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ABSTRACT
Continuous prediction of clinical outcomes and evaluation of pa-
tient risk remains a challenge within intensive care units (ICUs).
�ese learning tasks are complicated by data size, class imbalance,
and noisy, heterogeneous data sources.

In this paper, we use a recurrent neural network to integrate the
heterogeneous data sources and address the task of continuous risk
prediction. We integrate data from static demographic information,
free text clinical narratives, vital signs, and lab values. We evaluate
these models on four distinct tasks that cover mortality during
admission andmortality following discharge. In all cases, prediction
is done on a continuous, hourly basis and in a forward-facing
manner to approximate “real-time” performance, allowing for the
evaluation of RNN models that could inform treatment strategies
at the point of care. Further, we consider feature-level a�ention
mechanisms dedicated to generating interpretable network rules,
which is necessary for the adoption of such models in practice.

We show that RNNs e�ectively integrate di�erent data types
into a single common representation for a variety of prediction
tasks. In addition, we demonstrate that RNNs are able to provide an
early warning for each task, o�en with enough time for clinically
actionable planning.
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1 INTRODUCTION
Intensive Care Units (ICUs) play an increasing role in acute health-
care delivery [30], and clinicians must make quick and accurate
decisions about patient care. Clinical decision-making is o�en made
in se�ings of limited knowledge and high uncertainty; for exam-
ple, only 10 of the 72 ICU interventions evaluated in randomized
controlled trials (RCTs) are not associated with improved outcomes
[27].

Our goal is to gain insight from healthcare data that has already
been collected for the primary purpose of facilitating patient care.
�e secondary analysis of healthcare data is a critical step toward
improving modern healthcare, as it a�ords the study of care in the
real care se�ings and patient populations. Existing RCTs do not
cover a majority of treatments that are commonly used [24, 25],
and even those that are commonly used contain structural biases
in subject recruitment [29].

Electronic Health Record (EHR) systems that meet federal re-
quirements are present in most acute care hospitals (97% in 2014
[4]) and o�ce-based physicians (78% in 2015 [26]). �is availability
allows new investigations into evidence-based decision support,
where we can learn when patients are at high risk for mortality
or need a given intervention. Unlike traditional measures of risk
and treatment, which are o�en evaluated at single endpoints (e.g.,
in-hospital mortality), we seek models that account for evolving
clinical information throughout the patient’s stay.

�e task of such continuous “forward-facing” event prediction
on a binned basis (e.g., every t hours) is particularly applicable in
the ICU se�ing. Similar e�orts have previously considered using a
topic representation of clinical notes to predict mortality [10], or
Cox proportional hazard models to forecast the time to septic shock
onset [15]. Others have used representations of patient physio-
logical signals, including multi-task Gaussian processes, to predict
mortality [11], or switching-state autoregressive models to forecast
the onset of interventions [12]. Most recently, recurrent neural
networks (RNN) have been applied in modeling sequential EHR
data to tag ICU signals with billing code labels [6, 23] and to identify
the impact of di�erent drugs for diabetes [21]. New work has also
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Figure 1: A visual representation of the data used. 1) Numerical data, including vitals and lab tests. �e timestamp for each
data point is rounded to the nearest hour, and hours with multiple measurements for a variable are assigned the average of
those measurements. Each measurement is normalized according to the min and max for that var and each patient’s data
are zero-padded to the maximum stay length (240 hours). To �ll in missing values, we forward-�ll values for each patient,
and mean-impute for any remaining missing values. 2) Narrative data, which consists of unstructured text notes. A�er
preprocessing, LDA is used to obtain underlying topics and we then represent each note as a distribution over these topics.
We forward-�ll and aggregate these topic vectors across time, mean-imputing any values that are still missing. 3) Static Data,
including variables recorded at admission such as sex, age, and ethnicity. Categorical variables such as ethnicity and ICU type
are transformed into one-hot vectors containing each possible type. We replicate this data across time so that we are able to
feed in this information at every timestep. We normalize numerical values and use forward-�lling and imputation as before.

introduced the use of temporal a�ention for use in early diagnostic
prediction of chronic diseases from time-ordered billing codes [7].

