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Abstract
Research on extracting biomedical relations has received growing attention recently, with numerous biological and clinical
applications including those in pharmacogenomics, clinical trial screening and adverse drug reaction detection. The ability
to accurately capture both semantic and syntactic structures in text expressing these relations becomes increasingly critical
to enable deep understanding of scientific papers and clinical narratives. Shared task challenges have been organized by
both bioinformatics and clinical informatics communities to assess and advance the state-of-the-art research. Significant
progress has been made in algorithm development and resource construction. In particular, graph-based approaches bridge
semantics and syntax, often achieving the best performance in shared tasks. However, a number of problems at the fron-
tiers of biomedical relation extraction continue to pose interesting challenges and present opportunities for great improve-
ment and fruitful research. In this article, we place biomedical relation extraction against the backdrop of its versatile
applications, present a gentle introduction to its general pipeline and shared resources, review the current state-of-the-art
in methodology advancement, discuss limitations and point out several promising future directions.
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Introduction
Relation extraction from text documents is an important task in
knowledge representation and inference to create or augment
structured knowledge bases and in turn support question an-
swering and decision making. The task generally involves anno-
tating unstructured text with named entities and identifying
the relations between these annotated entities. State-of-the-art
named entity recognizers can automatically annotate text with
high accuracy [1, 2], but relation extraction is not as straightfor-
ward. General domain relation extraction is an active research
area for decades [3]. In the biomedical and clinical domain,

extracting relations from scientific publications and clinical
narratives has been gaining traction over the past decade, and
is the focus of this review.

To illustrate the importance of biomedical relation extrac-
tion, consider that in lymphoma pathology reports, immuno-
phenotypic features are expressed as relations among medical
concepts. For example, in ‘[large atypical cells] are positive for
[CD30] and negative for [CD15]’, ‘large atypical cells’, ‘CD30’ and
‘CD15’ are medical concepts; ‘CD30’ and ‘CD15’ are cell surface
antigens. A bag-of-words or bag-of-concepts representation
would fail to capture whether ‘large atypical cells’ are positive
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or negative for ‘CD30’ or ‘CD15’. In this and many other similar
cases, the biomedical concepts need to be linked through syntax
and/or semantics to be informative and to resolve ambiguities
by putting the concepts into context.

In this article, we define a relation as a tuple r(c1,c2, . . . , cn),
n! 2, where ci’s are concepts (named entities) and the ci’s are se-
mantically and/or syntactically linked to form relation r, as ex-
pressed in text. Thus, a single named entity is generally not
regarded as a relation, neither is an assertion. In other words, a
relation involves at least two concepts. If n is two (three), we call
the relation a binary (ternary) relation, and for general n an n-
ary relation. Some researchers use the term relation to focus on
triples that represent binary relations [e.g. positive-

expression (large atypical cells, CD30), negative-

expression (large atypical cells, CD15)]. Others also
consider composite relations, e.g. and[positive-expression
(large atypical cells, CD30), negative-expression

(large atypical cells, CD15)].
We also use the term relation to include what are often

referred to as events, e.g. the ternary relation treated_by (pa-

tient, Imatinib regimen, 5 months) as expressed in ‘[the pa-
tient] was put on [Imatinib regimen] for [5 months]’ can also be
parsed as an event, where the event trigger is ‘put’, theme is
‘Imatinib regimen’ and target argument is ‘patient’. Nested
events may occur when one event takes other events as argu-
ments; Figure 1 shows another more complex example, which
can be interpreted as a nested event with solid and dashed
boxes indicating two argument events. In computational lin-
guistics, events are often defined as grammatical objects that
combine lexical elements, logical semantics, and syntax [4].
Figure 1 shows that the notions of binary relations, n-ary rela-
tions, events and nested events are closely related. As will be
evidenced in the section on state-of-the-art methods, the nat-
ural language processing (NLP) techniques for extracting rela-
tions and events are often similar in principle. Thus, we include
both relation and event extraction in our review, and we use
both ‘relation’ and ‘event’, with the choice made to be consist-
ent with the literature being referenced.

The representation of relations has been a subject of know-
ledge representation research for decades [5], with various alter-
natives. One representation uses composed simple logical
forms. For example, Resource Description Framework (RDF) or
Web Ontology Language encodes complex relations by multiple
triples, where the elements of these triples can themselves
be other composed forms. Thus, binary relations such as
positive-expression (large atypical cells, CD30) have
the following subject-predicate-object triple representation:
large atypical cells-positively express-CD30. A more
powerful alternative is the sentential logic (or propositional
logic) representation [5], in which relations are propositions or
composed propositions using logical connectives (e.g. ‘and’ for
conjunction, ‘or’ for disjunction). Compared with RDF triples,
propositional logic has additional constructs such as connect-
ives and inference rules, thus is more expressive. A third alter-
native is the graph-based representation in which nodes are
named entities and edges indicate relationships, or multiple
named entities connected by multiple edges can be regarded as
one relation, as shown in Figure 1.

This review focuses on NLP methods using graph-based rep-
resentations and algorithms to extract biomedical relations
from unstructured text. Regarding alternative representations,
the sentential logic representation can be noted with graph-
based representation [6]. Biomedical relations (including events)
can be universally represented as graphs by converting biomed-
ical concepts to nodes and syntactic/semantic links to edges.
Other propositional representations may require specific inter-
pretation of the graphs. For instance, representing the negation
of a proposition may require the introduction of nested graphs,
and to give special semantics to a relation labeled NOT.
Furthermore, although composition leads to complexity (e.g. n-
ary relations or nested relations), by adopting a graph-based
representation, we can focus on common syntactic and seman-
tic graphical patterns that provide good ways to capture rela-
tions. In fact, as will become clear later in this review, almost all
state-of-the-art methods for extracting relations are graph-
based. This article assumes that the reader has a basic know-
ledge of biomedical NLP; see [7–12] for introductions and sur-
veys on latest applications.

The reader should also be aware of a body of research on
curated structured knowledge bases, with manual annotations
of biomedical relations by experts. Some of these knowledge
bases are biologically focused, such as KEGG [13], STRING [14],
InterPro [15] and InterDom [16]. Others are more clinically
focused, such as PharmGKB [17], VARIMED [18] and ClinVar [19].
However, the expert sourcing methods often scale poorly with
the exponentially growing body of biomedical free text. Thus,
automated methods present a promising direction for discover-
ing relations to augment existing knowledge bases; this moti-
vated many methods discussed in this article.

Application of biomedical relation extraction
Extracting biomedical relations has numerous applications that
vary from advancing basic sciences to improving clinical prac-
tices, as shown in Figure 2. These applications include but are
not limited to biomolecular information extraction, clinical trial
screening, pharmacogenomics, diagnosis categorization, as well
as discovery of adverse drug reactions (ADRs) and drug–drug
interactions (DDIs).

bone marrow biopsy patient

lymphomamedication

effect prolonged neutropenia

performed_on

for

cause

produced_by

evaluate

Bone marrow biopsy was performed on the patient in order to evaluate

the effect of medication for lymphoma as the cause of prolonged neutropenia.

Figure 1. Relations from an example sentence, using graph representation,
where nodes are named entities and edges indicate the relations between two
nodes (or multiple named entities connected by multiple edges can be con-
sidered as one relation). Named entities considered are in bold in the sentence.
The dashed box denotes a binary relation, i.e. with two named entities. The solid
box denotes a relation with multiple named entities, which alternatively can be
viewed as a collection of three binary relations. These relations (in solid box and
dashed box) can also be regarded as events, and the entire graph can be inter-
preted as a nested event (where the solid box and the dashed box are nodes and
are connected by ‘evaluate’ as indicated by the heavy stroke edge). Because both
relations and graphs may have directed and undirected representations, we
show edges as undirected to be more general.
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Biomolecular information extraction

To keep up with the exponential growth of the literature, auto-
mated methods have been applied to mining protein–protein
interactions (PPIs) [20, 21], gene–phenotype associations [22, 23],
gene ontology [24] and pathway information [25], which we col-
lectively call biomolecular information extraction. Such relation
mining has shown its value in the prioritization of cancerous
genes for further validation from a large number of candidates
[26]. Many of these approaches apply NLP methods to extract
known disease–gene relations from the literature, which are
then used to predict novel disease–gene relations [27–31].

