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Abstract— Information in Electronic Medical Records
(EMRs) can be used to generate accurate predictions for the
occurrence of a variety of health states, which can contribute
to more pro-active interventions. The very nature of EMRs
does make the application of off-the-shelf machine learning
techniques difficult. In this paper, we study two approaches
to making predictions that have hardly been compared in the
past: (1) extracting high-level (temporal) features from EMRs
and building a predictive model, and (2) defining a patient
similarity metric and predicting based on the outcome observed
for similar patients. We analyze and compare both approaches
on the MIMIC-II ICU dataset to predict patient mortality and
find that the patient similarity approach does not scale well
and results in a less accurate model (AUC of 0.68) compared
to the modeling approach (0.84). We also show that mortality
can be predicted within a median of 72 hours.

I. INTRODUCTION

Making predictions on future health states can be of
great value in the medical domain because such predictions
can contribute to disease prevention, early detection, more
effective treatment, etc. One way of generating predictions
is by applying machine learning techniques to data stored
in Electronic Medical Records (EMRs). The EMRs usually
cover a variety of aspects of a patient’s health state and
the type of data typically varies from highly structured
(e.g., billing codes) to very unstructured (e.g., notes by the
physician). In addition, EMR data is of a highly temporal
nature and often contains ample missing values.

In order to cope with the characteristics of EMR data and
fully exploit the wealth of information contained in them, a
variety of approaches have been developed. Some approaches
have focused on extraction of features from EMRs to make
them better suited for the generation of predictive models
(see e.g. [4]). These features typically abstract over the
time dimension, combine multiple measurements, and handle
sparseness of the data. The features can then be exploited
in commonly used classification approaches such as logistic
regression. Such methods have also been used to estimate
how long in advance certain predictions can be made (cf.
[3]). Another category of approaches has focused on defining
patient similarity, driving more instance-based learning (e.g.,
k-nearest neighbor) approaches. Here, comparison of patient
measurements that cover differently sized time windows or
shifted data are examples of challenges for which solutions

have been developed.

While both approaches described above are appealing,
very little work has been done that compares the two. In this
paper, we aim to make such a comparison using the MIMIC-
IT dataset [8] to predict mortality among ICU patients by
using their EMR data between ICU intake and discharge. We
re-implement the approach developed in [4] for the predictive
modeling category and make it available as a benchmark.
This is similar to other work where windowing, aggregation
or modeling of structured numerical data creates a single
feature matrix that can be fed into a structured deterministic
classifier [1], [2], [5], [7]. We additionally study the approach
in combination with a Cox model and investigate how long in
advance predictions of mortality can be made. For the patient
similarity case we use dynamic time warping for numerical
data and we combine this with a tailored variant of a k-
nearest neighbor approach that we have developed ourselves.
We characterize the algorithms’ accuracy and speed.

This paper is organized as follows. First, we will provide
a description of the dataset in Section II. The methods
used to make predictions are presented in Section III. Next,
Section IV presents the experimental setup and the accom-
panying results. Finally, Section V concludes the paper.

II. DATASET DESCRIPTION & PREPARATION

The MIMIC-II V2.6 database [8] contains 26,647 patients
of which 8,7% died at the ICU. For each patient, it holds a
huge variety of measurements, obtained from ICU systems
and hospital archives. The ICU data covers bedside monitor-
ing (including vital signs, waveforms, trends, and alarms) as
well as chart data (covering fluids, medications and progress
notes). The hospital archives cover an even greater variety
of information, but we only use the demographics data and
thus limit the scope of our features to the acute ICU data
combined with some background information on the patient.

For the selection and preliminary pre-processing of the
data, we draw inspiration from [4]. Essentially, the following
types of measurements are distinguished:

1) continuous and ordinal measurements: a num-
ber of continuous and ordinal measurements are
present in the dataset, see [4], pp. 32-33 for a full
overview. Categories of measurements are cardiovascu-
lar, chemistries, hematology, arterial blood gases, and



ventilation measurements, covering 64 measurements
in total. For each of these measurements, an accept-
able range is specified. Values outside of this range
are not used. Furthermore, a so-called hold time is
expressed per measurement, indicating how long the
measurement is assumed to remain valid after it has
been observed.

