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Abstract

Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical
investigations. However, the vast majority of medical investigators can only access de-identified notes,
in order to protect the confidentiality of patients. In the United States, the Health Insurance Portability
and Accountability Act (HIPAA) defines 18 types of protected health information (PHI) that needs to be re-
moved to de-identify patient notes. Manual de-identification is impractical given the size of EHR databases,
the limited number of researchers with access to the non-de-identified notes, and the frequent mistakes of
human annotators. A reliable automated de-identification system would consequently be of high value.

Materials and Methods: We introduce the first de-identification system based on artificial neural networks
(ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the perfor-
mance of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge
dataset, which is the largest publicly available de-identification dataset, and the MIMIC de-identification
dataset, which we assembled and is twice as large as the i2b2 2014 dataset.

Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the
i2b2 2014 dataset, with a recall 97.38 and a precision of 97.32, and an F1-score of 99.23 on the MIMIC
de-identification dataset, with a recall 99.25 and a precision of 99.06.

Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show
better performance than previously published systems while requiring no feature engineering.

1 Introduction and related work
In many countries such as the United States, med-
ical professionals are strongly encouraged to adopt
electronic health records (EHRs) and may face fi-
nancial penalties if they fail to do so (DesRoches
et al., 2013; Wright et al., 2013). The Centers for
Medicare & Medicaid Services have paid out more
than $30 billion in EHR incentive payments to hos-
pitals and providers who have attested to meaningful
use as of March 2015. Medical investigations may
greatly benefit from the resulting increasingly large
EHR datasets. One of the key components of EHRs
is patient notes: the information they contain can

⇤ These authors contributed equally to this work.

be critical for a medical investigation because much
information present in texts cannot be found in the
other elements of the EHR. However, before patient
notes can be shared with medical investigators, some
types of information, referred to as protected health
information (PHI), must be removed in order to pre-
serve patient confidentiality. In the United States,
the Health Insurance Portability and Accountabil-
ity Act (HIPAA) (Office for Civil Rights, 2002) de-
fines 18 different types of PHI, ranging from patient
names to phone numbers. Table 1 presents the ex-
haustive list of PHI types as defined by HIPAA.

The task of removing PHI from a patient note
is referred to as de-identification, since the patient
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cannot be identified once PHI is removed. De-
identification can be either manual or automated.
Manual de-identification means that the PHI are la-
beled by human annotators. There are three main
shortcomings of this approach. First, only a re-
stricted set of individuals is allowed to access the
identified patient notes, thus the task cannot be
crowdsourced. Second, humans are prone to mis-
takes. (Neamatullah et al., 2008) asked 14 clinicians
to detect PHI in approximately 130 patient notes: the
results of the manual de-identification varied from
clinician to clinician, with recall ranging from 0.63
to 0.94. (Douglass et al., 2005; Douglas et al., 2004)
reported that annotators were paid US$50 per hour
and read 20,000 words per hour at best. As a matter
of comparison, the MIMIC dataset (Goldberger et
al., 2000; Saeed et al., 2011), which contains data
from 50,000 intensive care unit (ICU) stays, con-
sists of 100 million words. This would require 5,000
hours of annotation, which would cost US$250,000
at the same pay rate. Given the annotators’ spotty
performance, each patient note would have to be an-
notated by at least two different annotators, so it
would cost at least US$500,000 to de-identify the
notes in the MIMIC dataset.

Automated de-identification systems can be clas-
sified into two categories: rule-based systems and
machine-learning-based systems. Rule-based sys-
tems typically rely on patterns, expressed as reg-
ular expressions and gazetteers, defined and tuned
by humans. They do not require any labeled data
(aside from labels required for evaluating the sys-
tem), and are easy to implement, interpret, main-
tain, and improve, which explains their large pres-
ence in the industry (Chiticariu et al., 2013). How-
ever, they need to be meticulously fine-tuned for
each new dataset, are not robust to language changes
(e.g., variations in word forms, typographical errors,
or infrequently used abbreviations), and cannot eas-
ily take into account the context (e.g., “Mr. Parkin-
son” is PHI, while “Parkinson’s disease” is not PHI).
Rule-based systems are described in (Berman, 2003;
Beckwith et al., 2006; Fielstein et al., 2004; Friedlin
and McDonald, 2008; Gupta et al., 2004; Morrison
et al., 2009; Neamatullah et al., 2008; Ruch et al.,
2000; Sweeney, 1996; Thomas et al., 2002).

