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Abstract

Machine learning algorithms are often vulner-
able to adversarial examples that are imper-
ceptible to humans but can fool the state-of-
the-art models. It is helpful to evaluate or
even improve the robustness of these mod-
els by exposing the maliciously crafted ad-
versarial examples. In this paper, we present
the TextFool, a general attack framework for
generating adversarial texts. By successfully
applying it to two fundamental natural lan-
guage tasks, text classification and textual en-
tailment, against various target models, convo-
lutional and recurrent neural networks as well
as the most powerful pre-trained BERT, we
demonstrate the advantages of this framework
in three ways: (i) effective—it outperforms
state-of-the-art attacks in terms of success rate
and perturbation rate; (ii) utility-preserving—
it preserves semantic content and grammati-
cality, and remains correctly classified by hu-
mans; and (iii) efficient—it generates adver-
sarial text with computational complexity lin-
ear in the text length.

1 Introduction

In the last decade, machine learning (ML) mod-
els have achieved remarkable success in various
tasks such as classification, regression and deci-
sion making. However, recently they have been
found to be vulnerable to adversarial examples
that are legitimate inputs altered by small and of-
ten imperceptible perturbations (Kurakin et al.,
2016a,b; Papernot et al., 2017; Zhao et al., 2017).
These carefully curated examples remain correctly
classified by a human observer but can fool a tar-
geted model. This has raised serious concerns re-
garding the security and integrity of existing ML
algorithms. On the other hand, it has been demon-
strated that robustness and generalization of ML
models can be improved by crafting high-quality

adversaries and including them in the training data
(Goodfellow et al., 2015).

While existing works on adversarial examples
have obtained great success in the image and
speech domains (Szegedy et al., 2013; Carlini and
Wagner, 2018), it is still challenging to deal with
text data due to its discrete nature. Formally, be-
sides the ability to fool the target models, out-
puts of such an attacking system in the text do-
main should also meet three key utility-preserving
properties: 1) Human prediction consistency: pre-
diction should remain unchanged by humans; 2)
Semantic similarity: the crafted example should
bear the same meaning as the source, as judged by
humans; and 3) Language fluency: generated ex-
amples should look natural and be correct in gram-
mar. Previous works have barely conformed to all
three requirements (Li et al., 2016; Papernot et al.,
2016). Especially, some works proposed to at-
tack the targeted classifiers by replacing words in
text with deliberately crafted misspelled words (Li
et al., 2016; Liang et al., 2017; Gao et al., 2018; Li
et al., 2018), which results in ungrammatical sen-
tences.

In this work, we present a general framework,
TextFool, to generate adversarial examples in the
context of natural language and a black-box set-
ting, where no architecture or parameters of mod-
els are accessible. We aim to create both seman-
tically and syntactically similar adversarial exam-
ples that meet the above-mentioned three desider-
ata. Basically, we first identify the most important
words for the target model and then prioritize to
replace them with the most semantically similar
and grammatically correct words until the predic-
tion is altered. We successfully applied this frame-
work to attack three state-of-the-art models in five
text classification datasets and two textual entail-
ment datasets, respectively. We can always reduce
the accuracy of target models to be under 10%



with less than 20% word perturbations. In addi-
tion, we validate that the generated examples are
correctly classified by human evaluators, and that
they are similar to the original text and grammati-
cally acceptable via a human study.

Although recently various mechanisms have
been proposed towards generating adversarial
texts, almost all of them rely on self-trained target
models and self-selected data samples for evalua-
tion, which makes it impossible to compare differ-
ent methods under the same evaluation framework
for bench-marking. Due to the lack of open-source
code, re-implementations of previous works are
also non-trivial and time-consuming. In this pa-
per, we performed a rigorous evaluation of our
generated adversaries in four aspects for automatic
evaluation and three aspects for human evaluation
to comprehensively demonstrate the effectiveness
and efficiency of our system. More importantly,
we open-source not only the code but our used
pre-trained target models and test samples as well
as the generated adversary results so that future
works can be fairly compared under a unified eval-
uation metric1.

