
An Open-Source, Interactive Java-Based System for Rapid Encoding of

Significant Events in the ICU Using the Unified Medical Language System

J Shu , GD Clifford , WJ Long , GB Moody , P Szolovits , RG Mark

Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA

Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

Abstract

We present an interactive Java-based application that
encodes significant clinical events by retrieving the clin-

ical concepts that most closely match a free-text input

phrase. Events are coded using a subset of the National

Library of Medicine’s Unified Medical Language System
(UMLS), a standard, freely available collection of medi-

cal vocabularies for identifying diseases, symptoms, and

other clinical concepts. Some common difficulties that oc-

cur in the process of coding are spelling errors, abbrevi-

ation ambiguities, and combinations of events for which
there is no UMLS code. We address these issues by inte-

grating a spell-checker and a personalized dictionary al-

lowing each user of the system to keep a unique list of

frequently used abbreviations. Additionally, utilizing the
UMLS concept hierarchy and using ”fuzzy” string match-
ing both help to find the UMLS concepts that most closely

match the free text description. Using almost 1500 medi-

cal phrases manually extracted from a random selection of

over 300 nursing notes, three clinicians scored the accu-
racy of the coding algorithm while the program monitored

the distributions of search times. For each medication,

disease or sign/symptom group, the algorithm successfully

coded 97%, 92% and 77% of the phrases, respectively. Al-

though our application is written to support the MIMIC II
project (previously described at Computers in Cardiology

2002), similar applications will be important components

of future real-time medical decision support systems. The

use of a flexible API and freely available dictionaries fa-

cilitates open source distribution and integration.

1. Introduction

The Laboratory for Computational Physiology at MIT
is currently developing a large, comprehensive multi-
parameter database of patient signals and clinical data
(MIMIC II) [1, 2] in order to support research in intelli-
gent patient monitoring. The MIMIC II database includes
physiologic signals, laboratory tests, nursing flow charts,

clinical progress notes, and other data collected from pa-
tients in the intensive care units of a local hospital. Expert
clinicians are reviewing each case and annotating clinically
significant events, which include, but are not limited to,
diseases (e.g., gastrointestinal bleed, septic shock, hem-
orrhage), symptoms (e.g., chest pain, nausea), significant
medication changes, vital sign changes (e.g., tachycardia,
hypotension), waveform abnormalities (e.g., arrhythmias,
ST elevation), and abnormal laboratory values. The anno-
tations will be used to train and test future algorithms that
automatically detect significant clinical events, given a pa-
tient’s recorded data. Thus, to make the annotations use-
ful for machine analysis, each annotation must be labelled
with a machine-readable, or standardized, code.

Assigning such a code to a clinical event involves au-
tomatically translating a free-text description of the event
(provided by the annotator) into one or more codes from
a medical vocabulary. Each unique clinical concept is as-
signed a concept code (a unique alpha-numeric identifier),
and the concept generally has several different synonyms.
For example, heart attack and myocardial infarction repre-
sent the same concept, and both strings are mapped to the
same concept code.

The database of medical terminology, or codes, chosen
for this task is a subset of the 2004AA version of the Na-
tional Library of Medicine’s Unified Medical Language
System (UMLS) [3], a collection of over 100 source vo-
cabularies available (usually freely) from the National Li-
brary of Medicine. This subset is effectively equivalent
to SNOMED-CT [4], a hierarchical medical nomenclature
formed by merging the College of American Pathologists’
Systematized Nomenclature of Medicine (SNOMED) with
the UK National Health Service’s Read Clinical Terms
(CT). SNOMED-CT contains a collection of concepts, de-
scriptions, and relationships and is rapidly becoming an
international standard for coding medical concepts. Each
concept in the vocabulary represents a clinical concept,
such as a disease, symptom, intervention, or body part.
Each concept can be described by one or more terms (syn-
onyms). In addition, there are many types of relationships
that link the different concepts, including hierarchical (is-

0276−6547/04 $20.00 © 2004 IEEE 197 Computers in Cardiology 2004;31:197−200.

a) relationships and attribute relationships (such as a body
part being linked to a disease through the finding site re-
lationship). The UMLS captures all of the information
contained in SNOMED-CT, but is stored within a differ-
ent database structure.

There are several challenges to translating free-text
phrases into standardized terminology. The search for con-
cept codes must be accurate and rapid enough that annota-
tors do not lose patience. Annotators also tend to make
spelling mistakes and use abbreviations that have more
than one meaning. The same concept may be described in
various different ways, and annotators might wish to code
a concept that simply does not exist in the UMLS. Some-
times the annotator might not be satisfied with the level
of specificity of codes returned and may want to look at
related concepts. This article addresses these issues and
compares the accuracy and search times for a variety of
medical phrases.

2. Methods

The interface for assessing search performance is an in-
teractive, Java-based application that searches for UMLS
concepts that encode a free-text medical phrase. The sys-
tem’s features include an open-source spell-checker and a
personalized abbreviation dictionary, along with a large list
of commonly used medical abbreviations.

2.1. Special features

This section describes some of the special features that
have been incorporated into the coding algorithm.