To alleviate some downsides of the rule-based
systems, there have been many attempts to use su-

pervised machine learning algorithms to de-identify
patient notes by training a classifier to label each
word as PHI or not PHI, sometimes distinguish-
ing between different PHI types. Common sta-
tistical methods include decision trees (Szarvas et
al., 2006), log-linear models, support vector ma-
chines (Guo et al., 2006; Uzuner et al., 2008; Hara,
2006), and conditional random fields (Aberdeen et
al., 2010), the latter being employed in most of the
state-of-the-art systems. For a thorough review of
existing systems, see (Meystre et al., 2010; Stubbs
et al., 2015). All these methods share two down-
sides: they require a decent sized labeled dataset
and much feature engineering. As with rules, qual-
ity features are challenging and time-consuming to
develop.

Recent approaches to natural language process-
ing based on artificial neural networks (ANNs) do
not require handcrafted rules or features, as they
can automatically learn effective features by per-
forming composition over tokens which are repre-
sented as vectors, often called token embeddings.
The token embeddings are jointly learned with the
other parameters of the ANN. They can be initial-
ized randomly, but can be pre-trained using large
unlabeled datasets typically based on token co-
occurrences (Mikolov et al., 2013b; Collobert et al.,
2011; Pennington et al., 2014). The latter often per-
forms better, since the pre-trained token embeddings
explicitly encode many linguistic regularities and
patterns. As a result, methods based on ANNs have
shown promising results for various tasks in natu-
ral language processing, such as language model-
ing (Mikolov et al., 2010), text classification (Socher
et al., 2013; Kim, 2014; Blunsom et al., 2014; Lee
and Dernoncourt, 2016), question answering (We-
ston et al., 2015; Wang and Nyberg, 2015), machine
translation (Bahdanau et al., 2014; Tamura et al.,
2014; Sundermeyer et al., 2014), as well as named
entity recognition (Collobert et al., 2011; Lample
et al., 2016; Labeau et al., 2015). A few meth-
ods also use vector representations of characters as
inputs in order to either replace or augment token
embeddings (Kim et al., 2015; Lample et al., 2016;
Labeau et al., 2015).

Inspired by the performance of ANNs for var-
ious other NLP tasks, this article introduces the
first de-identification system based on ANNs. Un-



PHI categories PHI types HIPAA i2b2 MIMIC
AGE Ages � 90 x x x

Ages < 90 x

CONTACT Telephone and fax numbers x x x
Electronic mail addresses x x x
URLs or IP addresses* x x x

DATE Dates (month and day parts) x x x
Year x x
Holidays x x
Day of the week x

ID Social security numbers x x x
Medical record numbers x x x
Account numbers x x x
Certificate or license numbers x x x
Vehicle or device identifiers x x x
Biometric identifiers or full face photographic images* x x x

LOCATION Addresses and their components smaller than a state x x x
State x x
Country x x
Employers x x x
Hospital name x x
Ward name x

NAME Names of patients and family members x x x
Provider name x x

PROFESSION Profession x

Table 1: PHI types as defined by HIPAA, i2b2, and MIMIC. PHI categories are defined in the i2b2 dataset. The PHI types marked
with * do not appear in either dataset.

like other machine learning based systems, ANNs
do not require manually-curated features, such as
those based on regular expressions and gazetteers.
We show that ANNs achieve state-of-the-art results
on de-identification of two different datasets for pa-
tient notes, the i2b2 2014 challenge dataset and the
MIMIC dataset.

2 Methods and materials

We first present a de-identifier we developed based
on a conditional random field (CRF) model in Sec-
tion 2.1. This de-identifier yields state-of-the-art
results on the i2b2 2014 dataset, which is the ref-
erence dataset for comparing de-identification sys-
tems. This system will be used as a challenging
baseline for the ANN model that we will present in
Section 2.2. The ANN model outperforms the CRF
model, as outlined in Section 3.