In this work, we use data from the publicly-available Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMIC-III) data-
base [18] to address early ICU event prediction in four distinct clin-
ical tasks that span ICU, in-hospital, and post-discharge mortality.
In all cases, we use representations of ICU patient data from each
available data type1 — vitals (⇠hourly), labs (⇠daily), demographics
(static a�er observation at admission), and notes (typically every
12 hours) — to model target outcomes in varying-length patient
records. We use RNNs to model variable-length timeseries [1, 17]
and consider the task of early forward-facing prediction. �is is an
important problem in the ICU because each patient’s severity of
illness is constantly evolving, and clinicians can use dynamically
computed risk scores to schedule sta�, make bed allocations, or
decide who to should be discharged to the �oor.

Speci�cally, we consider the following four predictive tasks:
ICU mortality, hospital mortality, and both 30 and 90 day post-
discharge mortality. We contextualize our results with respect to
prior work and provide possible interpretations of the a�ention-
level features learned by our models. In doing so, we make the
following contributions:

1MIMIC-III also contains high-frequency waveforms, but they could not be integrated
into our model due as they lack timestamps.

• We provide a method that integrates all data modalities
— vitals, labs, demographic, and notes — toward the pre-
diction of mortality in MIMIC-III, as opposed to existing
literature leveraging only a subset of these data.

• We perform forward-facing, hourly prediction of clinical
risk factors that could be used at the time of care. To
maintain this use case, we do not leverage information
that are o�en recorded at discharge (e.g., billing codes,
discharge summaries).

• We provide a single RNN to model outcomes given any
variable-length patient record, rather than segmenting pa-
tient data and training separate models for each segment.

2 METHODS
In this section, we detail the data and preprocessing (Section 2.1),
the learning tasks (Section 2.2) and provide an overview of RNNs
(Section 2.3) as well as the experimental se�ings (Section 2.4).

2.1 Data and Preprocessing
Figure 1 provides an overview of our data extraction process. For
every patient, we extracted 1) static clinical features, including age,
sex, and SAPS-II score; 2) the de-identi�ed clinical notes; 3) the
nurse-veri�ed vitals; and 4) the reported lab values. We represent
notes via an LDA topic model [10], forward-�ll vitals and labs data
[6], and concatenate static data to the evolving information [9].
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We train RNNs to predict clinical events using combinations of the
available data for all tasks.

We use data from the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC-III) Database [18]. MIMIC-III v1.4 contains
data from over 58,000 hospital admissions of approximately 38,600
adults from 2001–2012, and is publicly available. We use data from
the �rst ICU stay of patients in the Medical Care Unit (MICU),
Cardiac Care Unit (CCU), Cardiac Surgery Recovery Unit (CSRU),
Surgical Intensive Care Unit (SICU), and Trauma Surgical Intensive
Care Unit (TSICU).

We consider only patients older than 15 who were in the ICU for
between 12 and 240 hours. 2 �is yields 34,148 unique ICU stays.
We consider only each patient’s �rst ICU stay to avoid training
and testing on data from the same patient. For each patient, we
extract 5 static variables (gender, age, ethnicity, admission type,
ICU unit), 29 time-varying vitals and labs (anion gap, bicarbonate,
blood urea nitrogen, chloride, creatinine, diastolic blood pressure,
fraction inspired oxygen, Glascow coma scale total, glucose, heart
rate, hematocrit, hemoglobin, lactate, magnesium, mean blood pres-
sure, oxygen saturation, partial thromboplastin time, phosphate,
platelets, potassium, prothrombin time, international normalized
ratio of the prothrombin time (INR), respiratory rate, sodium, sys-
tolic blood pressure, temperature, weight, white blood cell count,
blood pH), and all available notes for each patient as timeseries
across their entire stay. We remove any data that occurs within 24
hours of patient death or discharge as these data are very close to
clinicians predicting a patient outcome, and have li�le value in a
real-time prediction task.

