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Abstract

Joint embeddings between medical imaging modalities and associated radiology
reports have the potential to offer significant benefits to the clinical community,
ranging from cross-domain retrieval to conditional generation of reports to the
broader goals of multimodal representation learning. In this work, we establish
baseline joint embedding results measured via both local and global retrieval
methods on the soon to be released MIMIC-CXR dataset consisting of both chest
X-ray images and the associated radiology reports. We examine both supervised
and unsupervised methods on this task and show that for document retrieval tasks
with the learned representations, only a limited amount of supervision is needed to
yield results comparable to those of fully-supervised methods.

1 Introduction
Medical imaging is one of the most compelling domains for the immediate application of artificial
intelligence tools. Recent years have seen not only tremendous academic advancements [8, 12, 22]
but additionally a breadth of applied tools [7, 16, 18, 29].
There has been some emerging attention on joint processing of medical images and radiological
free-text reports. [31] used the public NIH Chest X-ray 14 dataset [30] linked with the non-public
associated reports to both improve disease classification performance and for automatic report
generation. [9] attempted to generate radiology reports while [27] generated disease/location/severity
annotations. [17] generated notes, including radiology reports for the Medical Information Mart
for Intensive Care (MIMIC) dataset using non-image modalities such as demographics, previous
notes, labs, and medications. These works used annotations from either machines [30] or humans.
However, with a huge influx of imaging data beyond human capacity, parallel records from both
imaging and text are not always readily available. We thus would like to bring up the question of
whether we can take advantage of unannotated but massive imaging datasets and learn from the
underlying distribution of these images.
One natural area that remains unexplored is representation learning across images and reports.
The idea of representation learning in a joint embedding space can be realized in multiple ways.
Some [4, 20] explored statistical and metrical relevance across domains, and some [10] realized it
as an adversarially determined domain-agnostic latent space. [19, 26] both used a the latent space
for style transfer, in language sentiment and music style, respectively. [23] learned joint spaces of
images and their captions, which [24] later used for caption-driven image generation. [6] and [11]
also used similar ideas to perform both supervised and unsupervised word-to-word translation tasks.
[5] further aligned cross-modal embeddings through semantics in speech and text for spoken word
classification and translation tasks.
A recent dataset, MIMIC- Chest X-ray1 (MIMIC-CXR), carries paired records of X-ray images and
radiology reports, and the imaging modality has been explored in [25]. In this work, we explore

1Soon to be publicly released.
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Figure 1: The overall experimental pipeline. EA: embedding alignment; Adv: adversarial training.

both the text and image modalities with joint embedding spaces under a spectrum of supervised and
unsupervised methods. In particular, we make the following contributions:

1. We establish baseline results and evaluation methods for jointly embedding radiological
images and reports via retrieval and distance metrics.

2. We profile the impact of supervision level on the quality of representation learning in joint
embedding spaces.

3. We characterize the influence of using different sections from the report on representation
learning.

2 Methodology
2.1 Data
All experiments in this work used the MIMIC-CXR dataset. MIMIC-CXR consists of 473,057 chest X-
ray images and 206,563 reports from 63,478 patients. Of these images, 240,780 are of anteroposterior
(AP) views, which we focus on in this work. Further, we eliminate all duplicated radiograph images
with adjusted brightness or contrast2, leaving a total of 95,242/87,353 images/reports, which we
subdivide into a train set of 75,147/69,171 and a test set of 19,825/18,182 images/reports, with no
overlap of patients between the two. Radiological reports are parsed into sections and we use either
the impression or the findings sections.
For evaluation, we aggregate a list of unique International Classification of Diseases (ICD-9) codes
from all patient admissions and ask a clinician to pick out a subset of codes that are related to thoracic
diseases. Records with ICD-9 codes in the subset are then extracted, including 3,549 images from
380 patients. This population serves as a disease-related evaluation for retrieval algorithms. Note that
this disease information is never provided during training in any setting.

2.2 Methods
Our overall experimental flow follows Figure 1. Notes are featurized via (1) term frequency-
inverse document frequency (TF-IDF) over bi-grams, (2) pre-trained GloVe word embeddings [21]
averaged across the selected section of the report, (3) sentence embeddings, or (4) paragraph
embeddings. In (3) and (4), we first perform sentence/paragraph splitting, and then fine-tune a deep
averaging network (DAN) encoder [1, 3, 13] with the corpus. Embeddings are finally averaged across
sentences/paragraphs. The DAN encoder is pretrained on a variety of data sources and tasks and
fine-tuned on the context of report sections.
Images are resized to 256⇥256, then featurized to the last bottleneck layer of a pretrained DenseNet-
121 model [22]. PCA is applied onto the 1024-dimension raw image features to obtain 64-dimension
features.3 Text features are projected into the 64-dimension image feature space. We use several
methods regarding different objectives.

