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ABSTRACT

We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes.
Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models,
relations between 2 concepts are identified by simultaneously learning separate representations for text seg-
ments in a sentence: preceding, concept;, middle, concept,, and succeeding. We evaluate Seg-CNN on the i2b2/
VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average
F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem-treatment relations, 0.820 for
medical problem-test relations, and 0.702 for medical problem-medical problem relations. We demonstrate the
benefits of learning segment-level representations. We show that medical domain word embeddings help im-
prove relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing
unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying
medical relations, as they show state-of-the-art performance while requiring no manual feature engineering.
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INTRODUCTION AND RELATED WORK

the possible relations between medical problems and treatments, be-

It is now well established that automated extraction of knowledge from
biomedical literature or clinical notes involves accurately identifying not
only the conceptual entities, but also the varied relationships among
those concepts.'™ The task generally involves annotating unstructured
text with named entities and classifying the relations between these an-
notated entities. Relation identification has received increasing attention
over the past decade, and is critical in applications including clinical
decision-making, clinical trial screening, and pharmacovigilance.>™
Some of the advances in the state-of-the-art clinical natural lan-
guage processing (NLP) systems for classifying medical relations
were documented in the 2010 i2b2/VA challenge workshop, which
attracted international teams to address shared tasks on identifying

tween medical problems and tests, and between pairs of medical
problems.'? All participating systems in the 2010 i2b2/VA challenge
utilized heavy feature engineering for their machine learning mod-
els'3; many also harvested features from existing NLP pipelines such
as cTakes,'* MetaMap,'® and GeniaTagger.'® All systems combined
lexical, syntactic, and semantic features. Some teams complemented
their machine learning systems with annotated and/or unannotated
external data.'”~** Others supplemented their machine learning sys-
tems with rules that capture linguistic patterns of relations.”>2%2¢
One of the top-performing teams'” performed a follow-up study by
employing a composite kernel-based model that consists of concept
kernels, connection kernels, and tree kernels in order to map lexical,
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semantic, and syntactic features onto higher-dimensional space.””

They reported an improvement of 0.01 micro-averaged F-measure
(0.731-0.742) on their overall challenge scores.

Unfortunately, systems that use human-engineered features often
do not generalize well to new datasets.>*® Recent studies on applying
convolutional neural networks (CNNs) to clinical datasets aimed to
automatically learn feature representations to reduce the need for
engineered features and have achieved some success on specific tasks,
such as medical image analysis.>” Most recently, Sahu et al.*® applied
CNN to i2b2/VA relation classification and learned a single sentence-
level representation for each relation, making use of embedding, se-
mantic, and syntactic features; however, the top challenge participat-
ing systems still maintain state-of-the-art performance.'”'” Their
sentence-CNN learns a relation representation for the entire sentence
but does not explicitly distinguish the segments that form the relations
preceding, concept;, middle, concept,, and succeeding. This is incon-
sistent with the observation that the 5 segments of text have different
roles in determining the relation class.>*>> Thus the motivating ques-
tion for this study is whether we can design CNNs with only word-
embedding features and no manual feature engineering to effectively
classify the relations among medical concepts as stated in the clinical
narratives. Our system learns one representation for each segment,
uses only embedding features, attains an F-measure matching the
state-of-the-art system, and performs modestly better than the chal-
lenge participating systems.

METHODS AND MATERIALS

Dataset

This work utilized the corpus and target relations from the 2010 i2b2/
VA challenge,'® which include relations from the following 3 catego-
ries: medical problem—treatment (TrP) relations, medical problem—test
(TeP) relations, and medical problem-medical problem (PP) relations.
Each category contains a list of possible relations. For example, the PP
relation category includes problems that are related to each other (PIP)
and that have no relation (None). The supplementary material shows
detailed relation descriptions and statistics. For the i2b2/VA relation
classification task, the named entities are given, so there is no need to
run named entity recognition. The relation challenge data are publicly
available through i2b2/VA at https://www.i2b2.org/NLP/Relations/.

Word embeddings

The word embeddings are meaningful real-valued vectors where se-
mantically similar words usually have close embedding vectors. The
word embeddings learned by neural networks often capture linguistic
regularities and patterns that are useful in language modeling.>® Thus
using word-embedding vectors trained from an unsupervised neural
language model as features is a popular approach in NLP, especially
CNN-based methods.>***¢ We applied word2vec®® to learn word
embeddings from different corpora using the continuous bag-of-words
method. We experimented with both the general domain New York
Times corpus®” containing 1.9 million documents and the Medical In-
formation Mart for Intensive Care (MIMIC)-III clinical notes corpus’®
that contains 2 million clinical notes. Earlier studies aggregated (max-
or mean-aggregation) embedding vectors for feature generation,*®
which we adopted as baseline models, as shown in Figure 1.