Clinical trial screening

Archived clinical and research data have been made available
by governmental agencies and corporations, such as
ClinicalTrials.gov [32]. Clinical trials are in large part character-
ized by eligibility criteria, some of which can be captured via re-
lations (e.g. no [diagnosis] for [rheumatoid arthritis] for at least
[6 months]). Electronic screening can improve efficiency in clin-
ical trial recruitment, and intelligent query over trials can sup-
port clinical knowledge curation [33]. Recently, NLP support has
proved useful in automatically detecting named entities in eligi-
bility criteria [34, 35], and further in extracting relations be-
tween named entities to characterize eligibility criteria [36–38].

Pharmacogenomics

Pharmacogenomics aims to understand how different patients
respond to drugs by studying relations between drug response
phenotypes and patient genetic variations. Much of this know-
ledge can be mined from scientific literature and curated in
databases to enable discovering new relationships. One such
database is the Pharmacogenetics Research Network and
Knowledge Base (PharmGKB [39]). Initial efforts to populate
PharmGKB included a mixture of expert annotation and rule-

based approaches. Recent approaches have extended to using
semantic and syntactic analysis as well as statistical machine
learning tools to mine targeted pharmacogenomics relations
from scientific literature and clinical records [40–42].

Diagnosis categorization

Diagnosis categorization enables automated billing and patient
cohort selection for secondary research. Developed systems can
automatically code and classify diagnoses from Electronic
Medical Records (EMRs) [43–47]. Recent work demonstrated the
success of extracting semantic relations and using these relations
as additional features in diagnosis categorization, some through
better grouping features using curated relations [48], others
through unsupervised learning to extract more expressive repre-
sentation of relations between medical concepts [49, 50].

ADR and DDI

ADR refers to unexpected injuries caused by taking a medica-
tion. DDI happens when a drug affects the activity of another
drug simultaneously administered. ADR is an important cause
of morbidity and mortality [51], and DDIs may cause reduced
drug efficacy or drug overdose. Detecting potential ADRs and
DDIs can guide the process of drug development. An increasing
number of methods have leveraged the scientific literature and
clinical records using NLP. These systems often explore the rela-
tions between drugs, genes and pathways, and discover ADRs
[52–54] and DDIs [55, 56] stated in text. A large amount of re-
search in recent years also explored user-generated content in
social networks to detect ADRs, see [57] for a recent review.

General pipeline for biomedical relation
extraction
In Figure 3, we first present a general pipeline, summarized
from the reviewed approaches, as a cookbook to follow either in
part or as a whole for extracting biomedical relations. The
reader can refer the components discussed in the state-of-the-
art methods to this cookbook to gain comprehensive under-
standing. For completeness, we assume documents as input
and extracted relations as output. The pipeline starts with sec-
tion recognition, which distinguishes text under different sec-
tion headings (e.g. ‘Chief Complaints’ or ‘Past Medical History’).
Sentence breaking then automatically decides where sentences
in a paragraph begin and end. Typographical analysis investi-
gates features such as capitalization and usage of alphanumeric
characters. Stemming reduces the inflected words to the root
form (e.g. performed to perform). POS tagging assigns a part-of-
speech tag for each word in the sentence (e.g. VBN for ‘per-
formed’ in the sentence in Figure 1). Parsing is the process of
assigning a syntactic structure to a sentence (e.g. the constitu-
ency or dependency structure obtained by Stanford Parser). The
results from typographical analysis, stemming, POS tagging and
parsing can provide features for recognizing anaphora (corefer-
ence resolution) and typed concepts (concept recognition).
Coreference resolution and concept resolution can also improve
parsing accuracy. Together with parsing, they are essential in
generating the graph representation for a sentence and labeling
semantic roles of concepts in the graph representation
(Semantic Role Labeling). The graph representation is the foun-
dation for graph mining, and along with upstream steps includ-
ing direct regular expression feature extraction, leads to the
generation of semantically and syntactically enriched features.

Figure 2. Applications of biomedical relation extraction. The bidirectional
arrows indicate that on the one hand, automated methods for relation extrac-
tion can help biological and clinical investigations; on the other hand, these ap-
plications can in turn provide shared resources (e.g. corpora and knowledge
base).
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These features then support either rule-based, feature-space-
based or kernel-based relation extraction system. Many bio-
medical relation extraction systems rely on external knowledge
sources [e.g. Unified Medical Language System (UMLS) [58]].

The pipeline can also be used as a foundation for down-
stream applications such as logical inference with extracted re-
lations. The pipeline covers steps for breaking the documents to
sentences, understanding the semantic and syntactic structures
of sentences and constructing a multitude of features for rela-
tion extraction. We refer the reader to the description of each
step in the caption of Figure 3. We emphasize the role of graph
mining in the pipeline as a central concept. The mined graphs
provide a converging point for methods that combine local fea-
tures (e.g. tokens and part-of-speech tags), a diverging point
where more integrated features (e.g. relations as features) are
constructed, and a bridge to connect the syntax and semantics.

Introduction to graph representations and
graph algorithms for biomedical relation
extraction
Graph representation for narrative sentences naturally breaks
down to the choice of information represented by nodes and

edges. Common node choices include tokens (e.g. biopsy),
named entities (e.g. bone marrow biopsy), semantically labeled
named entity (e.g. bone marrow biopsy-Diagnostic Procedure,
where Diagnostic Procedure is a UMLS semantic type) and rela-
tions themselves within nested relations. Those choices are in
the order of encoding increasingly enriched and complex se-
mantic information. Common edge choices include syntactic
dependency (e.g. dobj for direct object, in dependency parsing),
syntactic constituency link (e.g. NP-NN, in constituency pars-
ing), event argument (e.g. event theme) and association (e.g.
based on co-occurrence or customized statistics) as edge. These
choices integrate semantic and syntactic information into the
graph representation to different degrees. Graph mining algo-
rithms can be applied to extract relations directly or construct
useful features. Frequently used algorithms can be categorized
as follows: some identify shortest path (or its variant) between
concept pair, which can be performed using standard algo-
rithms such as Dijkstra’s algorithm [59]; some create association
graphs then try to apply customized labels to them; some use
subgraph matching to compare the similarity between sub-
graphs based on a score that aggregates node distances and
edge distances; some carry out frequent subgraph or subtree
pattern mining to directly extract candidate relations; some

Figure 3. General workflow of biomedical relation extraction. See Section General Pipeline for Biomedical Relation Extractionfor a description of each step. The shaded
cloud denotes that the external resources (terminology, ontology and knowledge bases) can be used by some or all of the above steps.
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directly parse graph representation of relations from sentences
by integrating the graph structure into the learning objective of
the parsers. When reviewing state-of-the-art methods in the
next section, we characterize each method along the axis of
graph-encoded information, graph algorithms and intended
usage, which is summarized in Table 1 for the reader’s
convenience.

State-of-the-art methods for biomedical
relation extraction
Methodology for biomedical relation extraction has received
increasing attention. Conventional approaches focus on using
co-occurrence statistics as a proxy for relatedness [41, 102–105].
Some clinical NLP systems apply hand-crafted syntactic and se-
mantic rules to extract prespecified semantic relations, such as
MedLEE [106] and SemRep [107], but are hard to adapt to new
subdomains. Recent research focuses more on syntactic pars-
ing, to develop generalizable methods to extract relations that
fully explore the constituency and dependency structures of
natural language. In this section, we review the state-of-the-art
approaches where graph (including tree) mining techniques are
used to derive relations from syntactic or semantic parses. We
categorize the methods according to whether their corpora
mainly concern scientific publications or clinical narratives, as
this content difference often has implications for the methods
and resources used to extract relations. On the other hand,
community challenges continuously help to promote the devel-
opment of state-of-the-art methods. Thus, in each category, we
organize research work around the challenge they participate or
as non-challenge-participating research. We summarize the al-
gorithms and systems in Table 1.