Overall, our main contributions are summarized
as follows:

• We propose a novel approach, TextFool,
to quickly generate high-profile utility-
preserving adversarial examples to force the
target models to make wrong predictions un-
der the black-box setting.

• We evaluate TextFool on a group of state-of-
the-art deep learning models over five pop-
ularly used text classification datasets and
two textual entailment datasets to demon-
strate that it has achieved the state-of-the-art
attack success rate and perturbation rate.

• We open-source the pre-trained target models
and test samples for the convenience of future
bench-marking.

• We propose a comprehensive four-way au-
tomatic and three-way human evaluation
of language adversarial attacks to evalu-
ate the effectiveness, efficiency, and utility-
preserving properties of our system.

1Will be made public in the camera-ready version

2 Method

2.1 Problem Formulation
Given a pre-trained model F : X ! Y , which
maps the input text space X to the set of labels
Y . A valid adversarial example xadv is gener-
ated by altering the original data example x 2 X
and should conform to the following requirements:
F(xadv) 6= F(x) and S(xadv, x) � ✏, where
S : X ⇥ X ! R+ is a similarity function and
✏ 2 R+ is a threshold to preserve the utility of ad-
versaries. In the natural language domain, S could
be a semantic and syntactic similarity function.

2.2 Threat Model
Under the black-box setting, the attacker is not
aware of the model architecture, parameters, or
training data, and is only capable of querying the
target model with supplied inputs and obtaining
the output predictions and their confidence scores.
The proposed framework for adversarial text gen-
eration is shown in Algorithm 1. Basically it is
composed of the following two steps:

Step 1: Word Importance Ranking (line 1-6)
We prioritize to manipulate those words that most
significantly influence the final prediction results
so as to minimize the alterations and thus maintain
the semantic similarity as much as possible. Due
to the black-box constraint, gradients of the model
are not directly available, which are widely used to
select important words for alterations in the white-
box scenario. Instead we define the classification
influence score termed Cwj to measure the pre-
diction scores change before and after changing
a word wj to the token “unknown”, or so-called
“out of vocabulary”, which is formally defined as
follows,

Cwj =

8
>>><

>>>:

Fy(s)� Fy(s
0),

if F(s) = F(s0) = y

Fy(s)� Fy(s
0) + Fy0(s0)� Fy0(s),

if F(s) = y,F(s0) = y
0

(1)

where s = (w1, ..., wj , ..., wn), s0 =
(w1, ..., w0, ..., wn), and w0 represents the
unknown token.

After ranking the words by their importance,
we filter out stop words derived from NLTK2 and
spaCy3 libraries such as “the”, “in”, and “none”

2https://www.nltk.org/
3https://spacy.io/



Algorithm 1 Adversarial Attacking
Input: text example x = (w1, w2, ..., wn) and its ground

truth y, target model F , similarity function S, threshold
✏, word embeddings E

Output: adversarial example xadv

1: Initialize: xadv  x

2: for wi in x do
3: Compute Cwi via Eq.1
4: end for
5: Wordered = Sort(x, key = Cw)
6: Wordered = StopWordsF ilter(Wordered)
7: for wj in Wordered do
8: candidates = SelectSynonyms(wj , E)
9: candidates = POSFilter(candidates)

10: for w
0
k in candidates do

11: x
0  replace wj with w

0
k in xadv

12: Simk = S(x0
, xadv)

13: if Simk > ✏ then
14: FinCandidates.append(w

0
k)

15: Yk = F(x0)
16: Pk = Fy(x

0)
17: end if
18: end for
19: if any Yk in Y has Yk 6= y then
20: FinCandidates FinCandidates \ Y 6= y

21: w
⇤  argmax(FinCandidates, key = Sim)

22: xadv  replace wj with w
⇤ in xadv

23: return xadv

24: else
25: p min(FinCandidates, key = P )
26: if p < Fy(xadv) then
27: w

⇤  argmin(FinCandidates, key = P )
28: xadv  replace wj with w

⇤ in xadv

29: end if
30: end if
31: end for
32: return None

to make sure that they will not be replaced. This
simple step of filtering is quite important to avoid
grammar destruction.

