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Electronic medical records are 
emerging as a major source of data for 
clinical and translational research 
studies, although phenotypes of 
interest need to be accurately defined 
first. This article provides an overview 
of how to develop a phenotype 
algorithm from electronic medical 
records, incorporating modern 
informatics and biostatistics methods.
The increasing use of electronic medical records (EMR), 
driven mainly by efforts to improve the quality of 
patient care, have also launched a discipline of research 
using EMR data. In the past decade, methods and tools 
specifically used to conduct EMR research have allowed 
for sophisticated analyses including pharmacovigi-
lance,1  genetic association,2  and pharmacogenetic 
studies.3  Phenotype algorithms using EMR data to clas-
sify patients with specific diseases and outcomes is a 
foundation of EMR research. Diagnoses or billing codes 
are typically used in these algorithms, and are exam-
ples of structured EMR data. These data are readily 
available and searchable (fig 1), but vary in accuracy. 
Recent work has focused on incorporating other infor-
mative EMR data to develop robust phenotype algo-
rithms.
Beyond billing and diagnoses codes, advanced EMRs 
contain a variety of structured data such as electronic 
prescriptions and laboratory values. A substantial por-
tion of clinical data is also embedded in unstructured 
data in the form of narrative text notes, either typed or 
dictated by physicians (fig 1). Extracting accurate infor-

mation from narrative notes is a well known challenge 
to clinical researchers and is typically obtained through 
laborious medical record review. Natural language pro-
cessing (NLP),4 a specialty of computer science and 
informatics, has greatly helped researchers extract clin-
ical data from narrative notes in a high throughput 
manner. While cutting edge NLP technologies have 
been successfully applied to internet search engines 
and automatic speech recognition, they are only now 
being adapted with new methods for biomedical 
research.

Overall methods for EMR phenotype algorithms,5  
including NLP algorithms, have been specified else-
where.6-8  However, the implementation of these algo-
rithms with a team of clinical domain experts, 
bioinformaticians or NLP experts, biostatisticians, EMR 
informaticians, and genomics researchers has only 
been analysed tangentially. The focus on this imple-
mentation process by a multidisciplinary team was an 
objective of the Informatics for Integrating Biology and 
the Bedside (i2b2) project, with the overarching goal to 
harness the output of the healthcare system for discov-
ery research. As part of the i2b2 project, we applied one 
general approach to develop several phenotype algo-
rithms: depression,9  diabetes mellitus (V Kumar, in 
preparation), inflammatory bowel disease (ulcerative 
colitis and Crohn’s disease),10  multiple sclerosis,11  and 
rheumatoid arthritis.12  This method was also success-
fully applied to EMR data at other institutions.13 In this 
article, we present a roadmap of the tools and methods 
used in our approach to develop EMR phenotype algo-
rithms. 

Toolbox: basic components needed to create EMR 
phenotype algorithms
 The research question
The first step in creating an EMR phenotype algorithm 
is defining the major research objectives and the ideal 
study design and population. For example, the initial 
objective of the rheumatoid arthritis study was to deter-
mine the genetic risk factors for the disorder. In genetic 
studies, a clean phenotype is needed to ensure ade-
quate power to detect risk alleles associated with the 
disease. Thus, we aimed to develop a classification 
algorithm for rheumatoid arthritis that would identify a 
sufficient number of patients with a high positive pre-
dictive value (PPV> 90%) for the disorder.

Research database of structured EMR data
EMRs were developed primarily for patient care; 
therefore, their data formats are typically not ideal for 