Vital and labmeasurements are given timestamps that are rounded
to the nearest hour, and if an hour has multiple measurements for
a signal those measurements are averaged. Each variable is normal-
ized using the minimum and maximum of that variable across all
patients. Since there are many missing values, we then forward-�ll
missing values for each patient. Any remaining missing values are
imputed with the population mean for that variable.

For clinical narrative notes, Latent Dirichlet Allocation [2, 14]
is used to generate underlying topics, and the notes are then rep-
resented as a distribution over these topics. We use the se�ings
that achieved the best performance in other work [10], namely 50
topics that result in a 50-dimensional vector of topic proportions
for each note. Since notes occur less frequently than every hour,
we replicate forwards and aggregate the note vectors through time.
For example, if a patient had a note A recorded at hour 3 and a
note B at hour 7, hours 3–6 would contain the topic distribution
from A, while hours 7 onward would contain the aggregated topic
distribution from A and B combined. Dataset statistics are shown
in Table 1, and the top 10 most likely words for each learned topic
are presented in Table 2.

Static variables were replicated across all timesteps for each
patient. Categorical variables such as sex, ethnicity, or ICU type
were transformed into their own binary one-hot vectors. A�er the
transformation, we end up with 52 total features representing the
static variables. Numerical variables such as age were forward-�lled
as before.

2Young patients are excluded as they typically exhibit di�erent physiology from an
adult population.

�e physiological variables, topic distribution, and static vari-
ables for each patient are concatenated into a single feature vector
per patient per hour.

2.2 Task De�nitions
We evaluate our model on the prediction of four tasks: 1) ICU
mortality (ICU-Mort), 2) hospital mortality (Hosp-Mort), and both
3) 30 day post-discharge mortality (30-Mort) and 4) 90 day post-
discharge mortality (90-Mort).

We consider these four prediction tasks for their clinical rele-
vance and in order to draw comparisons with existing work.

ICU-Mort and Hosp-Mort present a risk-score that anticipates
the risk of mortality, and can be used as proxies for severity of
illness. �ese proxies are useful for risk strati�cation [28], resource
utilization [19] and clinical decision-making [13]. Additionally, 30-
Mort and 90-Mort tasks allow clinicians to make more informed
decisions about important and speci�c treatment paths that are
well-established following onset.

2.3 RNN Models
We use long short-term memory networks (LSTM) [17], a variant of
RNNs. LSTMs are used because of their ability to e�ectively model
varying-length timeseries data and capture long-term dependencies
[1]. �ey are well-suited to modeling clinical data because evidence
of certain conditions may be spread apart over several hours or
days, and important symptoms may present early on in a patient�s
stay.

We also test the ability to predict mortality with an a�ention
mechanism. Neural networks have used a�ention mechanisms to
visualize the factors that are most important in generating image
descriptions [32], answer questions from text [16], and process
speech [8]. When producing outputs, the a�ention mechanism
typically allows the network to refer to speci�c states from past
timesteps, instead of a single �xed-length representation of the state
at the current timestep [23]. In most implementations, a�ention
can be thought of as a weighted combination of all internal memory
locations, rather than a single discrete location.

Previous work usually uses a�ention over past timesteps. In our
case, we a�end over the variables within a single timestep, since
we care speci�cally about the variables that are most important,
rather than the just the timesteps. We call this method �ne-grained
a�ention. We calculate weights for each variable in a timestep as
a function of the variables themselves and the previous hidden
state of the LSTM. �e input variables are then multiplied by these
weights, giving a weighted input vector that is fed into the LSTM
layers. Furthermore, we can use these weights to visualize what
was important in the input right before we predicted the onset of a
given intervention.

At a given timestep t , having seen the input sequence x1 . . . xt�1
for a given patient, and given the current input xt , we predict �̂t ,
the probability of the target outcome �t :

zt = ATTN (xt ) (1)
ht = LSTM(zt ) (2)
�̂t =W�ht + b� (3)
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(a) ICU mortality. (b) Hospital mortality.

(c) 30-day post-discharge mortality. (d) 90-day post-discharge mortality.

