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Abstract 

Real-time scalable predictive algorithms that can 
mine big health data as the care is happening can 
become the new “medical tests” in critical care. This 
work describes a new unsupervised learning 
approach, radial domain folding, to scale and 
summarize the enormous amount of data collected 
and to visualize the degradations or improvements in 
multiple organ systems in real time. Our proposed 
system is based on learning multi-layer lower 
dimensional abstractions from routinely generated 
patient data in modern Intensive Care Units (ICUs), 
and is dramatically different from most of the current 
work being done in ICU data mining that rely on 
building supervised predictive models using 
commonly measured clinical observations. We 
demonstrate that our system discovers abstract 
patient states that summarize a patient's physiology. 
Further, we show that a logistic regression model 
trained exclusively on our learned layer outperforms 
a customized SAPS II score on the mortality 
prediction task.  

Introduction 

Early recognition of clinical deterioration is an 
important problem because seventy percent of 
adverse events, which occur in about 16% [2] of 
hospital admissions, are preventable. The signs of 
clinical instability often precede an actual cardiac 
arrest or an unexpected critical event by a mean of 
6.5 hours [4]. Buist et al. [4] estimates that early 
recognition of decline in a patient’s baseline 
condition leads to a 50% reduction in the occurrence 
of cardiac arrest in general hospital wards, resulting 
in a decrease in overall hospital mortality. Though 
predictive scoring systems are gaining popularity in 
critical care, currently they are used in a very limited 
way, typically only to support staffing and census 
predictions even though data mining has been applied 
to ICU medical data for over two decades [6,15,16, 
22]. Some examples of ICU predictive scoring 
systems include: the SAPS II [14] and APACHE [12] 
scores as mortality predictors, and the sequential 
organ failure assessment (SOFA) [1] and multi organ 
dysfunction score (MODS) [1] for organ failure 
prediction.  

Most research in ICU data mining can be best 
classified as smart computation approaches with 
sparse sensing assumptions. For example, most 
research initiatives rely on building supervised 
machine learning models under an assumption of a 
resource-limited ICU environment and aim to select 
the fewest and best commonly measured clinical 
predictors for a particular outcome [1,12,14,16]. 
Work in multivariate unsupervised learning has 
predominantly used commonly measured signals 
such as the heart rate or the oxygenation level to 
generate clusters of similar patient states [19]. 
Scaling to consider many more clinical variables is 
not only computationally challenging, but it also 
becomes hard to define an appropriate number of 
informative physiological clusters without the advice 
of practicing physicians [7]. Not surprisingly, there 
has been a dearth of published literature on high-
dimensional multivariate unsupervised learning in 
Critical Care [3]. In this work, we assume an opposite 
scenario: a modern ICU with massive health data 
collection facilities, with a need for a scalable data 
analytic framework for evidence-based medicine.  

We propose to use unsupervised learning in a very 
different way, which we believe can dramatically 
improve the way physicians visualize patients’ 
evolving clinical states. We introduce a novel 
clustering algorithm, radial domain folding, which 
learns lower dimensional abstractions in an organ-
specific manner from routinely generated patient 
data. Then, we train a predictive model on our 
unsupervised feature layer to recognize and track 
critical conditions in ICUs in real-time. Our method 
takes advantage of the clinical knowledge that 
detailed measurements of sets of parameters are most 
useful to provide insight into the functioning of 
specific organ systems, but that overall patient 
mortality is best predicted by learning to aggregate 
the patterns of abnormalities in individual organ 
systems.  Our proposed system differs from existing 
approaches to predictive modeling in two main ways: 

1. We remove the feature selection step at the 

level of clinical observations: Feature selection 
is at the heart of every predictive model. 
However, when feature selection is performed at 
the level of clinical observations, the resulting 
predictive algorithm is constrained to a particular 
task. As a result, we see different predictors used 
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in scoring systems for organ severity and for 
mortality.  Consequently, an organ severity 
prediction task is not technically a sub-task for 
mortality prediction, even though they share 
similar foundations and common characteristics 
of inferring patient severity. For example, it is 
confusing to see that the SOFA score uses Serum 
Creatinine for renal severity prediction whereas 
the SAPS II score does not consider Creatinine 
levels to be a significant predictor of mortality, 
but rather considers a patient’s Urea levels 
(BUN) and Urine Output. Further, SAPS II does 
not consider coagulation parameters such as 
platelet count for mortality prediction, whereas 
SOFA includes coagulation factors for 
calculating overall patient severity. In our 
system, feature selection is more appropriate on 
the learned unsupervised feature layer. 

