks, exhibit
improvements in each of our performance measures that
demonstrate significant learning with additional data. In
fact, models trained on 4 and 8 h of data approach (or
sometimes surpass, in the case of the threshold algorithm)
the performance of systems that have been optimized over
large populations and many more data points.

We could not have expected the models based on only a
half-hour of data to do very well, because in many moni-
toring sessions there had been very few alarm events during
that brief time. Thus, these models have been unable to
learn alarm events, leading to their low sensitivity. To

Table 2
Performance comparison for classification tree learning

Metric CMS Threshold Tree built after n hours of data

1
2 1 2 4 8

Sensitivity 1.00 1.00 0.00 [.00,.18] 0.01 [.00,.30] 0.11 [.04,.36] 0.43 [.29,.63] 0.84 [.70,.93]
Specificity 0.99 0.88 1.00 [.97,1.0] 0.98 [.69,.99] 0.98 [.90,.98] 0.98 [.94,.98] 0.98 [.96,.99]
PPV 0.82 0.70 0.63 [.00,.72] 0.17 [.00,.20] 0.14 [.02,.23] 0.37 [.15,.57] 0.72 [.60,.80]
Accuracy 0.99 0.96 0.96 [.92,.96] 0.95 [.89,.96] 0.95 [.93,.98] 0.97 [.95,.99] 0.97 [.96,.98]

CMS is the bedside monitor’s alarm algorithm. Threshold stands for a standard threshold-based alarm algorithm. The rightmost five columns are results
for the classification models built after the five given times. PPV is positive predictive value. The measures shown are averages from 10 sessions of
monitoring, with the ranges of values shown in brackets.

Table 3
Performance comparison for neural network learning

Metric CMS Threshold ANN built after n hours of data

1
2 1 2 4 8

Sensitivity 1.00 1.00 0.05 [.00,.11] 0.23 [.00,.29] 0.60 [.39,.66] 0.80 [.61,.90] 0.96 [.81,.98]
Specificity 0.99 0.88 0.99 [.97,1.0] 0.97 [.84,.99] 0.98 [.94,.99] 0.99 [.95,.99] 0.99 [.96,.99]
PPV 0.82 0.70 0.70 [.00,.74] 0.16 [.00,.24] 0.37 [.02,.72] 0.71 [.49,.78] 0.79 [.63,.80]
Accuracy 0.99 0.96 0.96 [.92,.96] 0.95 [.90,.96] 0.96 [.90,.99] 0.97 [.92,.99] 0.99 [.95,1.0]

Labels are as described in the caption for Table 2.
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our surprise, however, these models’ specificity is high. One
explanation of their high specificity is that they properly
(although not very intelligently) call all stable points cor-
rectly. Even models built from 1, 2, and 4 h of data suffer
from this finding. We believe that this same phenomenon
probably also accounts for the sharp dip in positive predic-
tive value and the milder dip in accuracy of the models
trained on 1 and 2 h of data.

The monotonic increase with time in sensitivity of our
models, as shown by Fig. 3, suggests that after approxi-
mately 8 h, the algorithms have encountered most of the
alarm conditions that they need to recognize. Although
the average performances of the models from both classifi-
cation tree learning and neural network learning are not as
high as that of the current bedside monitors, the models
built from 8 h of training data are more specific, accurate,
and able to predict correctly than the threshold alarm algo-
rithm does, although their sensitivity remains lower. We
had not anticipated this result, though as in most machine
learning applications, additional training data tend to lead
to better performance. Indeed, we now expect that these
performance measures would continue to improve with
additional patient-specific training data. The principal lim-
its to such improvement come from the possibility that the

models would eventually over-fit the available data and
that patients’ physiological state would eventually change
so as to make predictions based on past data incorrect.

4.2. Implications for learning methods

In our experiments, models built using neural networks
do better on almost every measure than those built using
classification trees. Perhaps this should not be surprising
given the continuous nature of the input data and the
greater ability of neural networks to model nonlinear inter-
actions among the data. As illustrated by the classification
tree in Fig. 2, the minute averaged data play a critical role
toward the leaves of the tree, probably because they better
take into account the context within which each data point
is interpreted. Perhaps additional derived features, such as
local slopes, or the parameters of linear models fit locally to
the data might additionally improve classification, as has
been the case in earlier work by Tsien [17].

There are many possible improvements to our methods,
which may move us toward more accurate monitoring sys-
tems. We have already mentioned the need to combine the
best existing models for decision support with patient-spe-
cific learning methods. Especially early during a patient’s
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Fig. 3. Plots of averaged (a) sensitivity, (b) specificity, (c) positive predictive value, and (d) accuracy of models trained on increasing amounts of patient-
specific data, compared to the performance of the CMS algorithm and a simple threshold algorithm. The horizontal axes are logarithmic in time, and the
vertical axes for (b) and (d) are expanded to show differences in a narrow range of values. Vertical bars indicate the ranges of the individual values that
comprise the averages. The data come from Tables 2 and 3.
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ICU stay, the general models trained on population data
must bear the brunt of recognizing alarm events because
the patient-specific learning methods have not yet had a
chance to learn much. Later, we should put greater reliance
on the learning methods, though there will remain circum-
stances novel to any individual patient that should be bet-
ter recognized by a more broadly trained monitoring
algorithm. For any such combined model, it would be help-
ful for each component to issue not only a classification
label for each data point but also some indication of its cer-
tainty. For example, our neural network models could use
a sigmoid rather than a threshold output unit, so that their
results could be combined with other monitoring outputs
using some method that relies on continuous risk or prob-
ability scores from its inputs.