Relation extraction from the scientific literature

Over the past decade, continuous effort has been directed to ex-
tracting semantic relations from biomedical literature text,
often in the form of shared-task community challenges that
aim to assess and advance NLP techniques. Notable community
challenges include BioNLP shared tasks on event mining,
BioCreative shared tasks on PPI extraction and DDIExtraction
challenges on DDI extraction. We observed that an increasing
number of teams applied graph-based techniques to character-
ize the semantic relations in these shared tasks. These tech-
niques are frequently placed among the top-performing
echelon. This section reviews the graph-based methodologies
developed for these challenges. We consider only the papers ac-
cepted into the shared task proceedings as full publications,
and focus on the top-performing systems. We summarize the
f-measures of the best systems in each shared task as a repre-
sentative evaluation, and refer the reader to the challenge over-
views for detailed and comprehensive evaluations. Perhaps
through learning the lessons from these challenges, real-world
applications such as the field of pharmacogenomics also saw
significant momentum in development of graph-based text-
mining methods. We devote the last part of this section to re-
cent advances in pharmacogenomics and demonstrate the
transfer and adaptation of graph-based algorithms from meth-
odology-oriented research to application-oriented research in
biomedical relation extraction.

BioNLP event extraction shared tasks
Three BioNLP shared tasks (ST) have focused on recognizing
biological events (relations) from the literature. These tasks

provided the protein mentions as input and asked the partici-
pating teams to identify a predefined set of semantic relations.
Teams were not required to discover the protein mentions.
BioNLP-ST-2009 consisted of three tasks, including core event
detection, event argument recognition and negation/specula-
tion detection, all based on the GENIA corpus [108]. BioNLP-ST-
2011 expanded the tasks and resources to cover more text types,
event types and subject domains [109]. Besides the continued
GENIA task (GE), BioNLP-ST-2011 added the following tasks: epi-
genetics and post-translational modification (EPI), infectious
diseases (ID), bacteria biotope (BB) and bacteria interaction (BI).
BioNLP-ST-2013 further expanded the application domains with
tasks of GE, BB, cancer genetics (CG), pathway curation (PC) and
gene regulation ontology (GRO) [110]. Table 2 describes those
tasks in more detail.

The typical event extraction workflow can be broken into
two general steps: trigger detection and argument detection. For
example, in ‘[the patient] was put on [Imatinib regimen]’, the
first step detects the event trigger ‘put’, and the second step de-
tects the theme ‘Imatinib regimen’ and target argument ‘pa-
tient’. Björne et al. [64, 66] converted sentences to a dependency
graph (Stanford Dependency [111]) using the McClosky-
Charniak-Johnson parser [112, 113] and explored the graphs to
construct features for both steps. The McClosky-Charniak-
Johnson parser is based on the constituency parser of Charniak
and Johnson [112] and retrained with the biomedical domain
model of McClosky [113]. Björne et al. generated n-gram features
connecting event arguments based on the shortest path of syn-
tactic dependencies (also see [114] for their original use in ker-
nel method) between the arguments. They included as features
the types and super-types of trigger nodes from event-type gen-
eralization, to address feature sparsity. They also applied se-
mantic post-processing to prune graph edges that violate
semantic compatibility as required by the event definition to
hold between event arguments. Their system TEES performed
best in the 2009 GE (0.52 f-measure), 2011 EPI (0.5333 f-measure),
2013 CG (0.5541 f-measure), 2013 GRO (0.215 f-measure, being
the only participating system) and 2013 BB full-event extraction
(0.14 f-measure). Hakala et al. [67] built on top of the TEES sys-
tem and re-ranked its output by enriched graph-based features,
including paths connecting nested events and occurrence of
gene–protein pairs in general subgraphs mined from external
PubMed abstracts and the PubMed Central full-text corpus. The
system by Hakala et al. placed first in 2013 GE (0.5097 f-meas-
ure), whereas the TEES system placed second (0.5074 f-meas-
ure). The strong performance of both systems with heavy
utilization of graph-based features, especially the fact that
Hakala et al. extended Björne et al. using enriched graph-based
features and obtained better performance (first versus second
place), suggests the potential benefits of exploring graph-based
features.

Miwa et al. [80, 81] built the EventMine system that can
extract not only biomedical events but also their negations
and uncertainty statements. For event extraction, they used
the Enju parser [115] and the GENIA Dependency parser
(GDep) [116] to generate path features along with dictionary-
based features (e.g. UMLS Specialist lexicon [117] and
Wordnet [118]). Their entry in BioNLP-ST-2013 placed first in
the PC task. In particular, their path features include not only
paths between event arguments but also paths between event
argument and non-argument named entities. The latter paths
likely account for the strong performance by providing more
local context features.
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Table 1. Summarization and characterization of relation extraction systems

Methods Parsersa Graph algorithm and usageb Information CoRef External
resources

Liu et al. [60, 61],
Mackinlay et al. [62],
Ravikumar et al. [63]

McCCJ, SD Exact subgraph matching, ap-
proximate subgraph match-
ing to match dependency
graphs to event graphs

TN, DE No PDB, Uniprot,
Biothesaurus

Björne et al. [64, 66],
Hakala et al. [67]

McCCJ, SD Identifying shortest path to
generate features for event
arguments, rule-based graph
pruning to exclude invalid
event arguments

NEN, REN, EAE No Uniprot,
SubtiWiki,
Wordnet,
DrugBank

Kilicoglu et al. [68, 69] McCCJ, SD Transforming dependency
graphs to embedding graphs,
and rule-based traversal of
embedding graphs to map
them to events

NEN, REN, DE Yes Compiled
dictionaries

Hakenberg et al. [70, 71] BioLG Using customized query lan-
guage and post-processing
rules to match subgraph pat-
terns to events

TN, DE Yes Compiled dic-
tionaries,
Uniprot, GO

Riedel et al. [72, 73] McCCJ Scoring candidate graphs to
rank the event arguments

NEN, EAE No Compiled
dictionaries

Van Landeghem et al.
[74]

Stanford Identifying minimal event con-
taining subgraph patterns to
construct event extraction
rules

TN, DE No Compiled
dictionaries

Kaljurand et al. [75] Pro3Gres Enumerating dependency
paths between the concept
pairs to count frequencies of
paths in events and calculate
likelihood of event
arguments

NEN, DE Yes1 IntAct

Vlachos et al. [76] RASP Enumerating dependency
paths between the concept
pairs to manually identify
paths that are likely to gen-
erate events

TN, DE Yes No

McClosky et al. [77, 78] McCCJ, SD Using minimum spanning tree
algorithm to parse events
directly from sentences

NEN, EAE No No

Quirk et al. [79] McCCJ, SD; Enju Identifying shortest paths be-
tween the concept pairs to
generate dependency chain
as features

TN, DE No No

Miwa et al. [80, 81] Enju, GDep Enumerating dependency
paths between the concept
pairs to generate depend-
ency chain as features

TN, DE No UMLS, Wordnet

Coulet et al. [40, 82],
Percha et al. [42]

Stanford Enumerating dependency
paths between a named en-
tity and a verb, then merging
paths ending in the same
verb to form binary relations

TN, DE No PharmGKB

Hakenberg et al. [83] Stanford Enumerating subtrees rooted at
the lowest common ances-
tors of candidate concept
pairs to subsequently pick
the closest pairs

TN, CE No UMLS, SIDER,
DrugBank,
PharmGKB,
GNAT

Wang et al. [84] No Assigning KL divergence as dis-
tance of an edge in a associ-
ation graph, identifying an
entity with shortest
weighted distance path from

Nodes and edges
from a curated
association
graph, AE

No Chem2Bio2RDF

(continued)
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Table 1. Continued

Methods Parsersa Graph algorithm and usageb Information CoRef External
resources

target entity to form putative
relations and label the
graphs

Bui et al. [85] Stanford Using grammatical rules to tra-
verse the tree structures to
extract relations