2) categorical measurements and observations: a list
of categorical variables, typically covering a status
or diagnosis assigned by the medical staff (e.g. heart
rythm, risk for falls, Riker Sedation-Agitation Scale
(SAS)). Each of these is mapped to binary or ordinal
values, as in [4, pp. 34-35]. We use 15 such categorical
values, mapped to 28 binary variables and 7 ordinal
ones. Again, a hold time is indicated.

3) medications: a list of relevant intravenous medications
(51 in total) with the accompanying dosage [4, p. 36],
normalized to the weight of the patient.

4) input/output measurements: the input variables in
this category are related to blood only (red blood
cells, other blood inputs) as the other fluid inputs (e.g.
glucose) are considered under the chemistries of the
continuous and ordinal measurements listed before.
The output is related to urine production [4, pp. 37-38].

5) demographics: only sex, age, and the ethnicity are
considered.

In order to preprocess the dataset, we obtain all the time
stamped data related to the variables described above from
the database. We extrapolate data for measurements where no
value is recorded for a time point that is within the hold range
of a previous observation. The granularity of the dataset is
one set of measurements for every 15 minutes of ICU time.

III. METHODOLOGY

In this Section, we explain the configuration of the two
learning algorithms as well as the feature extraction in more
detail. First we explain the generic steps for both algorithms,
followed by the experimental setting.

A. Generic Steps

Figure 1 shows an overview of the pipeline for both
setups of the algorithms. Essentially, two generic steps are
performed. First, all missing time points between ICU intake
and discharge are inserted with unknown values. Thereafter,
missing data is imputed following the aforementioned hold
principle: for each measurement a so-called hold time is
indicated expressing how long a previous measurement is
considered valid. In case a missing value is encountered
that falls within the hold range of the last preceding known
measurement, that value is inserted.

B. Predictive Modeling

There are three main steps within the predictive modeling
component (Figure 1).
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Fig. 1. Overview learning approaches

1) Temporal Aggregation: In order to generate a high-
quality predictive model, some form of feature engineering
and selection is needed. Essentially, features can abstract
along two dimensions: the temporal dimension and the
measurement dimension. In this paper, we pursue temporal
abstraction (cf. [4]), varying by the type of data. For the con-
tinuous and ordinal measurements we derive the minimum,
maximum and mean values over the selected time period, as
well as the standard deviation. In addition, the slope of a
linear regression model fit to the observed values is derived
over fixed time windows (4 or 28 hours, or both, depending
on the type of measurement, see [4]). In the case of the
categorical measurements the average value over the total
time period is determined. Note that all these attributes have
been transformed to binary or ordinal already as indicated in
the previous Section. In the medications we take the average
dose of medications provided during the time period and the
same holds for input/output measurements where we take the
average input and output values. In addition, we consider a
number of specific derived variables that have been found
relevant in the literature (see [4, pp. 41-42] for an overview).

For aggregation of the data we can use different settings,
for instance by taking only the first day of data, the first
40 hours, etc. This allows us to study the impact of more
data becoming available upon the predictive performance. To
align the time lines of patients we start our aggregation at a
fixed time (11 pm) to make sure day and night rhythms of
patients are consistent. The approach taken is inspired by the
SDASH# approach (for Stationary Daily Acuity Score) in [4].

2) Feature selection and Predictive Modeling: After hav-
ing engineered the features, we perform a selection of the
most promising features. To determine what features we in-
clude in the model we use the Pearson correlation coefficient
between each feature and the outcome we seek to predict.
We perform this calculation on the whole dataset. We then
create a model based on the most correlated attributes. In
order to avoid having too much dependence in the variables,
we use an iterative process where features with the highest
correlation with the target (i.e. mortality) are selected if they
are not highly correlated (> 0.2 for the logistic regression
model and > 0.7 for the Cox model) to a feature already part
of the set. The number of features to include is determined
by means of a 5-fold cross-validation approach. Note that
this feature selection process differs from [4]. We decided
to use this different approach as we did not have access to



domain experts to select features.