In retrospect, we believe that a better set of experiments
would have learned the shorter term models from the last
rather than the first n hours of data. That would have
reflected the most recent history of the patient and thus
been a more fair indication of their value. Nevertheless,
we suspect that the patient-specific models trained on
longer data series would still have performed better.

Our method learned five different sets of models during
monitoring session that lasted 8 h or more. Consecutive
sets of models were built using twice as much data as the
previous set did, and each time we learned new models,
we did so by running batch training algorithms over all
the previously collected data. Had we run truly incremental
(on-line) learning algorithms [6], we would not have had to
choose particular training durations because any model
would have kept completely up to date to interpret each
new data point. However, the feasibility of running incre-
mental learning algorithms for model development in clin-
ical settings such as the ICU still needs to be examined;
thus, as a first step in realizing patient-specific learning in
real time, this research has focused on the incremental nat-
ure of the learning tasks itself and used non-incremental
learning algorithms to carry out these tasks. We plan to
use truly incremental learning algorithms to develop
patient-specific models in the future. Because the first two
commandments for implementing clinical information sys-
tems are ‘‘speed is everything” and ‘‘doctors won’t wait for
the computer’s pearls” [15], we still face the challenging
question of how to optimize on-line training. Methods that
learn more sophisticated models or ones that explore a lar-
ger set of parameter settings for learning may be too slow
to run on-line. Some delays in using the most recent data
may even be desirable if it takes time for clinicians to give
their gold standard annotations or for the patient’s future
course to modify an annotation.

4.3. Imbalanced datasets

Because appropriate alarm events are relatively rare, the
vast preponderance of data points collected in a study such
as this one should be classified as stable. As a result, learn-
ing algorithms may be justified to learn to classify all data

points as ‘‘stable” and to consider the true positives simply
as ‘‘noise” that could be suppressed by the learners during
pruning.

One way to overcome this problem is to use an asym-
metric cost function, one that penalizes misclassification
of alarm points (false negatives) more heavily than misclas-
sification of stable points (false positives). This seems clini-
cally reasonable, because in a monitoring situation we may
be willing to accept more false alarms in order to avoid
missing true ones. We did some limited experiments with
asymmetric cost functions ranging from 10:1 to 1000:1
for penalizing false negatives, but the resulting models
seemed generally inferior to the ones reported above,
mainly due to significant decreases in specificity. We do
not know what the right cost ratio should be; a careful
cost-benefit analysis to determine this ratio has not been
performed, to our knowledge.

We also experimented using resampling methods to
overcome the problem introduced by the imbalanced data-
sets, but also without positive results. For example, sub-
sampling the ‘‘stable” points to equalize the number of
alarm and stable training points increased the number of
false positives called by our models without notable
improvement in other measures. Perhaps by discarding
many of the stable points, the models learn fewer of what
are considered clinically normal conditions in critical care.

We also tried replicating the data points labeled as
alarm, but the resulting training dataset became much big-
ger in size. While each model did not take much time to
classify each new data point, the training time increased
significantly with more training examples. Other, more
sophisticated resampling methods such as bagging [4]
might do a better job at addressing this problem.

4.4. Time

Perhaps the major impediment to further development
and deployment of the new methods introduced here lies
in the need for correctly annotated data from a very busy,
tense, and pressured environment. Clinical staff are unlikely
to have the time to annotate all clinical events listed in Sec-
tion 2.2 or the resources to hire trained observers to perform
that task, as done by the first author in our experiments.
Therefore, automated methods to annotate clinical events
are essential to patient-specific learning in real time. The
sources of data we have for developing such annotations
are the responses of clinicians to alarms and an ability to
judge the appropriateness of an alarm based on what hap-
pens in the (near) future course of the patient. These, per-
haps combined with data from additional instruments in
the ICU, may suffice to provide a basis for learning
improved patient-specific models. One capacity of human
observers that no automated methods could completely
emulate, however, is the timely identification of events
where an alarm should have been considered but was not.

Computer time was also an impediment in our experi-
ments, as we have mentioned. A single-processor laptop
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machine was barely able to keep up with our computa-
tional demands. Of course this type of problem is normally
overcome by technical advances according to Moore’s Law
[13]. For example, the computers being manufactured in
2008 typically have multiple processors, faster memory
buses, and both computers and monitors have more robust
and faster serial communication ports. Despite these
improvements, it appears that added sophistication in the
nature of the learning algorithms, the complexity of the mod-
els being learned, the amount of training data, and optimiza-
tion by investigating a space of tunable learning parameters
might demand enough additional computing time to over-
take even faster computers. For example, we artificially lim-
ited the slower neural network training program to 120 s of
training time; yet Table 1 suggests that training times may
increase nonlinearly, especially when boosting and cross-
validation are used, even for the faster classification tree lear-
ner. Furthermore, because variations in parameter settings
can lead to significantly different models being constructed,
the learning time becomes less predictable.

5. Conclusion

Our expanded system of real-time data collection and
algorithm development demonstrated that patient-specific
learning in real time is a feasible approach to developing
alarm algorithms for monitoring purposes in the ICU. Per-
formance measures of the trained classification trees and
neural networks were consistent with the course of a general-
ized learning process. The ones that were trained with 8 h of
monitored numerics data outperformed the standard thresh-
old alarm algorithm, which represented the alarm algo-
rithms in previous generations of patient monitoring
systems, and came close in performance to the alarm algo-
rithm in the new-generation monitors. These algorithms
are also useful for integrating multiple physiological signals
to detect adverse clinical events and to generate informative
alerts at the bedside. Our methodology could be used in con-
structing comprehensive models that, in tracking the state of
a patient, generalize over both disease processes and patient
populations.
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