2.1 CRF model

In the CRF model, each patient note is tokenized
and features are extracted for each token. During
the training phase, the CRF’s parameters are opti-
mized to maximize the likelihood of the gold stan-
dard labels. During the test phase, the CRF pre-
dicts the labels. The performance of a CRF model
depends mostly on the quality of its features. We
used a combination of n-gram, morphological, or-
thographic, and gazetteer features. These are sim-
ilar to features used in the best-performing CRF-
based competitors in the i2b2 challenge (Yang and
Garibaldi, 2015; Liu et al., 2015).

In order to effectively incorporate context when
predicting a label, the features for a given token are
computed based on that token and on the four sur-
rounding tokens.



2.2 ANN model
The main components of the ANN model are re-
current neural networks (RNNs). In particular, we
use a type of RNN called Long Short Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997),
as discussed in Section 2.2.1.

The system is composed of three layers:
• Character-enhanced token embedding layer (Sec-

tion 2.2.2),
• Label prediction layer (Section 2.2.3),
• Label sequence optimization layer (Section

2.2.4).
The character-enhanced token embedding layer
maps each token into a vector representation. The
sequence of vector representations corresponding to
a sequence of tokens are input to the label prediction
layer, which outputs the sequence of vectors con-
taining the probability of each label for each corre-
sponding token. Lastly, the sequence optimization
layer outputs the most likely sequence of predicted
labels based on the sequence of probability vec-
tors from the previous layer. All layers are learned
jointly. Figure 1 shows the ANN architecture.

In the following, we denote scalars in italic low-
ercase (e.g., k, bf ), vectors in bold lowercase (e.g.,
s, xi), and matrices in italic uppercase (e.g., Wf )
symbols. We use the colon notations xi:j and vi:j

to denote the sequence of scalars (xi, . . . , xj), and
vectors (vi,vi+1, . . . ,vj), respectively.

2.2.1 Bidirectional LSTM
RNN is a neural network architecture designed to

handle input sequences of variable sizes, but it fails
to model long term dependencies. LSTM is a type of
RNN that mitigates this issue by keeping a memory
cell that serves as a summary of the preceding ele-
ments of an input sequence. More specifically, given
a sequence of vectors x1,x2, . . . ,xn, at each step
t = 1, . . . , n, an LSTM takes as input xt,ht�1, ct�1

and produces the hidden state ht and the memory
cell ct based on the following formulas:

it = �(Wi [xt; ht�1; ct�1] + bi)

ct = (1� it)� ct�1

+ it � tanh(Wc [xt; ht�1] + bc)]

ot = �(Wo [xt; ht�1; ht�1] + bo)

ht = ot � tanh(ct)

where Wi,Wc,Wo are weight matrices and
bi,bc,bo are bias vectors used in the input gate,
memory cell, and output gate calculations, re-
spectively. The symbols �(·) and tanh(·) refer to
the element-wise sigmoid and hyperbolic tangent
functions, and � is the element-wise multiplication.
h0 = c0 = 0.

A bidirectional LSTM consists of a forward
LSTM and a backward LSTM, where the for-
ward LSTM calculates the forward hidden states
(
�!
h 1,
�!
h 2, . . . ,

�!
h n), and the backward LSTM calcu-

lates the backward hidden states (
 �
h 1,
 �
h 2, . . . ,

 �
h n)

by feeding the input sequence in the backward order,
from xn to x1.

Depending on the application of the LSTM, one
might need an output sequence corresponding to
each element in the sequence, or a single output that
summarizes the whole sequence. In the former case,
the output sequence h1,h2, . . . ,hn of the LSTM is
obtained by concatenating the hidden states of the
forward and the backward LSTMs for each element
i.e.,
 !
ht = (

�!
h t;
 �
h t) for t = 1, . . . , n. In the lat-

ter case, the output is obtained by concatenating the
last hidden states of the forward and the backward
LSTMs i.e.,

 !
h = (

�!
h n;
 �
h n).

2.2.2 Character-enhanced token embedding
layer

The character-enhanced token embedding layer
takes a token as input and outputs its vector repre-
sentation. The latter results from the concatenation
of two different types of embeddings: the first one
directly maps a token to a vector, while the second
one comes from the output of a character-level token
encoder.