SUMMARY POINTS
Successful application of natural language processing (NLP) into a phenotype 
algorithm developed from electronic medical records (EMR) requires a 
multidisciplinary team—clinical investigator, biostatisticians, EMR informaticians, 
and NLP experts—working in close collaboration
In the Informatics for Integrating Biology and the Bedside study, NLP improved the 
sensitivity of all algorithms, classifying more patients with high accuracy than 
algorithms using only structured data
Despite other robust methods to develop EMR phenotype algorithms, the positive 
predictive value, along with the percentage of patients with the phenotype 
classified by the algorithm, are the best metrics for evaluating the performance of 
EMR phenotype algorithms, regardless of the method for development
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research studies. Loading and storing the data in a 
 relational database14 enables investigators to perform 
queries to obtain preliminary data. For example, an 
investigator can query the dataset for the number of 
patients who received an electronic rofecoxib pre-
scription and subsequently had a new code for myo-
cardial infarction from the ICD-9 (international 
classification of diseases, 9th revision) within five 
years. At Partners Healthcare (where the i2b2 project 
was based), structured data included ICD-9 codes, 
current procedural terminology codes, electronic pre-
scriptions, and laboratory tests, along with the dates 
of evaluation.

Natural language processing
NLP4  is a computational method for processing text to 
extract information using the rules of linguistics. When 
notes are processed, NLP breaks down sentences and 
phrases into words, and assigns each word a part of 

speech—for example, a noun or adjective. The NLP pro-
gram then applies the rules of linguistics to interpret 
the possible meaning of the sentence. In creating EMR 
phenotypes, we relied on the NLP task that identified 
so-called concepts in narrative clinical text. A concept 
is a meaning; for example, the terms “atrial fibrilla-
tion(s)” and “auricular fibrillation(s)” are different 
ways of expressing the same concept.15

Incorporating data extracted by NLP into a pheno-
type algorithm has several advantages. First, NLP pro-
vides data that are not available in the structured data 
or where the accuracy of the structured data is low. For 
example, before 2012, no specific ICD-9 code existed for 
basal cell carcinoma, a common skin condition.16 

Second, NLP can systematically link several terms to 
a concept. For example, smoking is an important risk 
factor for many chronic diseases, but most information 
on smoking status is in a patient’s narrative notes. 
Determining a patient’s smoking status can be chal-
lenging because it is described in multiple forms, such 
as “tobacco,” “pack-year,” or “cigarettes.”17 18 NLP dif-
fers from a “find” command because it can recognize 
that the terms “tobacco,” “pack-year,” and “cigarettes” 
are all related to the concept of smoking. This NLP task 
is made possible by databases that standardize health 
terminologies, define the terms, and relate terms to 
each other and to a concept. 

Such databases include the Systematized Nomencla-
ture of Medicine-Clinical Terms (SNOMED CT), which 
organizes health terminologies into categories (such as 
body structure or clinical finding), and RxNorm, which 
links drug names to other drug names in major phar-
macy and drug interaction databases (table 1). In 
RxNorm, simvastatin is linked to its brand name, Zocor, 
as well as drugs that form a combination pill with sim-
vastatin (such as sitagliptin/simvastatin (Juvisync), nia-
cin/simvastatin (Simcor), and ezetimibe/simvastatin 
(Vytorin).

Both SNOMED CT and RxNORM are part of the 
 Unified Medical Language System,19 20 a resource link-
ing standardized biomedical terms together into a con-
cept. Each concept is assigned a unique concept 
identifier. For example, “atrial fibrillation(s)” and 
“auricular fibrillation(s)” are both defined under one 
unique concept identifier, C0004238. Similarly, all 

Table 1 | Useful web resources for EMR phenotype development*
Resource Description URL
Dictionary of all concepts: maps concepts to unique concept identifiers
UMLS Unified Medical Language System www.nlm.nih.gov/research/umls
Biomedical terminology systems used by NLP: organizes concepts by categories such as drug class, signs and systems, and diagnoses
RxNorm Normalized names for clinical drugs www.nlm.nih.gov/research/umls/rxnorm
SNOMED CT Systemized Nomenclature of Medicine-Clinical Terms www.ihtsdo.org/snomed-ct
NLP open sources systems: parses notes to identify medical terms and maps terms to concepts
cTAKES Apache clinical Text Analysis and Knowledge Extraction System http://ctakes.apache.org
HITex Health Information Text Extraction https://www.i2b2.org/software/projects/hitex/hitex_manual.html
Multicenter EMR projects applying NLP to EMR phenotype algorithms in clinical and translational studies
eMERGE Electronic Medical Records and Genomics Network http://emerge.mc.vanderbilt.edu/
i2b2 Informatics for Integrating Biology and the Bedside project www.i2b2.org
*This table lists examples of resources used by the i2b2 team for EMR phenotype development or mentioned in this article; it is not a comprehensive list.
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Fig 1 | Overview of the two main types of EMR data, structured and unstructured, and how 
these data can be integrated for research studies. In this instance, the figure illustrates 
the development of a phenotype algorithm for rheumatoid arthritis. *Including ICD-9 
(international classification of diseases, 9th revision) codes and CPT (current procedural 
terminology) codes 
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forms of simvastatin are represented by the identifier 
C0074554. As a result, terms expressed differently in 
clinical notes can link to one concept and one unique 
concept identifier.