Step 2: Token Transformer (line 7-32) In this
step, for a given word in text, we select a suitable
replacement word that has similar semantic mean-
ing, fits within the surrounding context, and can
force the target model to make wrong predictions.
In order to select the best replacement word for the
selected word w, we propose the following steps:

• We extract the N nearest synonyms of the se-
lected word by computing the cosine similar-
ity between words using a set of word embed-
ding vectors specially curated for synonym
extraction (Mrkšić et al., 2016). By applying
counter-fitting to the Paragram-SL999 word
vectors provided by Wieting et al. (2015), this
embedding vectors achieved state-of-the-art
performance on SimLex-999, a dataset de-
signed to measure how well different mod-
els judge semantic similarity between words

(Hill et al., 2015). We identify words with
cosine similarity scores with respect to w
greater than � and obtain the N largest ones.
This corresponds to line 8 in Algorithm 1.

• Among the N candidates, we only se-
lect those that have the same part-of-speech
(POS) as w to assure that the grammar of the
text is not destroyed (line 9 in Algorithm 1).

• For the remaining candidates, each word is
inserted in place of w and the corresponding
prediction scores of target model and seman-
tic similarity between the source and adver-
sarial examples are computed. Those words
whose similarity scores are above a preset
threshold ✏ are filtered into the final candi-
dates pool (lines 10-18 in Algorithm 1).

• In the final candidate pool, if there exist any
candidates that can already alter the predic-
tion of the target model, then we select the
one with the highest semantic similarity score
among these winning candidates as the best
replacement word and output the adversary
example. But if not, then we select the word
with the least confidence score of label y as
the best replacement word and repeat step 2
to transform the next selected word (line 19-
31 in Algorithm 1).

We first execute Step 1 to obtain the words in
the text ranked by their importance to the final pre-
diction to form the candidates pool. Then Step
2 repeatedly prioritizes to transform each word in
this candidate pool until the prediction of the tar-
get model is altered.

3 Experiments

3.1 Tasks
We study the effectiveness of our adversarial ex-
amples on two important NLP tasks, text clas-
sification, and textual entailment, whose dataset
statistics are summarized in Table 1. For large test
sets with more than 1,000 instances, we evaluate
our algorithm on a set of 1,000 examples randomly
selected from the test set.

3.1.1 Text Classification
To study the robustness of our model, we use text
classification datasets with various properties, in-
cluding news topic classification, fake news detec-
tion, and sentence- and document-level sentiment



Task Dataset Train Test Avg Len

Classification

AG’s News 30K 1.9K 43
Fake News 18.8K 2K 885
MR 9K 1K 20
IMDB 25K 25K 215
Yelp 560K 38K 152

Entailment SNLI 570K 3K 8
MultiNLI 433K 10K 11

Table 1: Overview of the datasets.

analysis, with average text length ranging from
tens to hundreds of words.

• AG’s News: Sentence-level classification
with regard to four news topics: World,
Sports, Business, and Science/Technology.
Following the practice of Zhang et al. (2015),
we concatenate the title and description fields
for each news.

• Fake News Detection: Document-level clas-
sification on whether a news article is fake or
not. The dataset comes from the Kaggle Fake
News Challenge.4

• MR: Sentence-level sentiment classification
on positive and negative movie reviews (Pang
and Lee, 2005). The dataset contains 5,331
positive and 5,331 negative reviews. We use
90% of the data as the training set and 10%
as the test set, following the practice in (Li
et al., 2018).

• IMDB: Document-level sentiment classifica-
tion on positive and negative movie reviews.

• Yelp Polarity: Document-level sentiment
classification on positive and negative re-
views (Zhang et al., 2015). Reviews with a
rating of 1 and 2 are labeled negative and 3
and 4 positive.