2. We do not perform clustering in a traditional 

uniform way: Theoretically, it can be easily 
shown that clustering using traditional methods 
over high-dimensional big data is a 
computationally hard problem. Kshetri [11] 
demonstrated empirically that standard k-means 
(probably the most efficient clustering 
algorithm), without parallelism, fails on 
approximately 50,000 data instances in R [20] on 
a 192GB machine in a high dimensional MIMIC 
II clinical dataset [18]. To scale to a million data 
instances, Kshetri’s greedy algorithm [11] uses 
chunks of 30-40,000 rows of matrices iteratively. 
Moreover, the standard dimensionality reduction 
techniques, such as principal component 
analysis, do not work with incomplete datasets in 
which some values are missing. Our proposed 
clustering approach groups similar ICU patients 
based on abnormalities in specific organ systems 
and scales up to millions of patients’ data 
instances. 

Big Data: A Challenge to Clinical 

Decision Making 

Figure 1 depicts a patient’s ICU time course in 
multiple dimensions from the MIMIC II database 
[18]. Abbreviations around the periphery show some 
of the commonly measured clinical variables for 
understanding a patient’s health. The axis (-8, 8) 
shows the number of standard deviations from the 
normal range of each parameter (0 being normal). 
The line width captures time variation. This patient 
was admitted with heart failure, having a past history 
of chronic kidney failure. His health parameters at 
ICU admission are depicted by the red line, the 
thinnest line. As expected, some of the parameters 
are missing. The thickest line, pink, shows the health 

status of the patient near the discharge time. As 
evident from Figure 1, it is difficult to visualize, by 
the values of the individual parameters, if the 
patient’s overall condition actually improved with 
time. Imagine a million such lines for thousands of 
patients. How can an algorithm then create patient 
profiles by considering varied aspects and varied 
lengths of thousands of patients' hospital stays to 
provide individualized predictions in real time? In 
contrast to the current patient profiling systems, our 
system learns complex physiological concepts such 
as heart states or kidney states in real time from the 
data. We also hypothesize that organ-severity 
prediction is a sub-task of mortality prediction. 
 

 
 

Figure 1: Big data: a scalability challenge to clinical 
decision making 

Radial Domain Folding (RDF)  

We present a new multivariate clustering approach, 
Radial Domain Folding (RDF), that generates a 
layered grouping of patient states. We assume that 
each patient state (normally, the collection of data 
about a patient at a particular time) is associated with 

a set of data elements     where   identifies the 
measurement and   identifies the patient state. E.g., 
we might have that         is the value of the 24th 
measured parameter, say the serum sodium, for the 
300-th patient state. From the medical literature, we 
know that abnormalities in certain parameters are 
most closely related to the state of specific organ 
systems, types of therapy and patient histories (which 
we call domain foci). Therefore, we also assume that 
each patient state may be analyzed at two levels: 
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1. Focus-specific clustering:  How each focus 
(organ system, therapy type, or patient history) 
can be assessed in terms of the directions and 
magnitudes of the deviations from normal of the 
data elements that bear on that focus, and 

2. Disease-state clustering: How the overall 
patient can be characterized as a function of the 
abnormalities noted in each focus. 

For both the focus-specific and the overall disease-
state levels of analysis, we perform two sub-analyses: 

a) We abstract the data from the previous layer to 
represent the direction and magnitude of 
abnormalities, and 

b) We cluster the resulting abstract patient states 
into a modest number of similar patient states 
that we believe correspond to different types and 
degrees of illness. 

We implement this method using three distinct 
layers, described in the sections following. 

Layer 0: Abstraction of primary data 

We first abstract each data point to a pair of 〈      〉 
where    is the scaled magnitude of that point’s 
deviation from normal and    is a direction of 
deviation. For each numerical data item,   , we 
normalize the value to something like a z-score,   , in 
which all values within the normal range of the 
variable are normalized to zero. Let      and      be 
the low and high ends of the normal ranges of 
variables    . 

 (   )               ⁄  (1) 

 

where    is the mean of the     and         is the 
their standard deviation.  Magnitude     is just 
   (   ) . Direction     is defined as 1, 0, -1, 
depending on whether   (   ) is positive, zero or 
negative, respectively.  