TN, CE Yes HIVDB, RegaDB

Katrenko et al. [86] LGP, Minipar,
Charniak

Enumerating the lowest com-
mon ancestors of concept
pairs in the dependency tree
to be used as features

TN, DE No No

Sætre et al. [87] Enju, GDep Enumerating dependency
paths between the concept
pairs to generate depend-
ency chain as features

NEN, DE No UniProt, Entrez
Gene, GENA

Weng et al. [36] In-house parser Frequent subtree pattern min-
ing to construct relations
representing clinical re-
search eligibility criteria

SNEN, DE No UMLS

Thomas et al. [88] McCCJ, SD Using Graph kernels (e.g. APG,
kBSPS) to compare relation
instance similarity

TN, DE No No

Chowdhury et al [89–91] Stanford, McCCJ,
SD

Using tree kernel MEDT to com-
pare relation instance
similarity

TN, DE No No

Luo et al. [49, 50, 92] Stanford (aug-
mented by
UMLS)

Frequent subgraph mining
with redundancy removing
to extract complex relations
without supervision

SNEN, DE No UMLS

Roberts et al. [93] Stanford Identifying shortest paths be-
tween the concept pairs to
compute edit distances be-
tween relation instances

TN, DE No UMLS, Wordnet
Wikipedia

deBruijn et al. [94] McCCJ, SD Identifying minimal trees over
concept pairs to generate de-
pendence paths between
concept covering minimal
trees as features

TN, DE No UMLS

Xu et al. [95] Kay Customized parsing to produce
conceptual graph
representation

NEN, EAE No UMLS

Solt et al. [96] Stanford, McCCJ,
Enju

Using graph kernels (e.g. APG,
kBSPS) to compare relation
instance similarity

TN, DE No Compiled
dictionaries

Xu et al. [97] Stanford Extracting dependencies
(edges) directly as features to
classify relations; using CRF
to classify body location
relation

TN, DE (PE for
CRF)

No UMLS

Pathak et al. [98] No Using dictionary augmented
CRF to detect relation
keywords

TN, PE No Compiled dic-
tionaries,
UMLS

Abbreviation used in this table include: CoRef, coreference resolution; CRF, conditional random field; HMM, hidden Markov model; APG, all paths graph kernel [20];
kBSPS, k-band shortest path spectrum kernel [99]; MEDT, mildly extended dependency tree kernel [100]; PDB, Protein Data Bank [101]; UMLS, Unified Medical Language
System. The key for the parsers are: Stanford—Stanford Parser, McCCJ—McClosky-Charniak-Johnson Parser, Chart—Kay Chart Parser, Enju—Enju Parser, Bikel—Bikel
Parser, SD—Stanford Dependency. The key for the information represented by graphs are: TN—token as node, NEN—named entity as node, SNEN—semantically
labeled named entity as node, REN—relation/event as node, AE—association as edge, PE—position adjacency as edge (e.g. connecting adjacent tokens), DE—
dependency as edge, CE—constituency as edge, EAE—event argument as edge. When Stanford Parser is used with dependency as edge, Stanford Dependency is
assumed by default.
aParsers column is filled for only those systems that use dependency or constituency information from the parses.
bGraph Algorithm and Usage column is filled using the format [graph algorithm] to [usage].
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Another vein of work proposed joint event extraction in
which triggers and arguments for all events in the same sen-
tence are predicted simultaneously. McClosky et al. [77, 78] inte-
grated event extraction into the overall dependency parsing
objective. They applied the McClosky-Charniak-Johnson parser
and converted the parses to Stanford Dependency. They con-
verted the annotated event structures in the training data to
event dependency graphs that take event arguments (named
entities) as nodes and argument slot names as edge labels. They
mapped the event dependency graphs to Stanford Dependency
graphs and generated graph-based features to train an extended
MSTParser [119] for extracting event dependency graphs from
test data. Their graph-based features included paths between
nodes in the Stanford Dependency graph, as well as subgraphs
consisting of parents, children and siblings of the path nodes.
They then converted the top-n extracted event dependency
graphs back to event structures and re-ranked event structures
for the best one, using the same graph-based features from
event dependency graphs. Riedel et al. [120] first applied Markov
Logic Networks to learn event structures and later switched to
graph-based methods [72, 73]. They projected events to labeled
graphs, and scored candidate graphs using a function that cap-
tures constraints on event triggers and arguments. The scoring
function considers token features, dictionary features and de-
pendency path features. Riedel et al. further used a stacking
model to combine their system with the system by McClosky
et al. [77, 78]. The combined system obtained first place in 2011
GE task (0.56 f-measure) and 2011 ID task (0.556 f-measure).

Most of the remaining BioNLP systems that performed com-
petitively also used graph-based features to various extents. Liu
et al. [60] developed an Exact Subgraph Matching (ESM) method,
and later a more flexible Approximate Subgraph Matching
(ASM) method [61–63]. They processed sentences with the
McClosky-Charniak-Johnson parser and transformed the parses
to directed dependency graphs. They constructed the graph of
an event by computing unions of dependency paths between
event arguments. Liu et al. then applied ESM/ASM from sen-
tence graphs to event graphs, using a customized distance met-
ric that accounts for subgraph differences in graph structure,
node-covered stemmed words and edge directionality. They ex-
tended their method by integrating Protein Data Bank (PDB)
[101], Uniprot [121] and Biothesaurus [122] to recognize protein/
residue names and also adapted their method to other corpora
including BioInfer [123] and Uniprot corpus [124]. This work falls
along the lines of graph kernel-based methods. In general, ker-
nel methods weight similarity function explicitly, and features
are only used to evaluate similarity function on instance pairs.
Thus kernel methods usually cannot directly weight/rank

features. Kilicoglu et al. [68, 69] also adopted the McClosky-
Charniak-Johnson Parser/Stanford Dependency pipeline. They
converted the dependency graphs to embedding graphs, where
nodes themselves can be small dependency graphs, to apply
post-processing rules to traverse embedding graphs and extract
nested events. However, their embedding graphs also lead to ar-
gument error propagation and hurt precision.

Besides the popular McClosky-Charniak-Johnson Parser/
Stanford Dependency pipeline, some systems experimented
with different parsers and/or dependency representations.
Hakenberg et al. [70] applied BioLG [125], a Link Grammar Parser
[126] extension, to generate parse trees. They stored parse trees
in a database and designed a query language to match subgraph
patterns, which are manually generated from training data,
against parse trees. They pointed out that generalization of
event types could further improve their results. Van
Landeghem et al. [74] analyzed dependency graphs from the
Stanford Parser [127], identified minimal event-containing sub-
graph patterns from training data and constructed extraction
rules based on these patterns. Their post-processing rules
handled overlapping triggers of different event types and events
based on the same trigger, trading recall for precision.

The other systems generally used the dependency paths
connecting the concept pairs as features for event extraction.
For example, the dependencies were obtained through applica-
tions of different parsers including the Pro3Gres parser [128]
(Kaljurand et al. [75]), the RASP parser [129] (Vlachos et al. [76]) or
both McClosky-Charniak-Johnson parser and Enju parser (Quirk
et al. [79]). However, most of these methods attained inferior
performance compared with the best systems in the same
tasks. We believe that there are at least two reasons: the
McClosky-Charniak-Johnson parser with the self-trained bio-
medical parsing model is probably the most accurate parser in
this domain; the enriched graph-based features and event type
generalization as used by the best systems likely produced
more useful features for event extraction.

PPI extraction and BioCreative shared tasks
BioCreative shared tasks focused on automatic named entity
recognition on genes and proteins in biomedical text and on ex-
traction of the interactions between these entities [130–133].
Among the participants of the PPI task of BioCreative-II [132],
most systems used co-occurrence statistics, pattern templates
and shallow linguistic features (e.g. context words and part-of-
speech tags), with either statistical machine learning or rule-
based systems. Some systems observed the need for capturing
cross sentence mentions of interacting proteins. For example,
Huang et al. [134] developed a profile-based method that creates
a vector representation for candidate protein pairs by aggregat-
ing features from multiple sentences in the document.