An investigator studying simvastatin can use NLP 
(linked to RxNorm and the Unified Medical Language 
System) to process EMR narrative notes to identify 
patients on any formulation of simvastatin across dif-
ferent notes, patients, and EMR systems. For example, 
the variable of simvastatin (unique concept identifier 
C0074554) would have a value of 1 if there was a men-
tion of simvastatin in the medical notes, or a value of 
zero if there was no mention. The equivalent task would 
require a manual search for each individual drug, 
generic name, and trade name using keywords terms. 
Although searches for individual terms are feasible for 
some concepts, if the study involved multiple diseases, 
drugs, and outcomes, the search terms needed could 
increase exponentially.

The i2b2 project used two open source, NLP software 
systems to extract concepts: the Health information 
Text Extraction system and the Apache clinical Text 
Analysis and Knowledge Extraction System21 (table 1).

Methods used to develop EMR phenotype algorithms
Creation of a sensitive data mart
The PPV, or accuracy, of an algorithm depends on the 
prevalence of the disease. The relationship between 
PPV and prevalence is shown in the following formula:

PPV = (sensitivity × prevalence)/[sensitivity 
  × prevalence + (1−specificity) × (1−prevalence)]

From large, population based epidemiological studies, 
the prevalence of four of the i2b2 study phenotypes, 
Crohn’s disease, multiple sclerosis, rheumatoid arthri-
tis, and ulcerative colitis, was 1% or less in the general 
population in the United States.22-24  Developing an algo-
rithm for these phenotypes using all patients in the 
EMR would substantially limit the PPV, owing to the 
phenotypes’ low expected prevalence in the EMR popu-
lation. Therefore, as a first development step for all 
algorithms, we applied a screen selecting for patients 
with any data suggestive for the phenotype and excluded 
those with no evidence of the phenotype (fig 2 ). Patients 
with any data suggesting that they had the phenotype 
were included in a highly sensitive data mart. Clinical 
domain experts—who were the team physician scientists 

in the i2b2 study—determined the components of the 
screen. For example, a multiple sclerosis screen would 
include any patient with an ICD-9 code for “multiple 
sclerosis,” “encephalitis, myelitis, and encephalomyeli-
tis,” and “other demyelinating disease of the central 
nervous system.”11

Algorithm variables
For each phenotype algorithm, the clinical domain 
experts created a comprehensive list of potential 
variables and terms (known as a customized dictio-
nary). For rheumatoid arthritis, this list included 
“rheumatoid arthritis,” “bone erosions,” “synovi-
tis,” “rheumatoid factor positivity,” and first line 
treatments such as methotrexate. The list was con-
verted to available structured data including ICD-9 
and current procedural terminology codes, elec-
tronic prescriptions, and laboratory tests. We also 
identified potential negative predictors, such as phe-
notypes with similar clinical presentations: for 
example, a negative predictor for ulcerative colitis 
was Crohn’s disease and vice versa.10 The clinical 
domain experts and NLP experts then mapped the 
list of terms to the concepts and unique concept 
identifiers using the Unified Medical Language Sys-
tem. In the i2b2 studies, we used NLP to process all 
clinical text notes including progress notes, dis-
charge summaries, radiology reports, and pathology 
reports. NLP transformed the narrative data into 
data that could be readily analyzed—such as the 
number of times “bone erosions” was mentioned in 
the radiology reports. The final dataset for analysis 
included structured data (patient study identifier, 
number of ICD-9 codes for rheumatoid arthritis, and 
number of electronic prescriptions for methotrex-
ate), alongside the narrative data (such as smoking 
status (yes v no) and number of mentions of “bone 
erosions”; fig 1).