Sentence-CNN for relation classification
Previously, CNNs have been applied to modeling and classifying
sentences and short text.>*3’ Relation classification needs finer
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Figure 1. A simple embedding aggregation model.
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Figure 2. The convolution units for (A) Sentence-CNN model and (B) Seg-
CNN model for relation classification. In the figure, w is the convolution
window size and nys is the number of hidden features, as well as the number
of different filters. In (A), position features are appended to the embedding
features.

detail, because one sentence may contain multiple distinct mentions
of relations, each with its own concept text and context. One way to
represent context is to record the relative positions of individual
words to the 2 medical concepts being related.***" This approach
was used by Sahu et al.>* on i2b2/VA relations, which we reimple-
mented as a comparison model. Our reimplementation augments
the embedding vector of each word by appending 2 integers that in-
dicate its position relative to concept; and concept,, denoted by py
and p,, respectively. For example, in the sentence “Her [neuroimag-
ing studies| revealed evidence of [lumbar stenosis],” “Her” is at —1
distance and “revealed” is at +1 distance away from “neuroimaging
studies” (concept;), hence their p; values are —1 and +1, respec-
tively. For all words in concept; (“neuroimaging” and “studies”), p1
values are set to 0. We pass a sequence of [embedding; position] vec-
tors to the convolution layer and then a max-pooling layer, termed
as a convolution unit in Figure 2 (A). We then input mapped fea-
tures to a softmax classifier in order to classify the relations.
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Figure 3. Segment convolutional neural network (Seg-CNN). Concept and context text are divided into 5 segments: before the first concept (preceding), of the first
concept (concept,), between the 2 concepts (middle), of the second concept (concept,), and after the second concept (succeeding). Each concept is processed by

the convolution unit as shown in Figure 2 (B).

Seg-CNN for relation classification
Sentence-CNN learns a relation representation for the entire sentence
but does not explicitly distinguish segments. This is inconsistent with
the observation that the 5 segments of text have different roles in deter-
mining the relation class.>! We therefore propose Seg-CNN, which
consists of multiple convolution units that process the preceding (toke-
nized words before the first concept), concept; (tokenized words in the
first concept), middle (tokenized words between the 2 concepts), con-
cept, (tokenized words in the second concept), or succeeding (toke-
nized words after the second concept) segment, respectively. Each
convolution unit uses a sliding window (eg, of size w1, w>, or ws3) to
process a segment and consists of a convolution layer, then a max-
pooling layer, to produce multiple hidden features (see Figure 2 [B]). In
the following description, let k& be the word-embedding dimension. A
segment with length T (number of words) is represented as a matrix
X € R¥*T_ concatenating its word embeddings as columns.

In a convolution unit, one hidden feature is produced by one fil-
ter as follows (henceforth we use feature and filter interchangeably).
Let W/ € R&® be the convolution weight of the jth filter
(1 <j < myg, where hf stands for hidden features) with a window
size of w. Let * denote the operation of element-wise matrix multi-
plication and sum(-) the summation operation across matrix entries.
Let b/ be the convolution bias and f(x) = max(0, x) the rectified lin-
ear unit activation function. Sliding the convolution window across
a length-T segment gives
W= f(sum(Xzﬁ,-:,urw,l * Wf) + b’)

i

(1)

where i € [1,T — w + 1], comma (,) separates different dimensions,
colon (:) denotes a span, and, in particular, a stand-alone colon indicates
an entire span of a dimension. Note the difference between convolution
in Figure 2 (B) and simple aggregation in Figure 1. The output of the
convolutional layer varies in length depending on the number of words
in the segment. We then apply a max-pooling operation to produce

y
19?(17%3(10“)( i)

(2)

d=

as the resulting hidden feature of this filter. The intuition of max-
pooling is to capture the most important feature, ie, the one with the

highest value, for each feature map, effectively filtering out less in-
formative compositions of words. Max-pooling also guarantees that
the extracted features are independent of their location and the seg-
ment length.

Figure 3 shows how convolution units are constructed and orga-
nized in Seg-CNN. For a specific convolution unit of a segment,
each filter can be considered as a linguistic feature detector that
learns to recognize a specific feature ¢/ over w-grams. With 7, such
filters, we have a hidden layer of feature vector dS, = [c!,...,c™]
for the segment s. With m different window sizes, we have a
5 - m - npe-dimensional vector g:

__ [Aprec Jjprec prec jci 1 c1 mid _ymid mid
§ = A e d A
o Jo 53 succ  jsucc suce
tdg  d2 ... d2 A e )

The vector g concatenates the hidden features for all segments of
a relation. We input g to a fully connected layer (with weight W and
bias b) to produce a size-n vector z = Wg + b, where 7 is the number
of relation classes. We then apply a softmax layer to compute the
probability for the Ith class P; as in

edl

N 2
ek
Zn:

Then the relation class is chosen as argmax;P;.