3.1.2 Textual Entailment
• SNLI: A dataset of 570K sentence pairs de-

rived from image captions. The task is
to judge the relationship between two sen-
tences: whether the second sentence can be
derived from entailment, contradiction, or
neutral relationship with the first sentence.

• MultiNLI: A multi-genre entailment classifi-
cation dataset with a coverage of transcribed
speech, popular fiction, and government re-
ports (Williams et al., 2017). Compared to

4https://www.kaggle.com/c/fake-news/data

SNLI, the MultiNLI dataset of 433K sentence
pairs contains a larger variety of written and
spoken English, thus capturing more linguis-
tic complexity.

3.2 Attacking Target Models

WordCNN WordLSTM BERT
AG’s News 92.5 93.1 94.6
Fake News 99.9 99.9 99.9

MR 79.9 82.2 85.8
IMDB 89.7 91.2 92.2

Yelp 95.2 96.6 96.1
InferSent ESIM BERT

SNLI 84.6 88.0 90.7
MultiNLI 71.1/71.5 76.9/76.5 83.9/84.1

Table 2: Accuracy of target models on the standard test
sets.

For each dataset, we train several state-of-the-
art models on the original training set. Each model
achieves an accuracy score on the original test set
close to what is reported in the literature, which
is shown in Table 2. We then generate adversar-
ial examples which are semantically similar to the
test set to attack the trained models and make them
generate opposite results.

On the sentence classification task, we target
three models: word-based convolutional neural
network (WordCNN) (Kim, 2014), word-based
long-short term memory (WordLSTM) (Hochre-
iter and Schmidhuber, 1997), and the state-of-the-
art Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018).

For the WordCNN model, we used three win-
dow sizes of 3, 4, and 5, and 100 filters for
each window size with dropout of 0.3. For
the WordLSTM, we used a 1-layer bidirectional
LSTM with 150 hidden units and a dropout of 0.3.
For both models, we used the 200 dimensional
Glove word embeddings pre-trained on 6B tokens
from Wikipedia and Gigawords (Pennington et al.,
2014). We used the 12-layer BERT model with
768 hidden units and 12 heads, with 110M param-
eters, which is called the base-uncased version5.

We also implemented three target models on the
textual entailment task: standard InferSent6 (Con-
neau et al., 2017), ESIM7 (Chen et al., 2016), and
fine-tuned BERT.

5https://github.com/huggingface/pytorch-pretrained-
BERT

6https://github.com/facebookresearch/InferSent
7https://github.com/coetaur0/ESIM



WordCNN WordLSTM BERT
MR IMDB Yelp AG Fake MR IMDB Yelp AG Fake MR IMDB Yelp AG Fake

Original
Accuracy 78.0 89.2 93.8 91.5 96.7 80.7 89.8 96.0 91.3 94.0 86.0 90.9 95.6 94.2 97.8

Attack
Accuracy 2.8 0.0 1.1 1.5 15.9 3.1 0.3 2.1 3.8 16.4 11.5 13.6 6.8 12.5 19.3

Perturbed
Word (%) 14.3 3.5 8.3 15.2 11.0 14.9 5.1 10.6 18.6 10.1 16.7 6.1 12.8 22.0 11.7

Semantic
Similarity 0.68 0.89 0.82 0.76 0.82 0.67 0.87 0.79 0.63 0.80 0.65 0.86 0.74 0.57 0.76

Query
Number 123 524 487 228 3367 126 666 629 273 3343 166 1134 743 357 4403

Average
Text Length 20 215 152 43 885 20 215 152 43 885 20 215 152 43 885

Table 3: Automatic evaluation results of the attack system on text classification datasets.

InferSent ESIM BERT
SNLI MultiNLI (m/mm) SNLI MultiNLI (m/mm) SNLI MultiNLI (m/mm)

Original Accuracy (%) 84.3 70.9/69.6 86.5 77.6/75.8 89.4 85.1/82.1
Attack Accuracy (%) 3.5 6.7/6.9 5.1 7.7/7.3 4.0 9.6/8.3
Perturbed Word (%) 18.0 13.8/14.6 18.1 14.5/14.6 18.5 15.2/14.6
Semantic Similarity 0.50 0.61/0.59 0.47 0.59/0.59 0.45 0.57/0.58
Query Number 57 70/83 58 72/87 60 78/86
Average Text Length 8 11/12 8 11/12 8 11/12

Table 4: Automatic evaluation results of the attack system on textual entailment datasets.