Embedding Alignment (EA) Here, we find a linear transformation between two sets of matched
points X 2 RdX⇥n and Y 2 RdY ⇥n by minimizing LEA (X,Y) =

��W>X � Y
��2

F
.

2Commonly produced for clinical needs
396.9% variance explained
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Text Feature Method Similarity
MRR(⇥10�3) nDCG@1 nDCG@10 nDCG@100

T ! I I ! T T ! I I ! T T ! I I ! T T ! I I ! T

chance 0.50 0.50 0.103 0.103 0.103 0.103 0.103 0.103

bi-gram EA 0.613.000 7.33.04 11.65.07 0.147.001 0.162.001 0.148.000 0.159.000 0.225.000 0.231.000

word EA 0.542.000 2.00.01 4.52.02 0.096.002 0.128.001 0.116.000 0.130.000 0.202.000 0.205.000

sentence EA 0.465.000 1.08.00 2.74.02 0.073.001 0.101.000 0.100.000 0.111.000 0.189.000 0.177.000

paragraph EA 0.505.000 1.57.01 2.53.01 0.082.001 0.134.000 0.107.000 0.124.000 0.195.000 0.196.000

bi-gram Adv 0.218.073 0.77.23 0.85.33 0.095.006 0.090.003 0.101.004 0.098.003 0.171.005 0.166.004

bi-gram Adv + Proc 0.221.074 0.77.24 0.87.32 0.094.006 0.091.004 0.102.004 0.099.002 0.171.005 0.166.004

word Adv 0.268.016 0.65.12 0.54.12 0.096.006 0.091.003 0.105.004 0.099.003 0.176.003 0.165.004

word Adv + Proc 0.269.013 0.64.11 0.57.07 0.098.006 0.092.002 0.107.005 0.099.003 0.179.003 0.165.004

sentence Adv 0.265.010 0.64.08 1.07.24 0.095.007 0.094.002 0.103.006 0.100.001 0.176.006 0.167.001

sentence Adv + Proc 0.266.012 0.68.10 1.07.21 0.096.005 0.094.004 0.105.006 0.100.002 0.178.005 0.166.002

paragraph Adv 0.045.136 0.69.03 0.70.04 0.062.025 0.123.029 0.082.015 0.118.017 0.163.013 0.169.003

paragraph Adv + Proc 0.225.061 1.15.60 0.77.21 0.093.057 0.092.011 0.090.034 0.103.008 0.163.023 0.166.005

Table 1: Comparison among supervised (upper) and unsupervised (lower) methods. Subscripts show
the half width of 95% confidence intervals. Bold denotes the best performance in each group. Chance
is the expected value if we randomly yield retrievals. Higher is better for all metrics.

Adversarial Domain Adaption (Adv) Adversarial training pits a discriminator, D, implemented
as a 2-layer (hidden size 256) neural network using scaled exponential linear units (SELUs) [15],
against a projection matrix W, as the generator. D is trained to classify points in the joint space
according to source modality, and W is trained adversarially to fool D. Alternatively, D min-
imizes LD

Adv (X,Y) = E(x,y)⇠p(X,Y)

⇥
� log D

�
W>x

�
� log (1 � D (y))

⇤
when W minimizes

LW
Adv (X,Y) = E(x,y)⇠p(X,Y)

⇥
� log

�
1 � D

�
W>x

��⇤
.

Procrustes Refinement (Adv + Proc) On top of adversarial training, we also use an unsupervised
Procrustes induced refinement as in [6].

Semi-Supervised We also assess how much supervision is necessary to ensure strong performance
on these modalities by randomly subsampling our data into supervised and unsupervised samples.
We then combine the embedding alignment objective and adversarial training objective functions
as L = LEA (X,Y) + �LAdv (X,Y) and train simultaneously as we vary the fraction trained.
Preliminary experiments suggests � = 0.1.

Orthogonal Regularization [6, 28, 32] all showed that imposing orthonormality on linear projec-
tions leads to better performance and stability in training . However, [2] suggested orthogonality (i.e.,
not constraining the norms) can perform better as a regularization. Thus on top of the objectives, we
add Rortho = �

��W>W �
�
ee> � I

���2

F
, where � denotes element-wise product and e denotes a

column vector of all ones. Scanning through a range shows � = 0.01 yields good performance.