P = (4)

EXPERIMENTS AND RESULTS

The top systems from i2b2/VA challenge participants still represent
the state of the art for this dataset.'”'” In order to fairly compare
Seg-CNN with those systems, we used the same training and test
datasets. To optimize the hyperparameters for our models, we ran-
domly selected 10% of the training dataset as the validation set. We
trained word embeddings on the New York Times and MIMIC-III
corpora, respectively, with multiple embedding dimensions from
300 to 600. We chose [3-5] as convolution window sizes. When
inspecting relation categories, we found that the PP relation category
had a highly imbalanced class ratio (nearly 8 times more None labels
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Table 1. Performance of the CNN models with word embedding trained on the MIMIC-III corpus (when not explicitly noted) or on the general
domain New York Times corpus (NYT)

System Medical problem-treatment relations ~ Medical problem—test relations ~ Medical problem—medical problem relations
R P F R P F R P F
Seg-CNN 0.685 .687 0.686 0.804 .836 0.820 0.704 .700 0.702
Sentence-CNN 0.642 641 0.641 0.760 .812 0.785 0.679 693 0.686
Embedding max 0.636 .645 0.641 0.770 .816 0.791 0.741 554 0.634
Embedding mean 0.632 618 0.625 0.770 .825 0.796 0.786 533 0.635
Seg-CNN (NYT) 0.641 .690 0.665 0.790 .835 0.812 0.708 .681 0.694
Seg-CNN (NYT + MIMIC) 0.653 .706 0.678 0.788 .848 0.817 0.710 .689 0.700
Roberts et al.'? 0.686 672 0.679 0.833 .798 0.815 0.726 .664 0.694
deBruijn et al.'” 0.583 .750 0.656 0.789 .843 0.815 0.712 .691 0.701
Grouin et al.** 0.646 .647 0.647 0.801 792 0.797 0.645 670 0.657
Patrick et al.”* 0.599 671 0.633 0.774 .813 0.793 0.627 677 0.651
Jonnalagadda et al.*! 0.679 .581 0.626 0.828 765 0.795 0.730 .586 0.650
Divita et al.'® 0.582 .704 0.637 0.782 794 0.788 0.534 .710 0.610
Solt et al.?° 0.629 621 0.625 0.779 .801 0.790 0.711 469 0.565
Demner-Fushman et al.>®  0.612 .642 0.626 0.677 .835 0.748 0.533 .662 0.591
Anick et al.>? 0.619 .596 0.608 0.787 .744 0.765 0.502 631 0.559
Cohen et al.> 0.578 .606 0.591 0.781 .750 0.765 0.492 627 0.552

Performance of i2b2/VA challenge participating systems are also included for comparison (gray). The Seg-CNN best performance is attained with the hyperpara-
meter combinations (200 embedding dimension, 100 hidden features, pad size 7) for TrP relations, (500, 150, 4) for TeP relations, and (400, 100, 10) for PP relations.
The comparison model Sentence-CNN attains best performance with (400 embedding dimension, 200 hidden features) for TrP relations, (500, 200) for TeP relations,
and (300, 150) for PP relations. Seg-CNN using New York Times embedding has best-performance hyperparameters at (600, 200, 8) for TrP relations, (500, 200, 4) for
TeP relations, and (500, 200, 10) for PP relations. Seg-CNN using embedding trained from the New York Times and MIMIC-III corpora has best-performance hyper-

parameters at (600, 200, 6) for TrP relations, (300, 150, 4) for TeP relations, and (600, 150, 9) for PP relations. Best micro-averaged F-measures are in bold.

than PIP labels). Following de Bruijn et al.,"” we down-sampled the
training set to a PIP/None ratio of 1:4. In both sentence- and Seg-
CNN models, we experimented with multiple numbers of hidden
features (100, 150, and 200).

Some concepts are annotated on the head word (eg, single-word
annotations), others include preceding and succeeding modifiers (eg,
spanning >20 words). To overcome these annotation inconsistencies,
we allowed the concept text to be padded, backward and forward,
with neighboring words (experimenting with padding sizes from 3 to
10). Although padding introduces redundancy between concepts and
context, the downstream fully connected layer acts as a feature selector.
Optimal padding size, number of hidden features, and embedding
dimensions were chosen based on validation set performance. For regu-
larization on the CNN models, we used the 50% random dropout™!
on the output of the max-pooling layer. Dropout randomly drops the
values of a portion (50% in our experiment) of hidden units, thus pre-
venting co-adaptation of these hidden units and reducing overfitting,**