Our data also contain qualitative values, such as the 
reason for ICU admission, aspects of medical history, 
etc.  For now, we have not included these in the 
severity or direction calculations, though we plan to 
develop methods for doing so. 

Layer 1: Focus-specific clustering 

Our second step is to cluster the abstractions of 
variables that are relevant to a each specific focus,   . 
First, for each focus    the subset of measurements 
that bear on it is given by 

     { |
                               

                          }  (3) 

and is assumed to be given by background medical 
knowledge. 

Step1a: 〈                    〉 abstraction:  

We form clusters separately for the magnitudes of 
abnormalities and for their directions.  Unlike in the 
general case of clustering arbitrary data, in our case 
we know that the cluster near zero magnitude of 
abnormality along every component data direction is 
special –– it corresponds to the well patient.   
Therefore, we compute the sum of squares of the 
normalized deviations defined by Equation 2 for each 
patient state as a distance measure from the normal 
zero magnitude cluster, and then cluster the patient 
states using hierarchical clustering over this one-
dimensional measure 

     ∑   (   )
 

       

   (4) 

We perform this clustering very efficiently by 
sampling only a small fraction of our data to create 
the clusters and assigning all other patient states to 
the nearest cluster center in this one-dimensional 
representation1. We order the resulting clusters by 
mean degree of abnormality, thus associating the 
clusters with an increasing measure of severity. 

The resulting clusters indicate how abnormal the 
patient is in relation to a particular focus, but this 
method collapses the specific nature of that 
abnormality, so that two patient states may share a 
common   but arrive there by very different 
abnormalities in the underlying data.  For this reason, 
we compute a second clustering for    based on the 
directions of abnormality of the individual data 
elements associated with that focus.  For these 
directions, we code the values 1, 0, -1 of each 
variable using a Jaccard representation, 10, 00, 01, 
concatenate the direction representations for all the 
parameters relevant to focus   , and then compute a 
                                                           
1 Although we could use a sophisticated adaptive 
method to determine the optimal number of clusters, 
we chose 6, given as an exogenous parameter 

  (   ) (2) 

 {
      (    )   (   )    (    )

 (   )   (    )     (   )    (    )
 (   )   (    )     (   )    (    )
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hierarchical clustering using a Jaccard score [21] over 
this representation.  This uses a distance function that 
is the ratio of the number of digits at which two 
vectors mismatch divided by the sum of those 
mismatches plus the number of matches at 1 
positions. The distance is 1 if no digits match and 
zero if they all do. 

In our domain, the number of unique direction 
vectors for patient instances tends to be small, so we 
are able to compute the full distance matrix and apply 
hierarchical clustering efficiently to create 8 direction 
clusters2 using the frequency counts of the unique 
direction vectors as starting points. This is like 
starting the weighted hierarchical tree construction in 
the middle rather than with a singleton set. We order 
the resulting clusters by their weighted mean distance 
from the normal direction vector, which is equivalent 
to counting the number of 1s in the Jaccard 
representation of directions. This creates a second, 
different measure of severity, based on the number of 
data element that are abnormal rather than the total 
degree of their abnormality. 

Step 1b: focus-specific severity: 

The result of focus-specific abstraction assigns each 
patient state to a magnitude cluster that indicates how 
severely abnormal that focus is, and a direction 
cluster that indicates the combination of data 
abnormalities that led to that severity.  We have thus 
created an abstract representation for each focus of 
each patient state. For each focus of each patient 
state, we thus obtain an assignment to one of six 
clusters for severity and one of eight for direction, or 
48 total possibilities.  We perform hierarchical 
clustering using a squared Euclidean distance on 
these focus-specific abstractions, using the 48 unique 
possibilities and their frequency counts as starting 
points. We order the resulting clusters by the average 
severities given by their magnitude and direction 
input clusters, and thus create an aggregate measure 
of focus severity. 

Layer 2: Disease-state clustering 

Step2a: 〈                    〉 abstraction: 

We currently use 8 foci, therefore we characterize 
each patient state by the identity of eight clusters for 
severity of each focus.  To characterize the overall 
nature of a patient state, we now apply a data 
abstraction and clustering algorithm similar to that 
described for Steps 1a and 1b, above. 
                                                           
2 The number of clusters is, as before, a tunable 
parameter of the method, where we have empirically 
determined that 8 seems to do well 

First, we apply formulas 1 and 2 to the focus-specific 
severities to again generate abstracted versions of 
these inputs. 