3.3 Automatic Evaluation

We first report the accuracy of the original target
models on the selected test samples as the original
accuracy. Then we test the target models against
the adversarial samples crafted from the test sam-
ples, denoted as the attack accuracy. By com-
paring these two accuracy values, we can eval-
uate how successful the attack is. We then re-
port the perturbed word percentage as the ratio of
the number of perturbed words to the text length.
As a counterpart, we used the Universal Sentence
Encoder (USE) (Cer et al., 2018) to encode sen-
tences into high dimensional vectors so that we
can use cosine similarity to measure the seman-
tic similarity between the original and adversarial
texts. These two metrics together evaluate how
semantically similar the original and adversarial
texts are. We finally report the number of queries
to count how many times the attack system sends
input samples to the target model and fetches the
output probability scores. This metric can reveal
the efficiency of the attack model.

3.4 Human Evaluation

To assess the quality of our results, we asked hu-
man judges to rate the adversarial examples on
three aspects: semantic similarity, grammaticality,
and classification accuracy. We randomly selected
100 samples of each task to generate adversarial
attacks, one targeting the WordLSTM model on

100 MR examples and another targeting BERT on
100 SNLI examples.

We first shuffled all model-generated adversar-
ial examples and asked human judges to give a
grammaticality score of the generated sentence
on a Likert scale of 1 � 5, similar to the prac-
tice of Gagnon-Marchand et al. (2018). Next,
we evaluated the semantic similarity of the origi-
nal and adversarial sentences by asking humans to
judge whether the generated adversarial sentence
is similar (100%), ambiguous (50%), or dissimi-
lar (0%) to the source sentence. Lastly, we evalu-
ate the classification consistency by shuffling both
the original and adversarial sentences together, ask
humans to rate all of them and then calculate the
consistency rate F1 of both classification results.
Each task is completed by two human judges.

4 Results and Discussion

4.1 Automatic Evaluation
The main results of black-box attacks on the text
classification and textual entailment tasks are sum-
marized in Table 3 and Table 4, respectively. Over-
all, as can be seen from our results, we are able to
achieve a high success rate when attacking with
a limited number of modifications on both tasks.
No matter how long the text is, and no matter how
accurate the target model is, TextFool can always
reduce the accuracy from the state-of-art values
to under 15% (except on the Fake dataset) with



less than 20% word perturbation ratio (except the
AG dataset under the BERT target model). For in-
stance, it only perturbs 5.1% of the words of one
sample on average when reducing the accuracy
from 89.8% to only 0.3% on the IMDB dataset
against the WordLSTM model. Notably, our at-
tack system makes the WordCNN model on the
IMDB dataset totally wrong (accuracy of 0%) with
only 3.5% word change rate. As the IMDB dataset
has an average length of 215 words, the system
only perturbed 10 words or fewer per sample to
conduct successful attacks. This means that our
attack system can successfully mislead the classi-
fiers into assigning wrong predictions via subtle
manipulation.

Comparing the semantic similarity scores in
both Tables 3 and 4 against the perturbed word ra-
tios, we find that they have a high positive corre-
lation. Empirically, when the text length is longer
than 10 words, the semantic similarity measure-
ment becomes more stable. Since the average text
lengths of text classification datasets are all above
20 words and those of textual entailment datasets
are around or below 10 words, we need to treat the
semantic similarity scores of these two tasks indi-
vidually. Therefore we performed a linear regres-
sion analysis between the perturbation ratio and
semantic similarity for each task and obtained r-
squared values of 0.94 and 0.97 for text classifi-
cation and textual entailment tasks, respectively.
Such high values of r-squared reveal that our pro-
posed semantic similarity can be a good automatic
measurement to evaluate the degree of alterations
of the original texts.