For evaluation, we computed the same micro-averaged precision,
recall, and F-measure as used in the challenge (see Table 1). Com-
paring the micro-averaged F-measure, Seg-CNN ranks first in all re-
lation classification tasks compared with the challenge participating
systems with heavily engineered features from the i2b2/VA chal-
lenge, even though Seg-CNN uses only word embeddings without
feature engineering. Moreover, Seg-CNN outperforms all compari-
son models, including max- and mean-aggregation of embedding
and sentence-CNN. This is consistent with our intuition on the ben-
efits of learning separate feature representations for different seg-
ments. As the follow-up study by Zhu et al.?” that attained the state
of the art only reported the overall evaluations — 0.755 (precision),
0.726 (recall), and 0.742 (F-measure) — we also report the overall
metrics from Seg-CNN as 0.748 (precision), 0.736 (recall), and
0.742 (F-measure). Seg-CNN matches the state-of-the-art F-measure

while using only word embedding and minimal feature engineering.
Note that the performance shows considerable difference over the 3
categories of relations (TrP, TeP, and PP), which is true for both our
CNN models and the challenge participating systems. This is likely
due to multiple issues, including the number of labels to classify
(6 labels for the TrP relation category and 3 labels for the TeP rela-
tion category) and the class imbalance (the highest imbalance for the
PP relation category). The observation that Seg-CNN consistently
performs modestly better than challenge participating systems across
the 3 categories suggests that Seg-CNN is not less robust to these
issues than the contrasting systems.

We implemented our models using the Theano package*® and
ran them on an NVidia Tesla GPU with cuDNN library enabled.
We have made our codes available on a public repository (https:/
github.com/yuanluo/seg_cnn). Table 2 shows the training time re-
quired by the Seg-CNN and Sentence-CNN using medical word
embeddings. The training times are within a reasonable 7-min win-
dow for all the model-task combinations.

DISCUSSION

In order to evaluate the impact of the corpus used to train word
embeddings, we report in Table 1 the performance of Seg-CNN using
a general domain embedding. Comparing these results to Seg-CNN
with medical word embeddings, we see about a 2% drop in micro-
averaged F-measure. This drop is consistent with the distinct charac-
teristics of clinical narratives, many of which are fragmented text
abundant with acronyms (eg, CABG for coronary artery bypass
grafting) and abbreviations (eg, s/p for status post). CNNs with gen-
eral domain embeddings likely miss critical information carried by
such words. For example, “The patient developed [medical problem]
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Table 2. Running time of the CNN models with word embedding trained on medical corpus

System Problem-treatment relations Problem-test relations Problem-problem relations
Seg-CNN 120s 217s 413s
Sentence-CNN 165s 156s 369s

The model hyperparameters for corresponding models are the optimal ones listed in Table 1. The time is measured by number of seconds.

s/p [treatment]” usually indicates a treatment-cause-problem rela-
tion. A larger embedding corpus typically leads to better embed-
ding®?; however, in this work, word embeddings from general plus
medical corpora did not outperform medical embeddings only. It is
our future work to explore whether the difference between the New
York Times corpus and the MIMIC-III corpus overshadows the ben-
efits of additional corpora, and whether other embedding methods
such as Skip-Gram®® could produce better embeddings.

The performance of Seg-CNN is better than that of Sentence-
CNN and embedding aggregations. Our Sentence-CNN is similar
to that of Sahu et al.,>® but does not use linguistic features such as
part of speech, phrase chunking, etc. In addition, Sahu et al.,*°
combined the i2b2/VA training and test datasets and performed
cross-validation, and thus had considerably more training data. Al-
though the performance of Sentence-CNN is lower than the perfor-
mance of state-of-the-art i2b2/VA challenge participant models,
Seg-CNN’s performance is slightly higher. This observation con-
firms the intuition on the benefits of learning individual representa-
tions for different segments. Seg-CNN’s improvement over the
state-of-the-art systems was modest, indicating room for further
improvement. There may still be merit in the linguistic features (as
shown in Sahu et al.?>°) and domain-specific knowledge. The im-
pact of domain-specific knowledge is also evident from the fact
that Seg-CNN with medical embeddings outperformed Seg-CNN
with general-domain embeddings. We plan to investigate whether
tighter integration of linguistic features and domain knowledge
into CNNs could result in further improvements for relation
classification.

CONCLUSION

In this work, we showed that Seg-CNN achieved state-of-the-art
performance on the i2b2/VA relation classification challenge data-
sets, without manual feature engineering. We also showed that
Seg-CNN outperforms a Sentence-CNN model and embedding ag-
gregation models, which is consistent with the intuition that learning
individual representation for each of the preceding, concept;, mid-
dle, concept,, and succeeding segment can provide useful informa-
tion in discerning relations between concepts. We evaluated the
impact of word embeddings on the performance of Seg-CNN and
showed that medical word embeddings can help improve relation
classification. These results are not only encouraging, but also sug-
gestive of future directions, such as effective use of embedding cor-
pora and tighter integration of domain knowledge into CNN
models.
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