To calculate the aggregate magnitude of disease 
severity, we take the average magnitudes of the 
clusters assigned to the magnitudes of each focus as 
our input data. Thus, for each overall patient disease 
state, we have eight inputs, being the severities of the 
focus-specific clusters. We apply formula 4, and 
again apply hierarchical clustering to find patient 
disease states that are of similar severities. 

To cluster directions of abnormality among the 
different foci, we use a scheme similar to that used 
earlier to cluster directions of abnormality within 
individual foci, but with differences in detail.  
Because our input variables at the disease state level 
have no negative values (i.e., one cannot have 
negative abnormality in any focus), instead of using a 
1, 0, -1 scale to represent direction, we determine a 
“normal or nearly-normal” class, a “somewhat 
abnormal” class, and a ``highly abnormal'' class, 
giving us a 0, 1, 2 representation and a Jaccard 
encoding of 00, 01, 11. Direction distances are 
computed using this representation, and we again 
form direction clusters for the aggregate disease state 
in a manner similar to what we did for each focus. 

Step 2b: disease-state severity: 

As was the case for individual foci, this abstraction 
methods yields an assignment at the overall disease 
level of each patient state to one of a set of severity 
clusters aggregated from the severities of the various 
foci and another aggregated from the directions of the 
various foci.  We then compute an overall patient 
disease state severity using the method of Step 1b. 

Results and Discussion 

For the data available on patients in the MIMIC II 
critical care database [18], we identified a set of foci 
based on different organ systems, therapy types and 
patient history. Each clinical variable is assigned to a 
focus. Table 1 shows a few foci and a few of the 
clinical variables used in each focus. We studied a 
previously preprocessed dataset [10] of 
approximately ten thousand patients with a million 
chart events from the MIMIC II database. Each 
patient’s ICU stay is represented as multiple chart 
events or data records at an hourly time interval. 
Each record is nurse-verified and contains over two 
hundred clinical parameters. The missing parameter 
values were filled by repeating the last known value 
until a reasonable limit assumption, as described in 
Hug et al [9, 10]. We now show that our algorithm 
leads to the discovery of abstract patient states that 
summarize a patient's physiology. 
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Domain Focus Clinical Variables 

Kidney Creatinine (Cr), BUN, BUN/Cr, 
Urine Out/Hr/Kg, eGFR 

Liver Bilirubin, AST, ALT, Albumin, … 

Cardiovascular MAP, HR, CVP, Cardiac Index, … 

Respiration RR, SpO2, FiO2, PEEP, PIP, … 

Hematology Hgb, RBC, WBC, INR, Platelets,… 

Electrolytes Na, K, Mg, Ca, Glucose, … 

Acid-base PaCO2, pH, CO2, Base Excess, … 

General GCS, Age, Temp, … 

Medication 
Type 

Diuretic, Antiarrhythmic, 
Antiplatelet,  Sympathomimetic, … 

Chronic AIDS, Metastatic Carcinoma, 
Hematologic Malignancy 

Location Unit Surgical, Medicine, Trauma, … 

EKG Rhythm types, PVC, … 

Table 1: Domain foci 

Patient Severity Visualization Using RDF 

Complex clinical data can lie in over a 100-
dimensional space and, as shown in Figure 1, it is 
difficult to get an intuitive feel for what the data 
looks like. Figure 2 shows the learned severity graph 
in different organ systems (Step 1b) using the Radial 
Domain Folding algorithm during the ICU time 
course of the patient in Figure 1. The radial axes 
capture organ severities from 1 (being normal) to 8 
(being the worst). The number of severities, 8, is an 
exogenous parameter indicating the number of 
clusters of severity to be found for each organ. 
Different colored lines depict different time points 
during the patient’s ICU stay, similarly to Figure 1. 
The line width captures time progression.  

At the time of admission, shown by the red line, this 
patient’s cardiac state was grouped into a high 
severity cluster 7 (he had heart failure).  His 
electrolytes and lung status were severe too (elytes 
cluster 7; lung cluster 6). The rest of the information 
was missing. The patient’s lung status worsened 
quickly (transition from lung cluster 6 to lung cluster 
7). Near the ICU discharge time, the pink line, this 
patient’s cardiovascular, lung and electrolytes status 
had improved (as shown by the respective transitions 
from a higher severity state to a lower severity state). 
The patient’s kidney status remained the same 
through his ICU stay (he had a history of a chronic 
kidney failure). This progress and improvement in  

 
Figure 2: Focus Severity Graph using RDF 

 
Figure 3: Overall Disease Severity using RDF 

the patient’s health status over time was difficult to 
visualize in Figure 1. 