The accuracy of each variable to define the pheno-
type was not as important as how the variables together 
in the algorithm could predict the phenotype. For all 
phenotypes, both the ICD-9 code and NLP concept for 
the phenotype were among the top five most predictive 
variables in the algorithm, despite low accuracy 
(PPV=20%12) for some ICD-9 codes. Thus, although we 
reviewed sentences labeled by NLP as containing a con-
cept to assess whether the correct concept was identi-
fied, we did not systematically validate each potential 
variable for the algorithm. For example, we reviewed 
100 sentences labeled by NLP as discussing cardiac 
catheterization to ensure that the sentence was not 
instead describing other forms of catheterization, such 
as urinary catheterization. After creating a comprehen-
sive list of candidate variables, we relied on these data 
to inform which variables were most predictive for the 
phenotype.

Training set
We created a training set by selecting patients from the 
data mart at random (fig 2). The size of the training set 
was determined by the number of candidate variables 
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Fig 2 | Overview of methods used to develop EMR phenotype algorithms
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and the prevalence of the phenotype. A phenotype with 
a substantial number of candidate variables and lower 
prevalence would need a large training set to achieve a 
robust classification algorithm. The clinical domain 
experts reviewed medical records of all patients in the 
training set and classified each patient as having the 
phenotype or not based on expert opinion and, when 
available, validated classification criteria from their 
respective clinical societies (for example, the American 
College of Rheumatology and the European League 
Against Rheumatism Classification Criteria for rheuma-
toid arthritis25).

Developing the classification algorithm
We identified the predictive variables for the algorithm 
and their weights using the adaptive LASSO penalized 
logistic regression26 method. The final classification 
algorithm (fig 2) was a logistic regression model, which 
assigned each patient a probability of having the phe-
notype based on their values for each variable. A hypo-
thetical classification algorithm for phenotype A (PA) 
would be as follows:

Logit (probability of PA) = intercept − 0.16(sex)  
 + 0.73 log(1 + (NLP PA)) + 0.88 log(1 + (ICD-9 PA))  
 + 0.63(NLP treatment) + ... 

In the algorithm above, the input from the phenotype 
A data mart included a patient’s sex (1=female, 
0=male), number of mentions of the NLP concept phe-
notype A (NLP PA) from the narrative notes, number 
of ICD-9 codes for phenotype A (ICD-9 PA), and 
whether a treatment for phenotype A was mentioned 
in any of the narrative notes (NLP treatment; 1=yes, 
0=no). The end result of applying the algorithm to the 
phenotype A data mart was a calculated probability 
for phenotype A ranging between 0 and 1.0 for each 
patient.

Patients were classified as having phenotype A or not 
if their probability was above or below a threshold 
level, respectively. Unlike a Boolean approach (such as 
≥1 ICD-9 code + treatment), this type of algorithm allows 

the investigator to adjust the threshold based on the 
 scientific question. For the genetic study in rheumatoid 
arthritis, we found that a specificity of 95% (probability 
threshold ≥0.53) provided more power to detect an asso-
ciation with potential risk alleles (odds ratio 1.2) than a 
specificity of 97% (probability threshold ≥0.71).27 The 
improved power of the algorithm using a lower specific-
ity threshold was driven largely by the classification of 
additional patients (from n=3585 to n=4575), with simi-
larly high accuracy. Investigators interested in a phar-
macovigilance study could consider setting a lower 
specificity threshold at 90% to capture additional 
patients.

Validation
We created a validation set comprising all patients 
classified with the phenotype, mixed with an addi-
tional 50% of random patients from the data mart. The 
clinical domain experts reviewed the records of all 
patients in the validation set using the same criteria to 
define the phenotype in the training set. Reviewers 
were blinded to the algorithm classification results. 
The performance of the algorithm was estimated using 
the validation set.