Figure 2: RNNmodel performance every hour a�er ICU admission measured via AUC on four clinical tasks: a) ICUmortality,
b) in-hospital mortality, c) 30 day post-discharge mortality, and d) 90 day post-discharge mortality. In each case, the data and
models are as described in Sections 2.2 and 2.3. Our prediction tasks vary in complexity, but all lose train/test set support as
time goes on because fewer patients have long ICU stays. For example, as time goes on it becomes more likely ICU patients
will need ventilation. In this task, the number of test set control examples still in the ICU becomes smaller than the number
of positives around 24 hours, which is when the task begins to become progressively more di�cult.

where zt ,xt 2 RV ,W� ,ht 2 RL2 , b� 2 R where L1, L2 are the �rst
and second hidden layer sizes, respectively, and V is the dimen-
sionality of the input (number of variables). When we do not use
a�ention, xt is simply the input to the LSTM instead of zt .

ATTN operates by taking a function of the input and previous
hidden state, and create a new ”weighted” input zt :

at =Whht�1 +Wxxt + ba (4)
�xt = so�max(tanh(� � at )) (5)

zt = �xt � xt (6)

whereWh 2 RV⇥L1 ,Wx 2 RV⇥V , and � , ba 2 RV are learned
parameters, and at , zt , �xt 2 RV .

LSTM performs the following update equations for a single layer,
given its previous hidden state and the new input:

ft = � (Wf [ht�1, zt ] + bf ) (7)
it = � (Wi [ht�1, zt ] + bi ) (8)

c̃t = tanh(Wc [ht�1, zt ] + bc ) (9)
ct = f � ct�1 + i � c̃t (10)

ot = � (Wo [ht�1, zt ] + bo ) (11)
ht = ot � tanh(ct ) (12)

where Wf ,Wi ,Wc ,Wo 2 RL1⇥(V+L1), bf ,bi ,bc ,bo 2 RL1 are
learned parameters, and ft , it , c̃t , ct ,ot ,ht 2 RL1 .

As before, when we do not use a�ention, xt is used as input
rather than zt . �is is generalized to multiple layers by providing
ht from the previous layer in place of the input.

In these equations, � stands for an element-wise application of
the sigmoid (logistic) function, and � is an element-wise product.
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(a) ICU mortality. (b) Hospital mortality.

(c) 30-day post-discharge mortality. (d) 90-day post-discharge mortality.

Figure 3: Early warning value of RNN predictions on four clinical tasks: a) ICU mortality, b) in-hospital mortality, c) 30 day
post-discharge mortality, and d) 90 day post-discharge mortality. All tasks are censored at 24 hours prior to ICU discharge;
therefore, we show all patients that were not correctly predicted by this gap in orange. �e “earliest” time we can predict a
patient correctly is immediately is 215 hours before onset (e.g., a�er observing 4 hours of data in a record where onset occurs
at 220). �e “latest” time that we can correctly predict the event is 25 hours prior to onset, and patients from this time are
shown separately.

We calculate classi�cation loss using binary cross-entropy. At
each timestep t , the loss for predictions for N patients is:

L(�̂1t . . . �̂Nt ) = � 1
N

N’
i=1

�it log �̂
i
t (13)

To get the total loss for a set of examples, we just sum the losses at
each timestep.

2.4 Experimental Settings
We assemble an evaluation dataset from our full cohort of data for
N patients. �e data was split into training/validation/testing sets
with a 70/10/20 split, and strati�ed on in-hospital mortality in order
to have a spectrum of patient severity in both the train and test
sets.

We investigated several combinations of layer sizes and chose
to use two layers of size 1024 and 256 hidden nodes for reported re-
sults based on cross-validation results. We implemented all models
in TensorFlow version 0.12.1 using the Adam optimizer on mini-
batches of 400 patients.

For mortality prediction, we include only timesteps until 24
hours before the end of the sequence (discharge or death). Patients
with less than 25 hours of ICU data were thus discarded, so that

the model always has some data from which to predict. Forcing the
model to learn to predict with such a gap, rather than predicting
mortality shortly before it occurs, makes the model much more
useful in practice; it may be able to inform a physician before they
are aware of the acuity of a patient’s state.