Table 2. BioNLP event extraction tasks from the 2009, 2011 and 2013 shared tasks

Tasks Task descriptions Year

GE Extracting the biomolecular events related to NFjNFB proteins. 2009, 2011, 2013
EPI Extracting epigenetic and post-transcriptional modification events. 2011
ID Extracting events describing the biomolecular foundations of infectious diseases. 2011
BB Extracting the association between bacteria and their habitats. 2011, 2013
BI Extracting the bacterial molecular interactions and transcriptional regulations. 2011
CG Extracting cancer-related molecular- and cellular-level foundations, tissue- and organ-

level effects and organism-level outcomes.
2013

PC Extracting signaling and metabolic pathway-related biomolecular reactions. 2013
GRO Extracting regulatory events between genes. 2013

1 Relative clause anaphora
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The profile features included n-grams, manually constructed
templates and relative positions of protein mentions. In
BioCreative-II.5, based on the top teams in the PPI task, the or-
ganizers pointed out that the BioNLP techniques using deep
parsing and dependency tree/graph mining were necessary to
achieve significant results [133]. In particular, Hakenberg et al.
[71] used a system similar to their BioNLP-ST-2009 entry system
[70]. They manually generated subgraph patterns from training
data and matched them against parse trees. Their f-measure
was 0.30. Sætre et al. [87] applied the Enju parser and the GDep
parser and considered the dependency paths between concept
pairs as features for relation extraction. They achieved an
f-measure of 0.374. The PPI tasks of BioCreative-III consisted of
detecting PPI-related articles that provide evidence to specified
PPIs, but did not include the actual extraction of PPIs, which is
the focus of this review [131]. Several follow-up studies to
BioCreative-II.5 evaluated the usage of kernels in PPI extraction
[99, 135], based on corpora including AIMed [136], BioInfer [123],
HPRD50 [137], IEPA [138] and LLL [139]. They categorized kernels
into the following categories: (1) shallow linguistic (SL) kernels
[140]; (2) constituent parse tree-based kernels, including subtree
(ST) [141], subset tree (SST) [142] and partial tree (PT) [143] ker-
nels that use increasingly generalized forms of subtrees, as well
as a spectrum tree (SpT) [144] kernel that uses path structures
from constituent parse trees; (3) dependency parse tree-based
kernels, including edit distance and cosine similarity kernels
that are based on shortest paths [145], k-band shortest path
spectrum (kBSPS) [99] that additionally allows k-band extension
of shortest paths, all-path graph (APG) kernel [20] that differ-
ently weights shortest paths and extension paths in similarity
calculation, as well as Kim’s kernels [146] that combine lexical,
part-of-speech and syntactic information along with the short-
est path structures. The comparative studies and error analyses
showed that: (1) dependency tree-based kernels generally out-
perform constituent tree-based kernels; (2) kernel method per-
formances heavily depend on corpus-specific parameter
optimization; (3) APG, kBSPS and SL are top-performing kernels;
(4) ensembles based on dissimilar kernels can significantly im-
prove performance; (5) non-kernel-based methods (e.g. rule-
based method, BayesNet) can perform on par with or better
than all non-top kernel methods. From these observations, it is
evident that richer dependency graph/tree structures (e.g. in
APG, kBSPS) than shortest paths are important to better per-
formance of graph/tree-based kernels, which is consistent with
the analysis of BioNLP participating systems. The limited ad-
vantage of the kernel methods over non-kernel methods and
the interpretation difficulty associated with kernel methods
seem to favor investigating novel feature sets rather than novel
kernel functions.

DDI extraction and DDIExtraction shared tasks
The two DDIExtraction challenges (2011 and 2013) aimed at
automated extraction of DDI from biomedical text [55, 56]. The
organizers of the two challenges recognized the extended
delays in updating manually curated DDI databases. They
observed that the medical literature and technical reports are
the most effective sources for the detection of DDIs but contain
an overwhelming amount of data. Thus, DDIExtraction was
motivated by the pressing need for accurate automated text-
mining approaches. DDIExtraction-2011 focused on classifying
whether there is any interaction between candidate drug pairs.
DDIExtraction-2013 additionally pursued detailed classification
of DDIs into one of the four possible subtypes: advice (advice re-
garding the concomitant use of two drugs), effect (effect of DDI),

mechanism (pharmacodynamics or pharmacokinetic mechan-
ism of DDI) and int (general mention of interaction without fur-
ther detail). In DDIExtraction-2011, Thomas et al. [88] applied
the McClosky-Charniak-Johnson parser/Stanford dependency
pipeline. They used voting to combine the following kernels to
implicitly capture features for relation extraction: APG [20],
kBSPS [99] and SL [140] kernels. Their system achieved the best
f-measure of 0.657. Chowdhury et al. [89, 90] applied the
Stanford parser to obtain dependency trees and experimented
with both feature-based methods and kernel-based ensemble
methods for relation extraction. They experimented with SL
[140], mildly extended dependency tree [100] (expanding short-
est paths to also cover important verbs, modifiers or subjects)
and path-encoded tree [147] (based on constituency tree) ker-
nels. By combining feature-based and kernel-based methods,
Chowdhury et al. achieved the second best f-measure of 0.6398.
In DDIExtraction-2013, Chowdhury et al. [89, 90] used their previ-
ous kernel method but switched to the McClosky-Charniak-
Johnson parser and converted the parses to Stanford
Dependency [91]. They attained an f-measure of 0.80 for general
classification and 0.65 for detailed classification and placed
first. Thomas et al. [148] followed a two-step approach to first
detect general DDIs and then classify detected DDIs into sub-
types. For the general DDI task, they used voting to combine
kernels including APG [20], subtree (ST) [141], SST [142], SpT
[144] and SL [140] kernels. For the subtype classification step,
they used TEES directly [66]. Their system performed second
best with an f-measure of 0.76 for general classification and
0.609 in detailed classification. It is interesting to see that adop-
tion of systems originally developed for PPI extraction or event
extraction has led to top performances in DDIExtraction. This
further corroborates that these tasks are closely related, and
technical solutions for one are generalizable to others.

Pharmacogenomics
In pharmacogenomics, numerous efforts have centered on the
utilization of literature and clinical text to mine interesting rela-
tions between genetic mutations and drug response pheno-
types. Although it is difficult to compare their performances
because the experiments are not on shared corpora, these
approaches do illuminate the translational application and
adaptation of some state-of-the-art biomedical relation extrac-
tion techniques to problems directly asked by clinicians and
pharmacologists.

Some systems used path-based approaches. Coulet et al. [40,
82] aimed at extracting binary relations between genes, drugs
and phenotypes to build semantic networks for pharmacogen-
omics. They first converted the Stanford Parser output on sen-
tences (from collected PubMed abstracts) into dependency
graphs. They tracked the paths starting from named entities
and ending at a verb, and merged paths ending with the same
verb to form binary relations. Coulet et al. retained frequent re-
lations and normalized both the collected entities and relation
types (verbs). Without requiring prior enumeration of relation
types, they created a semantic network knowledge base from 17
million MEDLINE abstracts, providing semantically rich summa-
ries of pharmacogenomics relations. Percha et al. [42] extended
this approach to use breadth-first search to yield the shortest
path between two named entities in the dependency graph to
generate features for relation extraction. They combined the ex-
tracted gene–drug relations to infer DDIs for those drugs that
interact with the same gene product. Wang et al. [84] used
Latent Dirichl et al. location to create a semantic representation
of biomedical named entities and used Kullback-Leibler (KL)
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divergence to calculate the association distance between pairs
of entities in the Chem2Bio2RDF [149] semantic network. They
ranked candidate associations between named entity pairs by
summing distances along the path connecting the pairs. They
demonstrated uses cases on novel knowledge discovery includ-
ing searching and predicting novel gene–drug associations, tra-
versing the mined semantic network to compare the molecular
therapeutic and toxicological profiles of candidate drugs.