We include the average text length of each
dataset in the last row of Tables 3 and 4 so that
it can be conveniently compared against the query
number. The query model is linear to the text
length and overall the ratio of query number to the
average text length is between 2 and 8. And the
longer the text is, the smaller this ratio, which val-
idates the efficiency of TextFool.

Although there are no open-source pre-trained
target models for directly benchmarking our
model against the published systems, we can still
perform an indirect comparison under the same
target model architecture and dataset, which is
summarized in Table 5. From this table, we can
clearly see that our system beats the state-of-the-
art models in terms of both the attack success rate
and perturbed word ratio.

Dataset Model Succ. Rate Perturbed

IMDB
BUGGER 86.7 6.9
NAE 97.0 14.7
Ours 99.7 5.1

SNLI NAE 70.0 23.0
Ours 95.8 18.0

Yelp AE 74.8 -
Ours 97.8 10.6

Table 5: Comparison of our attack system against pub-
lished systems in terms of attack success rate (%) and
perturbed word ratio (%). NAE is from Alzantot et al.
(2018), BUGGER is from Li et al. (2018), and AE
is from Kuleshov et al. (2018). The target model for
IMDB and Yelp is LSTM and SNLI is InferSent.

4.2 Human Evaluation
We sampled 100 sentences from the adversarial
attack on the MR dataset with the WordLSTM
model and 100 examples from the adversarial at-
tack on SNLI with the BERT model. We veri-
fied the quality of our examples via three exper-
iments. First, we ask human evaluators to give a
grammaticality score of a shuffled mix of origi-
nal and adversarial examples. Grammaticality is
an essential criterion for adversarial examples be-
cause it does not make sense to generate gibberish
English to confuse the model. As shown in Ta-
ble 7, although the adversarial sentences are rated
lower than the original sentences on both datasets,
they tend to have overall acceptable grammatical-
ity of 3.31/5.0 on MR and 3.91/5.0 on SNLI. By
sensibly substituting synonyms, our model gener-
ates smooth outputs such as “the big metaphorical
wave” in Table 6.

We then asked the human raters to assign
labels to both original and adversarial sam-
ples. We showed a set of sentences with pos-
itive/negative labels for the sentiment classifi-
cation on MR and sentence pairs with entail-
ment/neutral/contradiction relationships for SNLI
samples. Due to the nature of tasks, it is easy
for humans to agree on the ground truth labels on
sentiment analysis but harder on natural inference.
Nonetheless, the overall agreement between the
labels of the original sentence and the adversarial
sentence is relatively high, with 85% on MR and
72% on SNLI (in Table 8). Though our adversarial
examples are not perfect in every case, this shows
that majorities of adversarial sentences have the
same attribute as the original sentences from hu-
mans’ perspective. Table 6 demonstrates typical
examples of sentences with almost the same mean-
ings that result in contradictory classifications by



Movie Review (Positive$ Negative)
Original [Label: NEG] The characters, cast in impossibly contrived situations, are totally estranged from reality.
Attack [Label: POS] The characters, cast in impossibly engineered circumstances, are fully estranged from reality.
Original [Label: POS] It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming

metaphorical wave that life wherever it takes you.
Attack [Label: NEG] It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical

wave that life wherever it takes you.
SNLI (Entailment, Neutral, Contradiction)

Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.
Original [Label: CON] The boys are in band uniforms.
Attack [Label: ENT] The boys are in band garment.
Premise A child with wet hair is holding a butterfly decorated beach ball.
Original [Label: NEU] The child is at the beach.
Attack [Label: ENT] The youngster is at the shore.

Table 6: Grammaticality of original and adversarial examples for MR (WordLSTM) and SNLI (BERT) model on
a 1� 5 scale.

the attacked target model.