The direct mapping VT (·) from token to vec-
tor, often called a token (or word) embedding,
can be pre-trained on large unlabeled datasets us-
ing programs such as word2vec (Mikolov et al.,
2013b; Mikolov et al., 2013a; Mikolov et al., 2013c)
or GloVe (Pennington et al., 2014), and can be
learned jointly with the rest of the model. Token
embeddings, often learned by sampling token co-
occurrence distributions, have desirable properties
such as locating semantically similar words closely
in the vector space, hence leading to state-of-the-art
performance for various tasks.

While the token embeddings capture the seman-
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Figure 1: Architecture of the artificial neural network (ANN) model. RNN stands for recurrent neural network. The type of RNN
used in this model is Long Short Term Memory (LSTM). n is the number of tokens, and xi is the ith token. VT is the mapping
from tokens to token embeddings. `(i) is the number of characters and xi,j is the jth character in the ith token. VC is the mapping
from characters to character embeddings. ei is the character-enhanced token embeddings of the ith token.

 !
di is the output of the

LSTM of label prediction layer, ai is the probability vector over labels, yi is the predicted label of the ith token.

tics of tokens to some degree, they may still suf-
fer from data sparsity. For example, they cannot
account for out-of-vocabulary tokens, misspellings,
and different noun forms or verb endings. One so-
lution to remediate some of these issues would be to
lemmatize tokens before training, but this approach
may fail to retain some useful information such as
the distinction between some verb and noun forms.

We address this issue by using character-based
token embeddings, which incorporate each individ-
ual character of a token to generate its vector rep-
resentation. This approach enables the model to
learn sub-token patterns such as morphemes (e.g.,
suffix or prefix) and roots, thereby capturing out-
of-vocabulary tokens, different surface forms, and
other information not contained in the token embed-
dings.

Let xi,1, . . . , xi,`(i) be the sequence of characters
that comprise the ith token xi, where `(i) is the num-
ber of characters in xi. The character-level token

encoder generates the character-based token embed-
ding of xi by first mapping each character xi,j to a
vector VC(xi,j), called a character embedding, via
the mapping VC(·). Then the sequence VC(xi,j) is
passed to a bidirectional LSTM, which outputs the
character-based token embedding

 !
bi

As a result, the final output ei of the character-
enhanced token embedding layer for ith token xi is
the concatenation of the token embedding VT (xi)

and the character-based token embedding
 !
bi . In

summary, when the character-enhanced token em-
bedding layer receives a sequence of tokens x1:n as
input, it will output the sequence of token embed-
dings e1:n.

2.2.3 Label prediction layer
The label prediction layer takes as input the se-

quence of vectors e1:n, i.e., the outputs of the
character-enhanced token embedding layer, and out-
puts a1:n, where the tth element of an is the proba-



bility that the nth token has the label t. The labels
are either one of the PHI types or non-PHI. For ex-
ample, if one aims to predict all 18 HIPAA-defined
PHI types, there would be 19 different labels.

The label prediction layer contains a bidirectional
LSTM that takes the input sequence e1:n and gener-
ates the corresponding output sequence

 !
d1:n. Each

output
 !
di of the LSTM is given to a feed-forward

neural network with one hidden layer, which outputs
the corresponding probability vector ai.

2.2.4 Label sequence optimization layer
The label sequence optimization layer takes the

sequence of probability vectors a1:n from the label
prediction layer as input, and outputs a sequence of
labels y1:n, where yi is the label assigned to the to-
ken ti.

The simplest strategy to select the label yi would
be to choose the label that has the highest probability
in ai, i.e. yi = argmaxk ai[k]. However, this greedy
approach fails to take into account the dependencies
between subsequent labels. For example, it may be
more likely to have a token with the PHI type STATE
followed by a token with the PHI type ZIP than any
other PHI type. Even though the label prediction
layer has the capacity to capture such dependencies
to a certain degree, it may be preferable to allow the
model to directly learn these dependencies in the last
layer of the model.

One way to model such dependencies is to incor-
porate a matrix T that contains the transition proba-
bilities between two subsequent labels. T [i, j] is the
probability that a token with label i is followed by a
token with the label j. The score of a label sequence
y1:n is defined as the sum of the probabilities of in-
dividual labels and the transition probabilities:

s(y1:n) =
nX

i=1

ai[yi] +
nX

i=2

T [yi�1, yi].