C. Patient Similarity with K-Nearest Neighbor

The steps for patient similarity computation are below.

1) Normalization: We apply a simple normalization ap-
proach by just scaling the values to a [0, 1] range.

2) Feature selection: For feature selection, we use the
percentage of missing values as a selection criterion and
try different settings in a 5-fold cross-validation setting.
Experiments showed that a similar feature selection approach
as used in the predictive modeling approach performed
WOrSse.

3) Patient similarity: In order to define the patient simi-
larity, we use dynamic time warping for highly time varying
features. In this case we have selected the heart rate, respi-
ration, the nocturnal, systolic, and diastolic blood pressure,
and the oxygen saturation as such features. To ease the
computational demands we use the Keogh lower bounds
(cf. [6]) instead of computing the full mapping, and perform
this for a fixed window size of an hour (i.e. four time points).
For all other measurements we average the values observed
for the patients and compute the Euclidean distance. Of
course, not all measurements might have a value during the
investigated time frame, therefore we only compare values of
features that have at least one measurement for both patients
and average their distances. We add a penalty for each feature
that cannot be matched (i.e. where at least one of the patients
does not have a single measurement related to the feature).
The parameter C' determines the height of the penalty.

Assuming we have a set DTW of highly time varying
features and REG of other features where the vector T, ;
represents the recorded values of a variable ¢ for patient p
during the period under consideration, i.e. £p; 1, .., {psn iN
case of n time points. Then the distance between a patient
a and b is defined according to equation 1.

dist(a,b) =
\/ > dtw(Ta,i, Tp,3)%2+ > mdist(Ta,j, Ty, ;)% + penalty(a, b)
ieDTW JEREG
feat_matched(a,b)
(eY]
where

penalty(a,b) = C - (1 + |DTW| + |REG| — feat-matched(a, b)) (2)

dtw(Tl, T2) =

{keogh,bound(Tl,Tz) i (T3] > 0) A (T2 > 0)

0 otherwise

if (|T1] > 0) A (|T2]| > 0)
otherwise

mdist(T1, Tz) = {E)(Tn —(T3)) w
1 if (|Ta,i] > 0) A (|Tp.5] > 0)

feat_matched(a,b) = .
0 otherwise

i€DTWUREG {
5)

After obtaining the distances, we select the k closest
patients and assign the average class score (i.e. the sum of
all positive cases among the k nearest neighbors divided by
k) as the risk for that specific patient.

D. Experimental Setting

In order to evaluate our approach we test our approach on
the aforementioned MIMIC-II V2.6 dataset. We apply certain
criteria for selection of the patients in the dataset: at least one
BUN (Blood Urea Nitrogen) observation, one GCS (Glasgow
Coma Scale) observation, one hematocrit observation, one
heart rate observation, one IV medication recorded, and the
patients should receive adult care. In addition, we remove
patients who left the ICU within 24 hours. This is done to
guarantee that each patient has some relevant data, although
it reduces the dataset from 26,647 to 13,923 patients while
resulting in an almost identical class distribution.

IV. RESULTS

In this section we describe the results obtained using
the different approaches and compare them. In addition, we
perform an in-depth earliest mortality prediction analysis.

A. Predictive Modeling versus Patient Similarity

We run experiments to compare the predictive modeling
method with the patient similarity method. We randomly
sample varying numbers of patients (ranging between 150
and 2500) to study the influence of the number of patients
upon the accuracy of the predictions and the computation
time. We only consider the data of the first day at the ICU.
As a means of evaluation we use a stratified 5-fold cross-
validation approach and use the average Area Under the
Curve (AUC) over the 5 folds as a performance metric.