Other systems used tree-based approaches. Katrenko et al.
[86] studied gene–protein relation and protein–protein relation
extraction and included as features the subtrees rooted at the
lowest common ancestors of two named entities in the depend-
ency parse trees. Their experiment used several parsers includ-
ing the Link Grammar Parser [126], Minipar [150] and the
Charniak Parser [151]. Compared with individual parser’s results
separately, they reported improved performance from adopting
ensemble methods (stacking and AdaBoost) and combining
multiple parsers’ results [152]. Hakenberg et al. [83] aimed at ex-
tracting relations among genes, single-nucleotide polymorph-
ism variants, drugs, ADRs. They relied on co-occurrence for
extraction of certain relations (e.g. gene–drug, gene–disease and
drug–disease), but augmented co-occurrence with subtrees
from the Stanford Parser output for other types of relations.
They considered binary relations and used subtrees rooted at
the lowest common ancestors of named entity pairs. The mined
relations are cross-referenced with knowledge bases including
EntrezGene [153], PharmGKB [17] and PubChem [154]. Bui et al.
[85] aimed at extracting relations between drugs and virus mu-
tations from the literature to predict HIV drug resistance. They
used Stanford Parser to generate constituent parse trees for sen-
tences and developed grammatical rules that traverse the tree
structures to extract drug–gene relations. Their system is in re-
search use at five hospitals to preselect novel HIV drug resist-
ance candidates.

Both path-based and tree-based systems in pharmacogen-
omics tend to focus on precision over recall in their evaluation,
differing from the balanced f-measure used in multiple shared
tasks. This likely stems from their specific goals of harvesting
reliable relations to build and grow pharmacogenomics seman-
tic networks. Too much noise will likely cloud the initial seman-
tic network, while missing relations still have a chance to be
later discovered with growing literature. In fact, reported preci-
sions for pharmacogenomics relation extraction systems typic-
ally range from 70% to >80%. In addition, these systems often
check extracted relations against curated database such as
PharmGKB. We believe that these systems can further benefit
from adopting parsers trained with biomedical models and
using enriched graph-based features, two of the most recent
lessons learned in shared tasks.

Relation extraction from clinical narrative text

The medical informatics community has also extensively
studied relation extraction in the form of shared tasks and
separately motivated research. For example, significant ad-
vances in extracting semantic relations from narrative text in
EMRs have been documented in the i2b2/VA-2010 challenge
(i2b2—Informatics for Integrating Biology to the Bedside,
VA—Veterans Association) [1].

i2b2/VA challenge
The challenge had three tasks including concept extraction, as-
sertion classification and relation classification, participated by
numerous international teams [1]. Concept extraction can be

considered the basic task, as assertions and relations all refer to
the extracted concepts. As the challenge allows relation classifi-
cation to use the ground truth of concepts extraction, the per-
formance metrics for relation classification should be
interpreted as an upper bound for the end-to-end relation ex-
traction task (same as the challenges from BioNLP, BioCreative
and DDIExtraction). In this section, we review only the relation
classification systems, where the target relations are predefined
among medical problems, tests and treatments. These relations
include ‘treatment improves / worsens / causes / is administered for
/ is not administered because of medical problem’, ‘test reveals /
conducted to investigate medical problem’ and ‘medical problem
indicates medical problem’. As in reviewing the above chal-
lenges, we review only those systems that represented
sentences as graphs and explored such graphs during the fea-
ture-generation step.

Roberts et al. [93] classified the semantic relations using a ra-
ther comprehensive set of features: context features (e.g.
n-grams, GENIA part-of-speech tags surrounding medical con-
cepts), nested relation features (relations in the text span
between candidate pairs of concepts), single concept features
(e.g. covered words and concept types), Wikipedia features (e.g.
concepts matching Wikipedia titles), concept bi-grams features
and similarity features. The latter were computed using edit
distance on language constructs including GENIA phrase
chunks and Stanford Dependency shortest paths. Their system
reached the highest f-measure on relation classification (0.737).
deBruijn et al. [94] applied a maximum entropy classifier with
down sampling applied to balance the relation distribution.
They applied the McClosky-Charniak-Johnson parser/Stanford
Dependency pipeline, and included as features the dependency
paths between the minimal trees that cover the concept pairs.
They used word clusters as features to address the problem of
unseen words. Their system reached the second best f-measure
of 0.731. Solt et al. [96] then experimented with several parsers
including the Stanford Parser, the McClosky-Charniak-Johnson
Parser and the Enju Parser. They used the resulting dependency
graphs with two graph kernels including the all paths graph
(APG) kernel [20] and kBSPS [99], which produced only moderate
performance. This likely reflects the difficulty in tuning the
graph/tree kernel-based systems, consistent with the observa-
tions from the experience in relation/event extraction from the
scientific literature.

SemEval 2015 Task 14
The SemEval 2015 Task 14 included disorder identification and
disorder slot filling tasks [155]. Disorder identification is essen-
tially named entity detection, and disorder slot filling is similar
to BioNLP event extraction tasks but in clinical subdomain. The
challenge further divided the slot filling task into two subtasks,
one with gold-standard disorder spans (task 2a) and one with-
out (task 2b). Thus, task 2b has stricter evaluation results than
task 2a. The attribute slots defined by the challenge include
concept unique identifier (CUI), negation (NEG), subject (SUB),
uncertainty (UNC), course (COU), severity (SEV), conditional
(CND), generic (GEN) and body location (BL). Identifying the CUI
is the named entity-detection problem, and identifying neg-
ation and uncertainty is the assertion classification problem.
Identifying SUB, COU, SEV, CND, GEN and BL are more analo-
gous to binary relation extraction. They are not completely
equivalent to binary relation extraction, as the challenge limited
the possible values for those slots, adding a layer of abstraction.

The challenge used weighted accuracy to rank the partici-
pants. Xu et al. [97] and Pathak et al. [98] consistently ranked as
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the top two teams in both task 2a (0.886 and 0.880, respectively)
and task 2b (0.808 and 0.795, respectively). Xu et al. used
Conditional Random Field (CRF) as the classifier for BL slot fill-
ing and SVM as the classifier for the other slots. The SVM classi-
fier additionally used dependencies coming into and out of the
disorder mentions. Note that these dependencies cannot cap-
ture multi-hop syntax dependence, but the authors observed
that NEG/UNC/COU/SEV/GEN always have one-hop dependence.
On the other hand, CRF (for BL) is itself a graph-based model
that treats tokens and hidden states as nodes (integrating se-
mantic and syntactic features including n-grams, context
words, dictionaries and section names) and interconnects
nodes with transition and emission edges [156]. Pathak et al.
divided slot detection into two parts: detecting keywords and
relating keywords with disorder mentions. They used dictionary
look-up combined with CRF trained on features such as bag-of-
words and orthographic features to detect keywords. To relate
keyword with disorder mentions, they trained SVM using fea-
tures similar to Xu et al. plus Part-of-Speech tags. Other teams
used explicit graph-mining algorithms [157, 159] and but did not
perform as competitively. For example, Hakala et al. [157]
tackled task 2a by adapting TEES system to work with SemEval
data format and achieved a weighted accuracy of 0.857, placing
the third. This is not surprising, as given many slots only in-
volve one-hop dependencies, full-fledged graph-based ap-
proach only offers limited benefits. In addition, the controlled
vocabulary and controlled format nature of challenge tasks
makes themselves suitable for CRF, as limited number of states
and state-transitions lead to less sparse and more robust prob-
ability estimation.