These scores can be turned into probabilities of the
label sequences by taking a softmax function over all
possible label sequences. During the training phase,
the objective is to maximize the log probability of
the gold label sequence. In the testing phase, given
an input sequence of tokens, the corresponding se-
quence of predicted labels is chosen as the one that
maximizes the score.

3 Experiments and results

3.1 Datasets
We evaluate our two models on two datasets: i2b2
2014 and MIMIC de-identification datasets. The
i2b2 2014 dataset was released as part of the 2014
i2b2/UTHealth shared task Track 1 (Stubbs et al.,
2015). It is the largest publicly available dataset
for de-identification. Ten teams participated in this
shared task, and 22 systems were submitted. As a
result, we used the i2b2 2014 dataset to compare our
models against state-of-the-art systems.

The MIMIC de-identification dataset was cre-
ated for this work as follows. The MIMIC-III
dataset (Johnson et al., 2016; Goldberger et al.,
2000; Saeed et al., 2011) contains data for 61,532
ICU stays over 58,976 hospital admissions for
46,520 patients, including 2 million patient notes.
In order to make the notes publicly available, a rule-
based de-identification system (Douglass, 2005;
Douglass et al., 2005; Douglas et al., 2004) was
written for the specific purpose of de-identifying pa-
tient notes in MIMIC, leveraging dataset-specific in-
formation such as the list of patient names or ad-
dresses. The system favors recall over precision:
there are virtually no false negatives, while there are
numerous false positives. To create the gold stan-
dard MIMIC de-identification dataset, we selected
1,635 discharge summaries, each belonging to a dif-
ferent patient, containing a total of 60.7k PHI in-
stances. We then annotated the PHI instances de-
tected by the rule-based system as true positives or
false positives. We found that 15% of the PHI in-
stances detected by the rule-based system were false
positives.

Table 1 introduces the PHI types and Table 2
presents the datasets’ sizes. For the test set, we used
the official test set for the i2b2 dataset, which is
40% of the dataset; we randomly selected 20% of
the MIMIC dataset as the test set for this dataset.

i2b2 MIMIC
Vocabulary size 46,803 69,525
Number of notes 1,304 1,635
Number of tokens 984,723 2,945,228
Number of PHIs 28,867 60,725
Number of PHI tokens 41,355 78,633

Table 2: Overview of the i2b2 and MIMIC datasets.



3.2 Evaluation metrics
To assess the performance of the two models, we
computed the precision, recall, and F1-score. Let
TP be the number of true positives, FP the number
of false positives, and FN the number of false neg-
atives. Precision, recall, and F1-score are defined
as follows: precision = TP

TP+FP , recall = TP
TP+FN ,

and F1-score = 2⇤precision⇤recall
precision+recall . Intuitively, preci-

sion is the proportion of the predicted PHI labels that
are gold labels, recall is the proportion of the gold
PHI labels that are correctly predicted, and F1-score
is the harmonic mean of precision and recall.

3.3 Training and hyperparameters
The model is trained using stochastic gradient de-
scent, updating all parameters, i.e., token embed-
dings, character embeddings, parameters of bidirec-
tional LSTMs, and transition probabilities, at each
gradient step. For regularization, dropout is applied
to the character-enhanced token embeddings before
the label prediction layer. Below are the choices of
hyperparameters and token embeddings, optimized
using a subset of the training set:

• character embedding dimension: 25
• character-based token embedding LSTM di-

mension: 25
• token embedding dimension: 100
• label prediction LSTM dimension: 100
• dropout probability: 0.5

We tried pre-training token embeddings on the
i2b2 2014 dataset and the MIMIC dataset1 using
word2vec and GloVe. Both word2vec and GloVe
were trained using a window size of 10, a minimum
vocabulary count of 5, and 15 iterations. Additional
parameters of word2vec were the negative sampling
and the model type, which were set to 10 and skip-
gram, respectively. We also experimented with the
publicly available2 token embeddings such as GloVe
trained on Wikipedia and Gigaword 5 (Parker et al.,
2011). The results were quite robust to the choice
of the pre-trained token embeddings. The GloVe
embeddings trained on Wikipedia articles yielded
slightly better results, and we chose them for the rest
of this work.

1For MIMIC, we used the entire dataset containing 2 million
notes and 800 million tokens.