3 RESULTS
3.1 Forward-facing Prediction of Clinical

Events
We evaluated the predictive power of each data type and outcome
pair in the RNN models. Figures 2a through 2d show the AUCs of
predicting mortality during hospital stay (ICU in Figure 2a and
hospital in Figure 2b), and post-discharge mortality (30-day in
Figure 2c and 90-day in Figure 2d). In all �gures, at each time,
we are predicting only for the pool of patients who have not yet
had an onset of the targeted task, and will not have one for at least
24 hours.

�e di�erent data types contributed di�ering amounts of infor-
mation to our clinical tasks. We found that static data (e.g., age,
gender, and other demographic information) tended to be least valu-
able over time consistently. Topics derived from the clinical notes
in a patient’s record were o�en next-best, increasing predictive
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performance for most tasks by a signi�cant margin. As shown in
Table 2, the the top words for the topics learned compare to those
in prior work on LDA modeling of clinical notes.[10] Physiologi-
cal vitals and labs (e.g., heartrate, blood pressure, respiration rate,
blood glucose level, etc.) performed similarly to the topics data in
many tasks, but were be�er than topics data in ICU and hospital
mortality prediction.

In all cases, combining all data types performed best over time,
but this was not always signi�cantly improved over the physiologi-
cal data on its own. �e value of adding topics and static data to the
physiological data also tended to decrease as patients were in the
ICU for longer stays. Note that the average length of an ICU stay
is 3–4 days (72–96 hours). In most tasks, the standard deviation of
performance across folds tended to increase a�er 96 hours, which
may be due to the increase in variability of very sick patients in a
randomly sampled test sets over the �ve runs.

Both mortality prediction tasks during hospital admission had
consistent AUC performance over the course of nine days consid-
ered. Post-discharge mortality tasks were generally harder, with
signi�cantly lower AUCs. �is is sensible, as we would expect that
information over a hospital admission may not be as relevant to
post-discharge outcomes when there are other factors present (e.g.,
patients with chronic health problems).

3.2 Potential Use as Early Warning Score
We consider the task of evaluating the RNNmodel predictions using
all data types to produce an early warning for each clinical task. In
this se�ing, we recompute the risk score for each patient in the test
set every hour. We say that a patient has been identi�ed “early” for
the clinical event the �rst time that their computed score crosses a
threshold computed over the validation set. �is threshold varies
over time for each clinical event, but was chosen for each task and
time to balance speci�city and sensitivity. �is corresponds to the
point closest to (0,1) on the ROC curve.

Figures 3a through 3d show our early prediction time for each
of the four clinical tasks. As noted, the “earliest” early prediction
time possible is 215 hours before onset, and the “latest” time is 25
hours before onset. All other patients are considered unidenti�ed
within an appropriate amount of warning time.

Early patient identi�cation varied based on the task complex-
ity. We predict �rst intervention onset early in most of the pa-
tients. For ICU mortality, we predict 362/372 patients early with
a mean early warning time of 92 hours. For in-hospital mortality,
we predict 513/544 patients early at a mean of 88 hours before
ICU discharge/death. Predicting mortality a�er the patients leave
the hospital is much more di�cult. We still identify a majority of
patients early (358/556 patients who will die within 30 days and
398/595 who will die within 90 days), but the number of patients
we correctly identify decreases. Adding patients to the training
set who are healthier in the present and will only die later seems
to reduce the models ability to identify patients who will be in an
acute state in the nearer future. It may thus be advisable to train
separate models for near-term and long-term mortality prediction
or patient acuity scoring.

3.3 Interpretation of Feature-Level Weights for
Tasks

Using the model with a�ention over input variables, we can visual-
ize the distribution of of feature weights when it predicts a given
outcome. A distribution of weights that is concentrated around
a higher value may be an indication that the variable is always
important to the prediction. Bimodal distributions may be a sign of
the complex interactions within variables: a speci�c variable may
be weighted highly depending on the other variables present and
the sequence of inputs the LSTM has seen previous to this point.
A distribution with a large standard deviation likely indicates that
the variable doesn’t play a consistent role in prediction of the task.