Separately motivated clinical relation extraction
After the i2b2 challenges, several authors aimed at combining
the concept and relation extraction steps into an integral pipe-
line and/or generalizing to the extraction of complex or even
nested relations. Xu et al. [95] developed a rule-based system
MedEx to extract medications and specific relations between
medications and their associated strengths, routes and frequen-
cies. The MedEx system converts narrative sentences in clinical
notes into conceptual graph representations of medication rela-
tions. To do so, Xu et al. designed a semantic grammar directly
mappable to conceptual graphs and applied the Kay Chart
Parser [160] to parse sentences according to this grammar. They
also used a regular-expression-based chunker to capture
medications missed by the Kay Chart Parser. Weng et al. [36]
applied a customized syntactic parser on text specifying clinical
eligibility criteria. They mined maximal frequent subtree pat-
terns and manually aggregated and enriched them with the
UMLS to form a semantic representation for eligibility criteria,
which aims to enable semantically meaningful search queries
over ClinicalTrials.gov. Luo et al. [49] augmented the Stanford
Parser with UMLS-based concept recognition to accurately gen-
erate graph representations for sentences in pathology reports
where the graph nodes correspond to medical concepts.
Frequent subgraph mining was then used to collect important
semantic relations between medical concepts (e.g. which anti-
gens are expressed on neoplastic lymphoid cells), which serve
as the basis for classifying lymphoma subtypes. Extending the
subgraph-based feature generation into unsupervised learning,
Luo et al. [50] further used tensor factorization to group sub-
graphs. The intuition is that each subgraph corresponds to a
test result, and a subgraph group represents a panel of test re-
sults, as typically used in diagnostic guidelines. The tensors
incorporated three dimensions: patients, common subgraphs

and individual words in each report. The words helped better
group subgraphs to recover lymphoma subtype diagnostic
criteria.

Shared resources for relation extraction

The shared tasks and separately motivated research on bio-
medical relation extraction have not only advanced the state-
of-the-art in methodology, but also created and/or demon-
strated the utilization of a repository of shared resources that
range from knowledge bases to shared corpora to graph mining
toolkits. We categorize and summarize those resources in
Table 3, in the hope that it may serve as a starting point for
resource navigation for future research efforts. Some of those
resources concern general domain (e.g. general terminology/
ontology resources Wordnet [118], Verbnet [163]); some concern
the biomedical domain comprehensively (e.g. domain-specific
terminology/ontology resources Gene Ontology [161], UMLS
[58], Medical Subject Heading [162] and Biothesaurus [122]);
some target-specific biomedical subdomain (e.g. knowledge
bases such as PDB [101], Uniprot [121], SIDER [164], DrugBank
[165], HIVDB [166], RegaDB [167], Entrez Gene [153], GENA [18]
and IntAct [169]).

The road ahead
Although notable progress has taken place in applying graph-
based algorithms to improve the extraction of biomedical
relations, barriers still exist to developing practical relation ex-
traction methods that are both generalizable and sufficiently
accurate. Below we discuss a few such barriers and potential
directions to overcome them.

Not all parsers and dependency encodings are
synergistic

It has been pointed out repeatedly that the choice of the parser
and dependency encodings may play an important role in a re-
lation extraction system’s performance. Buyko et al. [177] per-
formed comparative analysis on the impact of graph encoding
based on different parsers (Charniak-Johnson [112], McClosky-
Charniak-Johnson, Bikel [175], GDep, MST [119], MALT [178]) and
dependency representations (Stanford Dependency and CoNLL
dependency) and found that the CoNLL dependency representa-
tion performs better in combination with four parsers than the
Stanford Dependency representation; and McClosky-Charniak-
Johnson parser frequently places as the best performing parser.
Miwa et al. [179] compared five syntactic parsers for BioNLP-ST-
2009. They concluded that although performances from using
individual parsers (GDep, C&C [176], McClosky-Charniak-
Johnson, Bikel, Enju) do not differ much, using an ensemble of
parsers and different dependency representations (Stanford
Dependency, CoNLL, Predicate Argument Structure) can im-
prove the event extraction results. As Stanford Dependency is
the most widely used dependency encoding, they also com-
pared the performance of using different Stanford Dependency
variants and found that basic dependency performs best if
keeping types of dependency edges. On the other hand, if ignor-
ing types of dependency edges, they found that the collapsed
dependency variant performs best, which corroborates the find-
ing by Luo et al. [49]. In [49], the task is extracting relations as
features to classify lymphoma subtypes instead of classifying
relations themselves as in supervised relation classification in
the BioNLP-ST event extraction tasks. Thus, recall is favored in
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the feature learning step, where ignoring types of dependencies
helps to improve the coverage of subgraph patterns. The les-
sons learned in [49, 177, 179] seem to corroborate individual re-
ports from top participants from challenges and are consistent
with the popularity of parser-dependency choice from non-
challenge applications in sections Pharmacogenomics and
Separately motivated clinical relation extraction. In particular,
we expect a good combination is to choose from either the
McClosky-Charniak-Johnson parser or Stanford parser aug-
mented with medical lexicon and choose from either CoNLL de-
pendency or collapsed Stanford dependency.

Integrating coreference resolution

Coreference occurs frequently in biomedical literature and clin-
ical narrative text, arising from the use of pronouns, anaphora
and varied entities for the same concepts. Care must be exer-
cised to transfer the correct relation along the coreference
chain. However, many of the reviewed approaches for relation
and event extraction did not have a built-in coreference reso-
lution component. Miwa et al. [180] specifically studied the im-
pact of using a coreference resolution system and showed
improved event extraction performance. In particular, they de-
veloped a rule-based coreference resolution system that
consists of detecting rules for mention, antecedent and co-
referential link. They used the coreference information to

modify syntactic parse results so that antecedent and mention
share dependencies. Features were also extended between
mentions and antecedents. Recognizing the importance of co-
reference features, several systems [181–184] subsequently im-
plemented coreference resolution across sentences. They
showed that to facilitate extracting specific types of relations,
heuristic/rule-based coreference resolution tends to outperform
domain-adapted statistical machine learning systems. Part of
their lessons concerns the lack of gold-standard coreference an-
notation in relation extraction corpora; thus, we expect that
paired relation and coreference annotations can improve co-
reference resolution and ultimately relation extraction.
Moreover, integrating coreference resolution into the learning
objective of relation extraction may lead to more coherent opti-
mization and better end-to-end performance.

General relation and event extraction and domain
adaptation

The state-of-the-art relation and event extraction systems from
shared tasks are mostly built around domain-specific defin-
itions of relations and events, many of which are in fact binary
(e.g. BioCreative PPI challenge [133], DDIExtraction challenge
[55, 56] and i2b2/VA challenge [1]). However, there is a gap be-
tween the technical advances and the demands from many
real-world tasks, including building pharmacogenomics

Table 3. Shared resources for biomedical relation extraction

Utility category Data sources

Terminology/Ontology/Knowledge Base GO [161], UMLS [58], MeSH [162], Wordnet [118], Verbnet [163],
Biothesaurus [122], PDB [101], Uniprot [121], SIDER [164], DrugBank
[165], HIVDB [166], RegaDB [167], Entrez Gene [153], GENA [168],
IntAct [169], Chem2Bio2RDF [149], PharmGKB [17], PubChem [154],
SubtiWiki (http://subtiwiki.uni-goettingen.de/)

Graph Miner Gaston [170], Mofa [171], GSpan [172], FFSM [173], Graph Spider [174]
Tree/Graph Kernel subtree (ST) kernel [141], subset tree (SST) kernel [142], partial tree (PT)

kernel [143], spectrum tree (SpT) kernel [144], mildly extended de-
pendency tree (MEDT) kernel [100], all-path graph (APG) kernel [20],
k-band shortest path spectrum (kBSPS) kernel [99], path-encoded
tree (PET) kernel [147]

Dependency Parsers Enju Parser [115], GDep Parser [116], Stanford Parser [127], McCCJ
Parser [112, 113], RASP Parser [129], Bikel Parser [175], BioLG Parser
[125], Pro3Gres Parser [128], Kay Chart Parser [160], C&C [176]

Shared Corpora BioNLP-09 event corpus [108], BioNLP-11 event corpus [109], BioNLP-13
event corpus [110], BioCreative-II relation corpus [130], BioCreative-
II.5 relation corpus [133], DDIExtraction relation corpora [55, 56],
i2b2/VA corpus [1], AIMed [136], BioInfer [124], HPRD50 [137], IEPA
[138], LLL [139], Uniprot corpus [124]