Other considerations
Use of NLP in phenotype classification algorithms
Incorporation of NLP improved the performance of all 
the algorithms studied in the i2b2 project. This improve-
ment can be illustrated by the validation results for the 
algorithms for Crohn’s disease, multiple sclerosis, rheu-
matoid arthritis, and ulcerative colitis. For each pheno-
type, we compared the performance of a structured and 
NLP data algorithm with algorithms using only struc-
tured data or only data derived using NLP (table 2). For 
Crohn’s disease, multiple sclerosis, and ulcerative coli-
tis, we achieved high accuracy (PPV≥94%) algorithms 
using structured data alone. NLP improved all algo-
rithms using structured data by increasing the sensitiv-
ity while either maintaining or improving the accuracy, 
because NLP added independent predictive variables to 
the algorithm. For Crohn’s disease, the top two predic-
tors for the phenotype were the number of ICD-9 codes 
followed by the number of NLP mentions. Therefore, Table 2 | Comparison of performance algorithms using different types of data to classify 

phenotypes*

Phenotype and performance 
characteristic

Performance algorithm
Structured 
data only

NLP data 
only

Structured 
and NLP data

Inflammatory bowel disease10

Crohn’s disease
 Sensitivity (%) 64 64 72
 PPV (%) 98 98 98
Ulcerative colitis
 Sensitivity (%) 60 68 73
 PPV (%) 97 97 97
Multiple sclerosis11
 Sensitivity (%) 68 68 78
 PPV (%) 94 94 95
Rheumatoid arthritis12
 Sensitivity (%) 51 56 63
 PPV (%) 88 89 94
*Specificity cut-off for all phenotypes was set at 97%.
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although the structured and NLP variables described 
the same concept, the information they provided was 
not the same and were independently predictive of 
Crohn’s disease.

In absolute numbers, the addition of NLP increased 
the size of the ulcerative colitis cohort from 4183 to 
5522 patients (fig 3 ) and improved the power for sub-
sequent association studies.28  29  The addition of NLP 
to structured data in rheumatoid arthritis substan-
tially improved the accuracy of the algorithm from 
88% to 94% and increased the number of patients 
classified with the disorder from 3046 to 3585. But 
why did the addition of NLP data not improve accu-
racy in the algorithms for Crohn’s disease, multiple 
sclerosis, and ulcerative colitis? The accuracy of the 
structured data might explain some of this difference. 
Among a ulcerative colitis training set of 600 patients 
with at least one ICD-9 code for the disorder, 378 
(PPV=64%) were confirmed to have the disorder.10  
Among a rheumatoid arthritis training set of 500 
patients, only 96 (PPV=19%) were confirmed to have 
the disorder,12 limiting the accuracy of an algorithm 
with structured data. In our experience, NLP had a 
greater impact on improving algorithms for pheno-
types with a low prevalence and low accuracy for the 
phenotype ICD-9 code.

The main limitation of using NLP in an EMR pheno-
type algorithm was the time and resources needed to 

identify and extract the variables for the algorithms. 
Such resources would be affected by the number of 
notes, number of variables in the customized dictio-
nary, and NLP systems used for processing. For proj-
ects with many potential algorithm variables, 
mapping the clinical terms to NLP concepts was rate 
limiting, even with the use of available tools that 
assist with mapping. Several groups are now develop-
ing tools to accelerate the tuning process, in which 
terms are mapped accurately to NLP concepts. This 
process requires first tuning these tools on larger texts 
of medical knowledge, or using an automated tuning 
process that adapts or learns from mapping correc-
tions made by the clinical domain experts.21  30-32 
Finally, we note that the general phenotyping method 
presented in this article were successfully applied to a 
range of defined diseases and conditions but has not 
been extensively tested on outcomes such as drug 
response or adverse events.