For the predictive modeling case we use the logistic
regression approach with 50 features (this number has been
determined based on experiments using a 5-fold cross-
validation setting). We use L2-regularization with a cost of
150 and a tolerance of 1le~6. These results were obtained
using a grid search by cross-validation over the training
set. The resulting AUC’s for varying numbers of patients
are shown in Figure 2. Note that the performance seems to
decrease slightly when moving to 2500 patients, this is most
likely due to the fixed set of features we use that has been
based on a smaller set of patients.

For the nearest neighbors approach, a value of £k = 1
was selected and 132 features were selected as this showed
superior performance in a 5-fold cross-validation setting
(0.68 compared to 0.65 for k£ = 2 and 0.54 for £ = 10) in an
initial experiment where we experimented with 150 to 1000
patients. The fact that such a small k£ is best is surprising
but might be caused by the unbalance in the dataset or the
huge number of missing values. We set C' = 1 and select the
features with values present in more than 85% of the cases.
Figure 2 shows the result obtained with different numbers
of patients. From this Figure we can clearly see that the
accuracy of the model decreases as we increase the number
of patients. Reasons for this unexpected behavior could be
the fact that many features will not have a match due to
missing data, and that the distance function is not robust in
approximating the true distance given the number of features
we use and the missing data. The best performance is much
lower than that of the predictive modeling approach (0.68
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versus 0.84). The difference is significant (using a paired t-
test, p=0.00275). We do see that dynamic time warping helps:
it increases the best AUC from 0.66 to 0.68 (150 patients).
This difference is also significant (paired t-test, p < 0.05).

When comparing the runtimes of the algorithms the KNN
approach obviously scales a lot worse compared to the
logistic regression approach. For 2500 patients KNN takes
9,980 minutes to run while logistic regression is finished in
just under one minute.

B. Earliest Prediction Time Analysis

Furthermore, we want to explore how early in the process
we can detect impending patient mortality. We select the Cox
model due to its ability to handle the time dimension, which
is required for this exploration. We train the Cox model on
the complete history of a thousand patients. Furthermore, we
select 100 features with a regularization parameter of 0.01
and a tolerance of 1e-07 similar to the approach applied for
logistics regression. We apply the model to a set-aside test
set (of 967 patients) and select the point on the AUC curve
where the curve starts to flatten and set the threshold of
the model accordingly. We then apply the model to the test
set and select the true positives. For this group of patients
we explore how long before the actual moment of death
the model starts to forecast that the patient will die. To
accomplish this, we iteratively remove time frames of 4 hours
starting from the moment of death and work backwards. This
is in line with [3]. We obtain an AUC on the set aside test
set of 0.78 from the Cox model, substantially lower than the
performance of the logistic regression model. We select a
point with a true positive rate of 0.87 and a false negative
rate of 0.44 (where the curve flattens). When we explore
the true positives (67 in total), the mean time to death when
we actually predict death is 153 hours. This is promising,
but heavily influenced by outliers. The median is 72 hours.
Figure 3 shows results on a per patient basis when the model
is able to predict mortality correctly. Note that we only
consider patients that were predicted correct using their full

history. We did not observe inconsistent predictions in this
set (i.e. the model alternating between different predictions),
only single changes in the prediction were observed.

Prediction performance Cox-model
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Fig. 3. Earliest prediction times

V. DISCUSSION

While ample research has been reported on using EMRs
for predictive modeling of certain health states, very few have
focused on comparing approaches that are based on similarity
with those that construct a model. This paper makes such a
comparison for mortality prediction. The results, at least for
our data, showed that performance of a modeling approach
is superior to that of a patient similarity approach, both in
terms of predictive performance as well as scalability. When
studying the predictive models that result from the most
accurate approach in more detail, we see that we can predict
mortality relatively early on in the process for those we are
able to identify correctly. For future work, we aim to study
how generalizable these results are.
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