Existing Repositories BioNLP-ST-09: http://www.nactem.ac.uk/tsujii/GENIA/SharedTask/
BioNLP-ST-11: http://2011.bionlp-st.org/home/genia-event-extraction-

genia
BioNLP-ST-13: http://2013.bionlp-st.org/
BioCreative-II: http://biocreative.sourceforge.net/biocreative_2.html
BioCreative-II.5: http://www.biocreative.org/news/biocreative-ii5/
BioCreative-III: http://www.biocreative.org/events/biocreative-iii/
DDIExtraction-11: http://labda.inf.uc3m.es/DDIExtraction2011/
DDIExtraction-13: https://www.cs.york.ac.uk/semeval-2013/task9/
i2b2/VA-10: https://www.i2b2.org/NLP/Relations/
SemEval 2015 Task 14: http://alt.qcri.org/semeval2015/task14/
LDC: https://www.ldc.upenn.edu/language-resources

The resources are organized by their utility categories. Abbreviations used include: Gene Ontology (GO), Unified Medical Language System (UMLS), Medical Subject
Heading (MeSH), Human Protein Reference Database (HPRD), Linguistic Data Consortium (LDC). Existing repositories are those that themselves list biomedical NLP
resources.
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semantic networks [40], extracting clinical trial eligibility crite-
ria [36] and representing test results for automating diagnosis
categorization [49, 50]. In those tasks, general relation and event
discovery is necessary, where the number of nodes is flexible
and even the relation/event structure may not be entirely
prespecified. Systems exploring the automation of annotation
scheme learning [66] or unsupervised relation extraction [49, 50]
attempted to enable generalization but there is still large room
for improving accuracy. Another challenge brought by domain-
specific relation/event definition concerns the training data.
The problem of limited training data often plagues the develop-
ment of NLP systems, among which the relation extraction sys-
tems are no exceptions. To make better use of existing
annotated corpora, it is necessary to perform domain adapta-
tion from external training corpora (source) to the target cor-
pora. Merely adapting top systems to the new format and
training on the new corpora does not always lead to top per-
formers in the new domains, e.g. the adapted TEES system [157]
in SemEval 2015 Task 14. Miwa et al. [180] proposed adding
source instances followed by instance reweighting when source
and target match on events to be extracted. When source and
target corpora have a partial match on events, they proposed to
train each event extraction module separately on the source
corpora and used its output as additional features for the cor-
responding modules on the target corpora. Miwa et al. [185] fur-
ther improved methods of combining corpora by integrating
heuristics to filter spurious negative examples. The heuristics
aim to correct errors where instances with a ‘None’ annotation
in one corpus owing to a different focus are all treated as nega-
tive instances in the combined corpus. Applying this method on
learning from seven event-annotated corpora, they showed im-
proved performance on two tasks in BioNLP-ST-2011. The suc-
cesses from cascaded training [180] and example filtering
heuristics [185] illuminate some promising directions in corpora
adaptation. We expect parallel efforts in system generalization
and corpora adaptation can complement each other toward
effective domain adaptation.

Redundancy in subgraph patterns

Detection of useful subgraph patterns often depends on iden-
tifying ones with high frequency. A subgraph occurs once in a
corpus whenever it is part of a larger graph in that corpus.
Frequent subgraph mining identifies those subgraphs that
occur in a corpus more than a given threshold number of times
(see [186] for a survey on frequent subgraph mining and see
[170–174] for various software). Lessons learned in multiple
studies [49, 64, 65, 184] showed that redundancy among col-
lected subgraph patterns creates problems when using sub-
graphs as features. Many smaller subgraphs are subisomorphic
to (part of) other larger frequent subgraphs. Many of these larger
subgraphs have the same frequency as their subisomorphic
smaller subgraphs. This arises when a larger subgraph is fre-
quent, and therefore all its subgraphs automatically become fre-
quent as well. Furthermore, if the smaller subgraph gs is so
unique that it is not subisomorphic to any other larger subgraph
than gl, then this pair gs, gl shares identical frequency. Based on
such observations, Luo et al. [49] only kept the larger subgraphs
in such pairs. Note that it is cost prohibitive to perform a full
pairwise check because the subisomorphism comparison be-
tween each subgraph pair is NP-complete [170], and a pairwise
approach would ask for around a billion comparisons for a col-
lection of several tens of thousands of subgraphs. Luo et al.

presented an efficient algorithm using hierarchical hash parti-
tioning that reduces the number of subgraph pairs to compare
by several orders of magnitude. The key idea is that one only
needs to compare subgraphs whose sizes differ by one, and one
can further partition the subgraphs so that only those within
the same partition need to be compared. The frequent subgraph
redundancy is a systemic problem and is also closely related to
the problem of nested terms in automatic term extraction, and
a variety of de-duplicating scores (e.g. c-value [187]) proposed
for the latter problem could be adapted to address the former
problem. Other graph mining approaches may also be applic-
able, depending on the task. For example, algorithms may be
developed to collect subgraph patterns that explore the ‘nov-
elty’ of the subgraphs, such as using p-significance to assess
how unusual it is to see the subgraphs in the current corpus
[188].

Integrating with NER

Most shared task participants were not evaluated based on their
relation extraction from scratch. Rather, their systems were
evaluated given the gold standard of named entity annotations,
which is even true for challenges that include a NER task, such
as the i2b2/VA shared tasks. Thus, their evaluation results are
likely an upper bound of the end-to-end system performance,
the tuning of which is in fact a non-trivial task. Kabiljo et al.
[189] evaluated several methods for end-to-end relation extrac-
tion including a keyword-based method, a co-occurrence-based
method and a method using dependency-graph-based patterns.
They noted that in general a significant performance drop will
occur when using named entities tagged by NER system such as
BANNER [190] instead of using the gold standard. In addition, it
is useful but challenging to filter out un-related named entity
pairs, for which no relations have been explicitly stated in the
text [92]. Such filtering may adopt a hybrid approach that relies
on both automatically checking semantic type compatibility
and manually sifting through the remaining tuples. However, as
the number of non-related tuples often dominates that of
related tuples, better automated filtering is necessary and re-
mains an open question. Latest challenges such as SemEval
2015 Task 14 [155] added the end-to-end evaluation on joint de-
tection/inference of entities and relations for prespecified rela-
tions, and it is reasonable to expect such evaluation will
become more popular and will boost the development of end-
to-end systems.

Relation extraction currently concentrates a large amount of
efforts in biomedical information extraction. In the future, we
anticipate a migration toward more unsupervised relation ex-
traction that are increasingly adaptable across biomedical sub-
domains. The integration of relation extraction with named
entity detection will produce end-to-end systems that can fur-
ther automate the discovery and curation of novel biomedical
knowledge. With advances in deriving better graph representa-
tions with more accurate parsers and appropriate dependency
choices, in enhancing coreference resolution at document level,
and in more efficiently sifting through informative subgraph
patterns, the extraction of biomedical relations will continue to
improve owing to an increase in the quality of data, and sus-
tained community efforts. Given the rapid progress in the past
years, we expect more exciting and promising developments of
biomedical relation extraction, which continuously shape the
emerging landscape and provide opportunities for researchers
to contribute.
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Key Points

" The state-of-the-art approaches on extracting biomed-
ical relations from scientific literature and clinical nar-
ratives now heavily rely on graph-based algorithms to
bridge semantic and syntactic information.

" State-of-the-art methods for biomedical relation extrac-
tion present multiple innovations from perspectives
including strategies for parsing and dependency gener-
ation, graph exploration, as well as heuristics to address
feature sparsity. They also create and maintain shared
resources and tools for continuing research.

" Important applications of biomedical relation extrac-
tion include those in pharmacogenomics, clinical trial
screening and adverse drug reaction detection, both
advancing basic science and improving clinical practice.

" Challenges remain in biomedical relation extraction,
including synergy between parsers and dependency
encodings, integrating coreference resolution and
named entity recognition, redundant subgraph patterns
and domain adaptation. Insights from analyzing these
challenges shed light on future directions to battle
them.
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