2.3 Evaluation
We evaluate via cross domain retrieval in the test set Q: querying in the joint embedding space for
closest neighboring images using a report, T ! I, or vice-versa, I ! T. For direct pairings, we
compute the cosine similarity, and MRR = 1

|Q|
P

q2Q
1

rankq
where rankq is the rank of the first true

pair for q (e.g., the first paired image or text corresponding to the query q) in the retrieval list. For
thoracic disease induced pairings, we first define the relevance relpq 2 [0, 1] between two entries p
and q as the intersection-over-union of their respective set of ICD-9 codes. Then we calculate the
normalized discounted cumulative gain [14] nDCG@k = 1

|Q|
P

q2Q
1

IDCGq

Pk
p=1

2relpq�1
log2(p+1) , where

IDCGq denotes the ideal DCG value for q using a perfect retrieval algorithm. All experiments are
repeated with random initial seeds for at least 5 times. Means and 95% confidence intervals are
reported in the following section.

3 Results
Retrieval with/without Supervision Table 1 compares four types of text features and super-
vised/unsupervised methods. We find that unsupervised methods can achieve comparable results
on disease-related retrieval tasks on a large scale (nDCG@100) without the need for labeling the
chest X-ray images. Experiments show uni-, bi-, and tri-grams yield very similar results and we
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only include bi-gram in the table. Additionally, we find that the high-level sentence and paragraph
embeddings approach underperformed the bi-gram text representation. Although having generaliz-
ability [3], sentence and paragraph embeddings learned from the supervised multi-task pre-trained
model may not be able to represent the domain-specific radiological reports well due to the lack of
medical domain tasks in the pre-training process. Unsupervised procrustes refinement is occasionally,
but not universally helpful. Note that MRR is comparatively small since reports are in general highly
similar for radiographs with the same disease types.

The Impact of Supervision Fraction We define the supervision fraction as the fraction of pairing
information provided in the training set. Note the ICD-9 codes are not provided for training even in
the fully supervised setting. Figure 2 shows our evaluation metrics for models trained using bi-gram
text features and the semi-supervised learning objective for various supervision fractions. A minimal
supervision as low as 0.1% provided can drastically improve the alignment quality, especially in
terms of cosine similarity and nDCG. More annotations further improve the performance measures,
but one would almost require exponentially many data points in exchange for a linear increase. That
implies the possibility of concatenating a well-annotated dataset and a large but unannotated dataset
for a substantial performance boost.
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Figure 2: Performance measures of retrieval tasks at k retrieved items as a function of the supervision
fraction. Higher is better. Note the x-axis is in log scale. Unsupervised is on the left, increasingly
supervised to the right. Dashed lines indicate the performance by chance. Vertical bars indicate the
95% confidence interval, and some are too narrow to be visible.

Using Different Sections of the Report We investigate the effectiveness of using different sections
for the embedding alignment task. All models in Figure 3 run with a supervision fraction of 1%. The
models trained on the findings section outperformed the models trained on the impression section
using cosine similarity and MRR. This makes sense from a clinical perspective since the radiologists
usually only describe image patterns in the findings section and thus they would be aligned well. On
the other hand, they make radiological-clinical integrated interpretations in the impression section,
which means that the both the image-uncorrelated clinical history and findings were mentioned in
the impression section. Since nDCG is calculated using ICD-9 codes, which carry disease-related
information, it naturally aligns with the purpose of writing an impression section. This may explain
why the models trained on impression section worked better for nDCG.

impression findings
Report Section

0.35

0.40

0.45

0.50

S
im

ila
ri
ty

tfidf

word

sentence

paragraph

impression findings
Report Section

0

2

4

M
R
R

(T
!

I,
⇥

10
�

3
)

impression findings
Report Section

0.150

0.175

0.200

0.225

nD
C
G

@
10

0
(T

!
I)

Figure 3: Different metrics for retrieval on either the impression or findings section using four types
of features. 95% confidence intervals are indicated on the bars.

4 Conclusion
MIMIC-CXR will soon be the largest publicly available imaging dataset consisting of both medical
images and paired radiological reports, promising myriad applications that can make use of both
modalities together. We establish baseline results using supervised and unsupervised joint embedding
methods along with local (direct pairs) and global (ICD-9 code groupings) retrieval evaluation metrics.
Results show a possibility of incorporating more unsupervised data into training for minimal-effort
performance increase. A further study of joint embeddings between these modalities may enable
significant applications, such as text/image generation or the incorporation of other EMR modalities.
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