Figure 3 shows the patient trajectory in terms of the 
RDF Layer 2 (Step 2b) summarization of overall 
physiological health and the mortality rates 
associated with ten learned health clusters, numbered 
in order of increasing severity. This patient gradually 
moves from a high mortality rate cluster 10 (at 
admission) to a lower mortality rate cluster 7 (near 
the time of discharge). By automatically discovering 
physiologically meaningful clusters, our algorithm 
enables a physician to visualize any patient’s 
evolving clinical condition. 
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Figure 2 and 3 also show that it is relatively simple to 
define an appropriate number of clusters in our 
framework. If desired, one can also adopt a complex 
statistical technique, such as in Kshetri [11], to 
estimate the appropriate number of clusters 
mathematically. Further, in comparison to Kshetri’s 
greedy k-mediods approach [11] that took several 
hours to cluster only 40,000 data instances from our 
dataset on a 192GB machine, our new system is fast. 
The runtime depends on the focus. For example, RDF 
clustering on the kidney focus with over a million 
data instances took about 90 seconds in a non-parallel 
R-based implementation on the same machine.  

Theoretically, our algorithm clusters a patient’s 
health status in sub-linear time [17]. In the context of 
machine learning, our algorithm takes an approach 
similar to manifold learning [5] and our algorithm 
exploits computational advantages resulting from 
transforming each individual focus locally into a 
Euclidean plane, a 2-D manifold.  Our algorithm is 
fast because our low-dimensional manifold 
representation can be learned extremely efficiently 
and consequently, the later steps are also learned fast 
as only a core set of representative data points, a tiny 
fraction of the complete clinical set, is good enough 
to compute approximate patient clusters. In contrast, 
standard clustering algorithms, such as k-means, 
hierarchical clustering, and non-parametric Bayesian 
clustering [8] are extremely slow on large high-
dimensional clinical dataset because their complexity 
increases tremendously with an increase in the size of 
input data. Simply sampling few points to speed up 
standard clustering algorithm is not a good approach 
because there are no guarantees that the samples 
represent the entire space. Finding a “core” set of 
representative points using a low-rank matrix 
projection is a challenging problem that can 
potentially give sub-linear time speed ups [17] to a 
clustering problem. Our algorithm presents one such 
approach.    

Further, the empirical results in Kshetri [11] suggest 
that using clustering algorithms over all the features 
is also a naïve approach in terms of visualizing big 
high-dimensional clinical data. For example, 
clustering all features is equivalent to learning 
directly our Step 2b of RDF Layer 2, the overall 
health status graph, as shown in Figure 3. In contrast, 
our approach offers finer granularity visualizations of 
underlying organ-severities and their temporal 
transitions. Our algorithm, being fast, can both pre-
compute clusters and conduct clustering when patient 
data arrive in real time. 

Real-time Mortality Prediction using RDF Layers   

In the context of machine learning, our learning 
method is an unsupervised feature learning approach 
and can also be viewed as a preliminary feature 
extraction step, after which pattern recognition 
algorithms are applied. Therefore, we investigate the 
potential clinical value of our new abstractions by 
studying the performance of logistic regression (LR) 
classifiers built from these values compared to more 
traditional classifiers built from the original clinical 
data. We selected Logistic regression (LR) because 
we wanted to make a fair comparison between the 
LR-based gold standard SAPS-II model often used in 
ICUs and our learned lower-dimensional RDF layer; 
and to evaluate that the performance gain is due to 
the better informative features learned and not due to 
the difference in classifier. Further, Hug, in this PhD 
work [10], trained several models and demonstrated 
that LR, though considered not a highly sophisticated 
classifier, gives state-of-the-art results on the same 
dataset. We compare LR trained on: a) the degree and 
direction abnormalities of different foci (RDF Layer 
1:Step1a) together with qualitative information, such 
as ICU service location unit and past chronic 
diseases; b) the severities of the various foci (RDF 
Layer 1:Step 1b) and the same qualitative 
information; c) the 50 best clinical features selected 
using an information gain method [13] from over 200 
features using a feature selection method; d) the 
SAPS II features; and e) a customized SAPS-II gold 
standard model (SAPS II score by approximating the 
score of the missing “type of admission” field using 
the “service location unit”[9, 10]). We hypothesize 
that incorporating heart is failing should have a better 
discriminatory power than simply knowing that blood 
pressure is low. 