MR SNLI
Input (WordLSTM) (BERT)
Original Grammar 4.22 4.50
Attack Grammar 3.31 3.91

Table 7: Grammaticality of original and adversarial ex-
amples for MR (WordLSTM) and SNLI (BERT) mod-
els on a 1� 5 scale.

MR SNLI
Input (WordLSTM) (BERT)
Original Accu. (%) 88 68
Attack Accu. (%) 82 51
Agreement (%) 83 72

Table 8: Human classification accuracy on adversar-
ial examples for MR (WordLSTM) and SNLI (BERT)
models.

Lastly, we asked human judges to decide
whether each adversarial sample retains the mean-
ing of the original sentence. They need to de-
cide whether the synthesized adversarial example
is similar, ambiguous, or dissimilar to the provided
original sentence. We regard similar as 1, ambigu-
ous as 0.5, and dissimilar as 0, and obtained sen-
tence similarity scores of 0.67 and 0.59 on MR and
SNLI respectively. The higher semantic similar-
ity of adversarial and original examples from MR
correlates with the lower percentage of perturbed
words in MR.

4.3 Ablation Study
Word Importance Ranking To validate the ef-
fectiveness of step 1 in Algorithm 1, i.e., the word
importance ranking part, we remove this step and
instead randomly select the words in text to per-
turb. We keep the perturbed word ratio and step 2

the same. We use BERT as the target model and
test on three datasets: MR, AG, and SNLI. The
results are summarized in Table 9. After remov-
ing step 1, compared with the normal attack accu-
racy, the attack accuracy by randomly selecting the
words to perturb increases by a lot, which reveals
that the attack becomes ineffective. This clearly
demonstrates that the word importance ranking al-
gorithm is important. It can accurately and effi-
ciently locate the most influential words that can
significantly change the predictions of the target
model. For a given attack success rate goal, such a
strategy can reduce the number of perturbed words
so as to maintain the semantic similarity as much
as possible.

MR AG SNLI
Perturbed Word (%) 16.7 22.0 18.5
Original Accu. (%) 86.0 94.2 89.4
Normal Attack Accu. (%) 11.5 12.5 4.0
Random Attack Accu. (%) 68.3 80.8 59.2

Table 9: Comparison of attack accuracy before and af-
ter removing the word importance ranking part of Al-
gorithm 1. For control, step 2 and the perturbed words
ratio are kept the same.

Semantic Similarity Constraint In step 2 of
Algorithm 1, we check the semantic similarity be-
tween the original text and that whose selected
word is replaced by a synonym, and view this
synonym as legitimate only when the similarity
is above a preset threshold ✏. We found that this
strategy can effectively filter out those synonyms
that are not relevant to the selected word. Some
typical examples are summarized in Table 10. As
we can see, the synonyms extracted by word em-
beddings are indeed quite noisy and directly in-



jecting them into the text as adversarial samples
would probably shift the semantic meaning signif-
icantly. By utilizing the semantic similarity con-
straint, we can obtain more related synonyms as
good replacements.

Original like a south of the border melrose place
w/ Sim. like a south of the border melrose spot
w/o Sim. like a south of the border melrose mise
Original their computer animated faces are very expressive
w/ Sim. their computer animated face are very affective
w/o Sim. their computer animated faces are very diction

Table 10: Qualitative comparison before and after ap-
plying the semantic similarity constraint. “w/ Sim.”
and “w/o Sim.” mean that we apply or not the semantic
similarity constraint. Blue color highlights the original
words, green color indicates that the replacement words
proposed by the normal attacking system are compati-
ble, and red color shows that without semantic similar-
ity constraint, the selected synonyms are not relevant.

4.4 Error Analysis
Our adversarial samples are susceptible to three
types of errors: word sense ambiguity, grammat-
ical error, and task-sensitive content shift. Al-
though large thesauri are available, a word usually
has many meanings, with a set of synonyms for
each word sense. One example can be the trans-
fer from an original sentence “One man shows

the ransom money to the other” to the synthesized
“One man testify the ransom money to the other”,
where “testify” in this case is not the appropriate
synonym of “show”.