For the task of ICU-Mort, for example, variables such as temper-
ature display a bimodal distribution (Figure 4a) while pH (Figure
4b) has a broader distribution with a higher mean. In other words,
dependent on other factors, temperature’s importance varies be-
tween two modes, while the importance of pH is on average higher
but more uniformly distributed. Fraction inspired oxygen has a
very narrow distribution centered on a single value, suggesting that
it consistently has a relatively low importance in predicting ICU
mortality (Figure 4c).

4 RELATEDWORK
Current ICU practice evaluates patient acuity using scoring systems
based on static periods of patient data like SAPS-II [22], SOFA
[31], or APACHE [20]. Such scores are also evaluated at a single
end point, such as in-hosptial mortality or mortality 28 days post-
discharge. Single risk scores are unable to capture the di�erent
ways in which a patient may be ill.

Clinical tasks have been considered in prior work on the current
MIMIC-III dataset, or the previous MIMIC-II dataset.

Formortality prediction during hospital stays, we achieved AUCs
of 0.83/0.84 at the 24 and 48 hour prediction marks for in-hospital
mortality, which is comparable to previous work. Ghassemi et al.
used topics derived from the MIMIC-III notes on a forward-facing
prediction task to achieve an AUC of 0.84/0.85 at 12 and 24 hours for
in-hospital mortality [10]. However, they trained a separated model
for each 12 hour task and did not integrate the physiological vitals
data. Caballero et al. employed a Latent Dynamic System model
for prediction of patient mortality using notes and medication to
achieve an AUC of 0.86 on 24 hour in-hospital mortality [3]. Che
et al. used an LSTM model on the vitals data to obtain an AUC of
0.82 on 48 hour mortality prediction [5], and this was improved to
0.85 when using a GRU network that included a model of missing
data on vitals and extracted medications [6].

Our performance on 30-day post-discharge mortality at 24 and
48 hours was lower than previously reported work on the MIMIC-II
dataset (0.64 and 0.66 compared to 0.76/0.78), which may be due to
the transition of the MIMIC-III database system to a new backend
that reports information di�erently.3

3�e original Philips CareVue system archived data in MIMIC-II over the period from
2001–2008. �is was replaced in 2008 with the Metavision data management system,
which was added to the MIMIC-III dataset.
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Figure 4: a) Histogram of weights for the temperature variable in the timestep when we predict ICU mortality for a patient.
�is distribution is bimodal, indicating that the importance of temperature adopts one of two modes depending on the other
variables present and already observed. b) Histogram of weights for the pH variable in the timestep when we predict ICU
mortality for a patient. �is distribution is broadly distributed but concentrated at higher values than other variables. c)
Weights for fraction inspired oxygen have one narrow peak, indicating that it consistently has a relatively low importance in
the prediction task.

5 CONCLUSIONS
Hospitals are highly uncertain environments where clinical sta�
must make decisions about patient care in real-time with noisy
heterogeneous data. Current clinical evidence is based on expensive
and rare RCTs that do not cover many common treatments, and the
increasing prevalence of EHRs o�ers new opportunities to create
evidence-based decision support.

In this work, we demonstrated that real ICU data can be used in
the forward-facing prediction of several important clinical tasks.
Rather than focusing on a supervised model for a single clinical
prediction, our work focuses on learning models that generalize
across time and tasks. We depart from prior work by investigating
the relative value of each type of available data towards our tasks,
and evaluating the amount of early warning time that such models
provide. We also provide a methodology for investigating impor-
tant features for a particular prediction task using a feature-level
a�ention mechanism. �is creates a single recurrent model that
allows for variable-length patient data to be evaluated for a robust
set of clinical risks.