2http://nlp.stanford.edu/projects/glove/

3.4 Results

All results were computed using the official evalua-
tion script from the i2b2 2014 de-identification chal-
lenge. Table 3 presents the main results, based on
binary token-based precision, recall, and F1-score
for HIPAA-defined PHI only. These PHI types are
the most important since only those are required
to be removed by law. On the i2b2 dataset, our
ANN model has a higher F1-score and recall than
our CRF model as well as the best system from
the i2b2 2014 de-identification challenge, which was
the Nottingham system (Yang and Garibaldi, 2015).
The only freely available, off-the-shelf program for
de-identification, called the MITRE Identification
Scrubber Toolkit (MIST) (Aberdeen et al., 2010),
performed poorly. Combining the outputs of our
ANN and CRF models, by considering a token to
be PHI if it is identified as such by either model, fur-
ther increases the performance in terms of F1-score
and recall.

It should be noted that the Nottingham system
was specifically fine-tuned for the i2b2 dataset as
well as the i2b2 evaluation script. For example,
the Nottingham system post-processes the detected
PHI terms in order to match the offset of the gold
PHI tokens, such as modifying “MR:6746781” to
“6746782” and “MWFS” to “M”, “W”, “F”, “S”.

On the MIMIC dataset, our ANN model also has a
higher F1-score and recall than our CRF model. In-
terestingly, combining the outputs of our ANN and
CRF models did not increase the F1-score, because
precision was negatively impacted. However, the
recall did benefit from combining the two models.
MIST was much more competitive on this dataset.

We calculated the statistical significance of the
differences in precision, recall, and F1-score be-
tween the CRF and ANN models using approximate
randomization with 9999 shuffles. The significance
levels of the differences in precision, recall, and F1-
score are 0.37, 0.02, 0.22 for the i2b2 dataset, and
0.08, 0.00, 0.00 for the MIMIC dataset, respectively.

3.5 Error analysis

Figure 2 shows the binary token-based F1-scores
for each PHI category. The ANN model outper-
forms the CRF model on all categories for both
datasets, with the exception of the ID (which mostly

http://nlp.stanford.edu/projects/glove/


Model i2b2 MIMIC
Precision Recall F1-score Precision Recall F1-score

Nottingham 99.000 96.680 97.680 - - -
MIST 95.288 75.691 84.367 97.739 97.164 97.450
CRF 98.560 96.528 97.533 99.060 98.987 99.023
ANN 98.320 97.380 97.848 99.208 99.251 99.229

CRF + ANN 97.920 97.835 97.877 98.820 99.398 99.108

Table 3: Performance (%) on the PHI as defined in the HIPAA. We evaluated the systems based on the detection of PHI token versus
non-PHI token (i.e., binary HIPAA token-based evaluation). The best performance for each metric on each dataset is highlighted in
bold. Nottingham is the best performing system from the 2014 i2b2/UTHealth shared task Track 1. MIST, the MITRE Identification
Scrubber Toolkit, is a freely available de-identification program. CRF is the model based on Conditional Random Field, ANN is
the model based on Artificial Neural Network, and CRF+ANN is the result obtained by combining the outputs of the CRF model
and the ANN model. The Nottingham system could not be run on the MIMIC dataset, as it is not publicly available.

Figure 2: Binary token-based F1-scores for each PHI category. The evaluation is based on PHI types that are defined by HIPAA
as well as additional PHI types specific to each dataset. Each PHI category and the corresponding PHI types are defined in Table
1. The PROFESSION category exists only in the i2b2 dataset, and was removed from the graph to avoid distorting the y-axis:
the F1-scores are 72.014, 82.035, and 81.664 with the CRF, ANN, and CRF+ANN, respectively. For the same reason, the AGE
category in MIMIC was removed: the F1-scores are 80.851, 81.481, and 92.308 with the CRF, ANN, and CRF+ANN, respectively.

contains medical record numbers) category in the
i2b2 dataset. This is due to the fact that the CRF
model uses sophisticated regular expression fea-
tures that are tailored to detect ID patterns such as
“38:Z8912708G”.