We followed a performance evaluation strategy 
similar to that described in Hug et al [9]. The data 
were divided into training and test data using a 70/30 
split strategy with ~12% of expired patients in both 
training and test data. We performed five-fold cross-
validation and repeated the evaluation five times. 
Figure 5 shows that both our new classifiers achieve 
surprisingly high Area under the ROC Curve (AUC) 
of 0.89. Hug et al [9, 10] has earlier shown that their 
best classifier achieves an AUC of 0.87, while an 
approximation to the SAPS II model achieves an 
AUC of 0.81 on the same dataset. Our algorithm 
achieves a similar AUC to that of Hug’s best 
classifier, but without incorporating specialized 
predictive variables representing summaries of an 
observation over time. We believe that the main 
advantage in our type of approach is that these results 
show that our layered representation can directly be  
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Figure 4: Mortality Prediction Comparison 

used as an intermediate representation to create 
dynamic models of patient state transitions to predict 
impending adverse events or to forecast the course of 
disease progression given an intervention. We pursue 
this as future work. 

Mortality Prediction: High Severity Patients 

The patient in Figure 3 was admitted with high 
severity but recovered within a few days of ICU 
treatment. The current predictive models, such as 
SAPS II, are trained on admission data and are 
agnostic to ICU treatment strategies. Understanding 
real-time mortality risk in high severity patients is 
important to infer patients’ responses to therapies and 
treatments.  

To assess performance on the high severity group, we 
sorted all ten thousand patients into decreasing order 
based on their day one pseudo-SAPS II scores. Then, 
we selected the two thousand highest scoring 
patients. These patients had a minimum pseudo-
SAPS II score of 50. The mortality rate was about 
22% in this high severity group (nearly double that of 
the whole sample).  We evaluated the performance of 
two of the above classifiers using a similar strategy as 
above. We compared LR trained on the RDF Layer 1 
(Step 1b), the focus severities, with that of an 
approximate SAPS II model, which follows the Hug 
et al. [9] strategy to replace the missing “type of 
admission” field by the location unit indicators.   

Figure 5 shows that the approximate SAPS II model 
achieved an AUC of 0.77. In comparison, LR trained 
on focus severities (RDF Layer 1 Step 1b) achieved 
an AUC of 0.91. 

 
Figure 5: Mortality Prediction Comparison on High 

Severity Patients 

Limitations  

To model the holistic view of a patient’s ICU stay, 
we had to make certain assumptions in dealing with 
missing values and mixed data types (categorical and 
real-valued). For example, we assumed an organ to 
be normal and the missing observations to be in the 
normal range if all the relevant clinical variables of 
an organ were missing. Such strategies are often used 
in severity of illness scores in order to improve the 
model’s coverage at potential cost to model 
performance [15]. Further, we separated categorical 
and real-valued variables into different foci. One 
extension could be to use a generalized distance 
metric to overcome this limitation. Another 
interesting extension could be to automatically 
allocate features to domain foci through an 
optimization process on training data. We also 
observe that different runs of our clustering algorithm 
produce different clusters because of the sampling 
introduced in the RDF algorithm. In our experience, 
this can lead to assignment of slightly different 
severity scores to cases near cluster boundaries, and 
to small variations in the mortality statistics shown in 
Figure 3. This behavior seems innate to sampling 
methods and generates only small differences in our 
results. 

Conclusion 

This work describes a scalable data analytic 
framework that provides prognostic previews of 
patients’ clinical conditions in real-time. By 
computing similarities among the patients on the 
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basis of organ systems abnormalities, we show that it 
is possible to use a scalable unsupervised learning 
approach to summarize a patient's physiology in a 
holistic way.  

Our framework exploits the availability of massive 
data sets using an outcomes-free approach, and 
consequently it enables a variety of clinical care 
applications, ranging from health profiling, triage, 
informed staffing and operational decisions, to real-
time therapy selection.  Unfortunately, there has not 
been much work in creating such “richer” 
representations for better situational awareness of 
patients’ critical conditions in ICUs.  We hope our 
paper will spur more research in this area.  
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