EMR platform for clinical and translational studies
A unique aspect of EMR based cohorts is the ability to 
link clinical data with a biorepository, integrating clini-
cal and genomic data in an EMR research platform for 
translational studies.33  With the appropriate infrastruc-
ture, EMR phenotype cohorts can be assembled in a 
relatively short period of time (12-18 months) compared 
with the years needed to recruit patients for prospective 
cohort studies, particularly for uncommon diseases. An 
EMR research platform containing linked data provides 
opportunities to conduct both hypothesis testing and 
generating studies. Hypothesis testing includes tradi-
tional, clinical, and genetic association studies. In a 
method unique to EMR research, the Phenome Wide 
Association Study allows for hypothesis generating 
studies and can be used as a screen to test for the asso-
ciation between genes or biomarkers and all pheno-
types in the EMR.34  Moreover, the ability to apply EMR 
phenotype algorithms across institutions allows for the 
use of one phenotype for collaborative multicenter 
studies highlighted by the Electronic Medical Records 
and Genomics network35  as well as projects from our 
group.13

We thank the i2b2 team members integral to the development of our 
EMR algorithms, including Andrew Cagan, programmer, Research 
Computing, Partners Healthcare; Su-Chun Cheng, senior research 
scientist, Harvard School of Public Health; Sergey Goryachev, software 
developer, Ariadne Labs; Vishesh Kumar, postdoctoral fellow, 
Massachusetts General Hospital; and Robert Plenge, vice president, 
Merck Laboratories (Boston, MA, USA).

Contributors: All authors participated in the conception and design of 
the article, worked on the drafting of the article and revised it critically 
for important intellectual content, and approved the final version to be 
published.

Funding: This study was funded by grants from the US National 
Institutes of Health (U54LM008748, AR 060257, K08 K23 DK097142), 
and the Harold and Duval Bowen Fund. 

Competing interests: All authors have completed the ICMJE uniform 
disclosure form at www.icmje.org/coi_disclosure.pdf (available on 
request from the corresponding author) and declare: support from US 
National Institutes of Health and the Harold and Duval Bowen Fund for 
the submitted work; KPL is supported by the National Institutes of 
Health and the Harold and Duval Bowen Fund; GKS is on the Advisory 
Board of Wired Informatics, which provides services and products for 

FAQs for clinical investigators

Can any institution with an EMR develop phenotype algorithms?
Any institution with an advanced EMR database—that includes data such as billing 
codes, electronic prescriptions, laboratory values, and narrative text notes—has the 
potential to develop phenotype algorithms. However, tapping into these data 
requires programmers with expertise in transforming the data into a useable format 
for research, such as a relational database structure. Such data reformatting requires 
an infrastructure that can support a research copy of the EMR, secure servers, 
terabytes of hardware space, and programmers who can manage and extract the data.

How would an investigator assemble a team to develop an EMR phenotype 
algorithm?
Despite many advances in the development of tools to mine EMR data commodity (for 
example, NLP software for clinical researchers), carrying out these studies presently 
requires a specialized team. The core team members include a biostatistician, clinical 
researcher, EMR informatician, and NLP expert. With the growth of the NLP field and 
its applications to biomedical research, most large academic medical centers have 
NLP experts on staff. An often missed but essential member of the team is the EMR 
informatician, who can understand the particularities of healthcare system data, such 
as differences in the way diagnostic results are reported by various clinics and where 
the data are stored.
In the i2b2 project, team meetings with all members present (especially at the start of 
the project) were the most effective way to work through multidisciplinary questions 
and discuss key concepts from our respective specialties. For example, a simple 
request can take a few steps, such as extracting data for white blood cell counts. 
Although the EMR informaticians at our institution know where to obtain the data, 
they would need to know from the clinical investigators which of the 46 types of 
laboratory data pertaining to white blood cell counts, grouped in two ways, were the 
correct fields to extract from the database. In another example, our NLP team 
presented a smoking module and used what they considered “precision” and “recall” 
to describe the performance of the algorithms. After some discussion, the clinical 
investigators and biostatisticians learned that NLP “precision” and “recall” is the 
same as PPV and sensitivity, respectively.

http://www.icmje.org/coi_disclosure.pdf%C2%A0%28available
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