Another interesting difference between the ANN
and the CRF results is the PROFESSION category:
the ANN significantly outperforms the CRF. The
reason behind this result is that the embeddings of
the tokens that represent a profession tend to be
close in the token embedding space, which allows
the ANN model to generalize well. We tried assem-
bling various gazetteers for the PROFESSION cate-
gory, but all of them were performing significantly
worse than the ANN model.

Table 4 presents some examples of gold PHI in-
stances correctly predicted by the ANN model that

the CRF model failed to predict, and conversely.
This illustrates that the ANN model efficiently copes
with the diversity of the contexts in which tokens
appear, whereas the CRF model can only address
the contexts that are manually encoded as features.
In other words, the ANN model’s intrinsic flexibil-
ity allows it to better capture the variance in hu-
man languages than the CRF model. For exam-
ple, it would be challenging and time-consuming to
engineer features for all possible contexts such as
“had a stroke at 80”, “quit smoking in 08”, “on the
29th of this month”, and “his friend Epstein”. The
ANN model is also very robust to variations in sur-
face forms, such as misspellings (e.g., “in teh late
60s”, “Khazakhstani”, “01/19/:0”), tokenizations
(e.g., “Results02/20/2087”, “MC # 0937884Date”),
and different phrases referring to the same seman-



PHI category ANN CRF

AGE Father had a stroke at 80 and died of ?another stroke at age 83. HPI: 53RHM who going to bed Wednesday was in usoh, but
PERSONAL DATA AND OVERALL HEALTH: Now 63, despite his Tobacco: Quit at 38 y/o; ETOH: 1-2 beers/week; Caffeine:

FH: Father: Died @ 52 from EtOH abuse (unclear exact etiology)
Tobacco: smoked from age 7 to 15, has not smoked since 15.
History of Present Illness 86F reports worsening b/l leg pain.

CONTACT by phone, Dr. Ivan Guy. Call w/ questions 86383. Keith Gilbert,
H/O paroxysmal afib VNA 171-311-7974 ======= Medications

DATE During his May hospitalization he had dysphagia She is looking forward to a good Christmas. She is here today
Social history: divorced, quit smoking in 08, sober x 10 yrs,

She is to see him on the 29th of this month at 1:00 p.m.
He did have a renal biopsy in teh late 60s adn thus will look for results,

Results02/20/2087 NA 135, K 3.2 (L), CL 96 (L), CO2 30.6, BUN 1
Jose Church, M.D. /ray DD: 01/18/20 DT: 01/19/:0 DV: 01/18/20

ID placed 3/23 for bradycardia. P/G model # 5435, serial # 4712198, DD:05/05/2095 DT:05/05/2095 WK:65255 :4653
Consult NotePt: Ulysses Ogrady MC # 0937884Date: 10/07/69 NO GROWTH TO DATE Specimen: 38:Z8912708G Collected

LOCATION Works in programming at Audiovox. Formerly at BrightPoint. 2nd set biomarkers (WPH): Creatine Kinase Isoenzymes
He has remote travel hx to the Rockefeller Centre, more recent global Hospitalized 2115 TCH for ROMI 2120 TCH new onset

History of Present Illness: Pt is a 59 yo Khazakhstani male, with
who was admitted to San Rafael Mount Hospital following a syncopal

nauseas and was brought to Rafael Mount ED. Five weeks ago prior
Anemia: On admission to Rafael Hospital, Hb/Hct: 11.6/35.5.

NAME ATCH: 655-75-45 Dear Harry and Yair: My thanks for your kind Lab Tests Amador: the lab results show good levels of
Patient lives in Flint with his friend Epstein. He has 3 children. 10MG PO qd : 05/10/2066 - 04/15/2068 ACT : rosenberg

Health care proxy-Yes, son (West) Allergies DUTASTERIDE - cough, 128 Williams Ct M OSCAR, JOHNNY Hyderabad, WI 62297

PROFESSION Social history: Married, glazier, 3 grown adult children Social history: He is retried Motor Vehicle Body Repairer.
Has VNA. Former civil engineer, supervisor, consultant.

He was formerly self-employed as a CPA and would often travel
Communications senior manager, marketing, worked for Brinker

and Concrete Finisher (25yrs). He is a veteran.
Former tobacco user, works part time in securities.