Grammatical errors are also frequent in text
generation. For example, the sentence “A man
with headphones is biking” and “A man with head-
phones is motorcycle” differ by the word “biking”,
which can be both a noun and a verb, as well as a
fairly similar word to “motorcycle”. Some even
more subtle grammatical error can be seen on ad-
verbs, such as the pair “A boy is sitting still”, vesus
“A boy is sitting anymore” As future work, some
carefully designed heuristics can be applied to fil-
ter out grammatical errors.

Content shift can be seen in a task-specific sit-
uation. For example, in the sentiment classifi-
cation task, a change of words might not affect
the overall sentiment, whereas in the task of tex-
tual entailment, the substitution of words might
result in a fundamental difference. For example,
if the premise is “a kid with red hat is running”,
and the original candidate is “a kid is running
(ENTAILMENT)”, then if the adversarial example

becomes “a girl is running”, the sensible result
turns into NEUTRAL instead.

5 Related Work

Adversarial attack has been extensively studied in
computer vision (Goodfellow et al., 2014; Ku-
rakin et al., 2016a; Madry et al., 2017; Moosavi-
Dezfooli et al., 2017; Rosca et al., 2017). Most
work is done in the context of continuous input
spaces (Szegedy et al., 2013; Goodfellow et al.,
2014), where adversarial attacks are achieved by
gradient-based perturbation to the original input.

Adversarial attack on discrete data such as text
is more challenging. Inspired by the approaches
in computer vision, previous work in language
adversarial attack has focused on variations of
gradient-based methods. For example, Zhao et al.
(2017) transforms input data into a latent rep-
resentation using generative adversarial networks
(GANs), and then retrieves adversaries close to the
original instance in the latent space.

Other work observes the intractability of GAN-
based models on text and the shift in semantics
in the latent representations, so heuristic meth-
ods such as scrambling, misspelling, or remov-
ing words are proposed (Ebrahimi et al., 2017; Li
et al., 2016, 2018). For example, (Ebrahimi et al.,
2017) adopt a heuristic to substitute single words
adversarially. However, such a heuristic relies on
white-box access to the model and cannot be put
into large-scale generation for data augmentation.

6 Conclusions

Overall, we study adversarial attacks against state-
of-the-art text classification and textual entailment
models under the black-box setting. Extensive ex-
perimental results demonstrate that our proposed
system, TextFool, is effective and efficient for gen-
erating targeted adversarial texts. And our human
study validated that the generated adversarial in-
puts are legible, grammatical, and similar in mean-
ing to the original input.



References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Nicholas Carlini and David Wagner. 2018. Audio ad-
versarial examples: Targeted attacks on speech-to-
text. arXiv preprint arXiv:1801.01944.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv

preprint arXiv:1803.11175.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,
Hui Jiang, and Diana Inkpen. 2016. Enhanced
lstm for natural language inference. arXiv preprint

arXiv:1609.06038.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. arXiv preprint

arXiv:1705.02364.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint

arXiv:1712.06751.

Jules Gagnon-Marchand, Hamed Sadeghi, Md Haidar,
Mehdi Rezagholizadeh, et al. 2018. Salsa-text: self
attentive latent space based adversarial text genera-
tion. arXiv preprint arXiv:1809.11155.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. arXiv

preprint arXiv:1801.04354.

Ian Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In International Conference on Learn-

ing Representations.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-

tics, 41(4):665–695.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint

arXiv:1408.5882.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial exam-
ples for natural language classification problems.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
2016a. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533.

Alexey Kurakin, Ian J. Goodfellow, and Samy Ben-
gio. 2016b. Adversarial machine learning at scale.
CoRR, abs/1611.01236.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint

arXiv:1812.05271.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,
Xirong Li, and Wenchang Shi. 2017. Deep
text classification can be fooled. arXiv preprint

arXiv:1704.08006.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017.
Towards deep learning models resistant to adversar-
ial attacks. arXiv preprint arXiv:1706.06083.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard. 2017. Univer-
sal adversarial perturbations. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pages 1765–1773.
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