�e models explored in this work, and the results we have ob-
tained, are a �rst step towards our ultimate goal of clinically ac-
tionable predictions that could be used to predict important clinical
events in a real hospital se�ing.
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A DATASET STATISTICS

Table 1: Dataset Statistics

Train Test Total
Patients 27,318 6,830 34,148
Notes 564,652 140,089 703,877
Elective Admission 4,536 1,158 5,694
Urgent Admission 746 188 934
Emergency Admission 22,036 5,484 27,520
Mean Age 63.9 64.1 63.9
Black/African American 1,921 512 2,433
Hispanic/Latino 702 166 868
White 19,424 4,786 24,210
CCU (coronary care unit) 4,156 993 5,149
CSRU (cardiac surgery recovery) 5,625 1,408 7,033
MICU (medical ICU) 9,580 2,494 12,074
SICU (surgical ICU) 4,384 1,074 5,458
TSICU (trauma SICU) 3,573 861 4,434
Female 11,918 2,924 14,842
Male 15,400 3,906 19,306
ICU Mortalities 1,741 439 2,180
In-hospital Mortalities 2,569 642 3,211
30 Day Mortalities 2,605 656 3,216
90 Day Mortalities 2,835 722 3,557
Vasopressor Usage 8,347 2,069 10,416
Ventilator Usage 11,096 2,732 13,828

B EXTRACTED TOPICS

Table 2: Word To Topic Mappings

Topic Top Words
1 plan assessment response action a�b failure g� acute atrial hr
2 contrast ct right clip le� pelvis chest reason small iv
3 ml dl mg pm meq icu code medications continue total
4 g� hr pt propofol neo wean min given sedated neuro
5 severe echo pulmonary systolic cardiac patient ef le� aortic heart
6 pt neuro plan status head response assessment ct commands action
7 pt clear neuro hr resp gi gu abd pain urine
8 bowel abdomen abdominal ct small air pelvis free obstruction contrast
9 mg ml continue patient po daily cardiac history pm pt
10 history patient po daily pain mg icu past given ed
11 pt impaired activity sit status mobility balance stand functional supine
12 chest reason clip ap portable le� right old year examination
13 hct bleed bleeding gi blood stable units gib pt prbc
14 ml pm mg dl continue meq respiratory rr min hour
15 tracing sinus previous rhythm wave st atrial compared ventricular le�
16 fracture trauma fx le� right fractures fall rib ct hip
17 ml mg dl pm meq icu total medications extremities rhythm
18 procedure stitle dr catheter patient placement picc line drain placed
19 etoh withdrawal abuse ciwa alcohol pt valium ativan seizure seizures
20 pericardial cath e�usion stemi cardiac ccu lab tamponade echo drain
21 hd pt hypotension ed bp sepsis vanco plan given renal
22 pain pt plan response assessment action given monitor hr control
23 tube chest placement reason right clip line tip le� ap
24 stroke le� cva ct weakness right head heparin sided neuro
25 lymphoma fever infection patient abscess tpn picc bmt pain fevers
26 cancer lung pleural ct mass metastatic ca chest e�usion right
27 pt pain plan assessment sats response continue patient cough action
28 ml pm mg dl min meq icu pulse present mmhg
29 date order ml mg pain present iv tube normal absent
30 contrast hemorrhage head ct right le� clip reason old year
31 ml assessed dl mg pulse pm meq icu right le�
32 dl mg weight meq nutrition diet pm body arterial patient
33 response action assessment pt plan failure acute continue monitor hr
34 pain pacer assessment plan response wires cabg pacemaker temporary action
35 tube aspiration trach intubation airway respiratory chest lung intubated patient
36 spine fracture cervical clip reason contrast ct spinal so� report
37 insulin g� blood addendum dm section protected bs scale diabetes
38 valve normal le� aortic mitral ventricular lea�ets right mildly mild
39 le� right dvt femoral lower extremity reason clip old vein
40 pt vent care resp secretions intubated remains respiratory abg plan
41 artery right carotid le� numeric identi�er clip aneurysm internal contrast
42 pt family patient ni care home time support daughter wife
43 pt hr lasix po ? given sats bp resp oob
44 pt hr ni today noted remains bp iv note micu
45 skin wound area pt care applied dressing plan coccyx continue
46 sounds lung assessment ventilation breathing comments airway type invasive cu�
47 likely ml renal given pending status mg urine negative ct
48 pt arrest cath cardiac transferred cad cabg ccu admi�ed osh
49 meq mg valuables dl transferred pmh rate bp heart date
50 liver hepatic renal transplant portal reason right cirrhosis biliary ascites
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