Table 4: Examples of correctly detected PHI instances (in bold) by the ANN and CRF models for the i2b2 dataset. The examples
in the ANN column are only predicted by the ANN model and not predicted by the CRF model, and conversely. Typographical
errors are from the original text.

tic meaning (e.g., “San Rafael Mount Hospital”,
“Rafael Mount”, “Rafael Hospital”). Furthermore,
the ANN model is able to detect many PHI instances
despite not having explicit gazetteers, as examples
in the LOCATION and PROFESSION categories il-
lustrate. We conjecture that the character-enhanced
token embeddings contain rich enough information
to effectively function as gazetteers, as tokens with
similar semantics are closely located in the vector
representation (Mikolov et al., 2013b; Collobert et
al., 2011; Kim et al., 2015).

On the other hand, CRF is good at rarely occur-
ring patterns that are written in highly specialized
regular expression patterns (e.g., “38:Z8912708G”,
“53RHM”) or tokens that are included in the

gazetteers (e.g., “Christmas”, “WPH”, “rosenberg”,
“Motor Vehicle Body Repairer”). For example,
the PHI token “Christmas” only occurs in the test
set, and unless the context gives a strong indica-
tion, the ANN model cannot detect it, whereas the
CRF model could, as long as it is included in the
gazetteers.

3.6 Effect of training set size

Figure 3 shows the impact of the training set size
on the performance of the models on the MIMIC
dataset. When the training set size is very lim-
ited, the CRF performs slightly better than the ANN
model, since the CRF model can leverage hand-
crafted features without much training data. As the



Figure 3: Impact of the training set size on the binary HIPAA
token-based F1-scores on the MIMIC dataset. 100% training
set size refers to using all of the dataset minus the test set.

Figure 4: Ablation test performance based on binary HIPAA
token-based evaluation. ANN is the model based on Artificial
Neural Network. - seq opt is the ANN model without the la-
bel sequence optimization layer. - pre-train is the ANN model
where token embeddings are initialized with random values in-
stead of pre-trained embeddings. - token emb is the ANN model
using only character-based token embeddings, without token
embeddings. - character emb is the ANN model using only to-
ken embeddings, without character-based token embeddings.

training set size increases, the ANN model starts to
significantly outperform the CRF model, since the
parameters including the embeddings are automat-
ically fine-tuned with more data, and therefore the
features learned by the ANN model become increas-
ingly more refined than the manually handcrafted
features. As a result, combining the outputs of the
CRF and ANN models increases the F1-score over
the ANN model only for small training set size and
yields a less competitive F1-score than the ANN
model for bigger training set size.

3.7 Ablation analysis

In order to quantify the importance of various ele-
ments of the ANN model, we tried 4 variations of the
model, eliminating different elements one at a time.
Figure 4 presents the results of the ablation tests. Re-
moving either the label sequence optimization layer,
pre-trained token embeddings, or token embeddings
slightly decreased the performance. Surprisingly,
the ANN performed pretty well with only charac-
ter embeddings and without the token embeddings,
and eliminating the character embeddings was more
detrimental than eliminating the token embeddings.
This suggests that the character-based token embed-
dings may be capturing not only the sub-token level
features, but also the semantics of the tokens them-
selves.

4 Conclusions

We proposed the first system based on ANN for
patient note de-identification. It outperforms state-
of-the-art systems based on CRF on two datasets,
while requiring no handcrafted features. Utilizing
both the token and character embeddings, the sys-
tem can automatically learn effective features from
data by fine-tuning the parameters. It jointly learns
the parameters for the embeddings, the bidirectional
LSTMs as well as the label sequence optimization,
and can make use of token embeddings pre-trained
on large unlabeled datasets. Quantitative and qual-
itative analysis of the ANN and CRF models indi-
cates that the ANN model better incorporates con-
text and is more flexible to variations inherent in hu-
man languages than the CRF model.

From the viewpoint of deploying an off-the-
shelf de-identification system, our results in Table 3
demonstrate recall on the MIMIC discharge sum-
maries over 99%, which is quite encouraging. Fig-
ure 2, however, shows that the F1-score on the
NAME category, probably the most sensitive PHI
type, falls just below 98% for the ANN model. We
anticipate that adding gazetteer features based on the
local institution’s patient and staff census should im-
prove this result, which will be explored in future
work.
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