2.1.1. Common abbreviations

The UMLS contains a table of abbreviations and
acronyms and their expansions [5], but the table is not
adequate for a clinical event coding algorithm because
it contains many irrelevant (non-medical) abbreviations,
yet lacks many abbreviations that an annotator might use.
Therefore, an open source list of medical abbreviations and
acronyms [6] is used instead. The list simply contains a
textual list of abbreviations and their expansions.

2.1.2. Personal abbreviations

When reviewing a patient’s medical record, annotators
will probably wish to code the same clinical concept mul-
tiple times. Thus, they have the option at any time to link a
term or abbreviation directly to one or more UMLS con-
cept codes, which are saved in a MySQL [7] table and
available in later lookups. For example, the annotator
can add the abbreviation mi, linked to the concept code
C0027051, the identifier for myocardial infarction. On a

subsequent attempt to code mi, myocardial infarction is
guaranteed to be one of the concepts returned. This fea-
ture also addresses the fact that the open source common
abbreviation list sometimes does not contain desired ab-
breviations.

2.1.3. Spell checker

Annotators, and clinicians in general, tend to make
spelling errors due to being rushed or not knowing the
spelling of a complex medical term. An open source spell
checker [8] is therefore incorporated into the coding pro-
cess. The dictionary word list used with the spell checker
consists of a standard spelling dictionary [9], augmented
with the words from the UMLS normalized word table,
which contains medical terms that are not in the standard
dictionary. Additionally, the words from the common and
personal abbreviation lists are added to the dictionary so
that they are not mistaken for misspelled words.

Figure 1. A flow chart of the search process, where N is
the number of UMLS codes found by the algorithm.

2.2. Search procedure

The input to the coding algorithm is a free-text phrase
highlighted or typed by the annotator. The phrase is run
through a spell checker before a series of resources is con-
sulted to find a concept code matching the phrase. First,
the user’s personalized abbreviation dictionary is checked,
and if it contains a mapping for the input phrase, then those
concepts are added to the preliminary results. The results
of a concept name lookup in the UMLS concepts table is
also added to the results, so that the search is not always
limited to the personal abbreviation list. From this point
on, the algorithm continues searching only if no potential
codes have been found thus far, ensuring that the user re-
ceives codes back as rapidly as possible. The next step

198

is to check the common abbreviation list to see if the in-
put phrase is an abbreviation. If still nothing is found,
the algorithm then tries to match the input phrase against
the UMLS normalized string table, which consists of all
UMLS concepts in normalized form, i.e., with common
words such as the, and, and of removed and the remain-
ing words alphabetized. Finally, if there are still no con-
cepts found, the algorithm breaks the input up into the
largest subsets of words that it can code, and codes each
subset separately. At any point, when potential concepts
are displayed, the user has the option of searching for re-

lated, broader, or narrower terms; these relationships cor-
respond to the is-a relationship hierarchy in the UMLS and
are helpful for finding a more or less specific concept than
the one presented. See Figure 1 for a flow diagram of
the search algorithm. N represents the number of concepts
found after each part of the algorithm.

2.3. Algorithm testing method

The initial test of the coding algorithm consisted of run-
ning a non-interactive batch test of 194 medical phrases
and having two clinicians adjudicate the results. This first
test coded 85% of the phrases accurately, taking an av-
erage of 2.56 seconds to code each phrase. As a further
test of the speed and accuracy of the coding algorithm,
a fully interactive version of the software was used by
three clinicians to code over 1400 medical phrases. The
phrases were taken from a corpus of nursing admission and
progress notes from a local hospital’s ICU. Specifically, the
focus was narrowed to three types of clincal information
(medications, diseases, and signs or symptoms) to realis-
tically simulate a subset of phrases that would be coded
in an annotation situation. Three clinicians were asked to
pick out all such phrases from the nursing notes and in-
voke the UMLS coding software to code each phrase. The
SNOMED-CT subset of the UMLS database was stored
in MySQL (MyISAM) tables on a 3GHz Pentium 4 PC.
The clinicians each began with an empty list of personal
abbreviations (also stored in a MySQL database), which
they could add to as necessary. For each phrase, the clin-
icians were asked to choose the correct resulting UMLS
code(s) (if any) and judge whether the results: 1) captured
the full meaning of the phrase, 2) were codeable but did
not capture the concept exactly, or 3) were simply wrong.
To identify bottlenecks, the time to run each type of search
(shown in Figure 1) was also logged.

3. Results

The clinicians reviewed a total of 302 nursing notes and
found a total of 1477 phrases (597 medications, 261 dis-
eases, and 619 signs or symptoms). The clinician-judged
accuracy results show that 90-95% of medications and dis-

Table 1. Testing Results, including coding success rate,
average length of phrases, personal abbreviations added,
and misspellings corrected.

Type Medication Disease Sign/
Symptom

Total Phrases 597 261 619
% Success 96.6% 92.3% 76.9%
Avg. Words/Phrase 1.1 1.7 2.0
New Abbreviations 64 23 21
Misspellings 33 19 52

eases were coded successfully (i.e., captured the full mean-
ing of the phrase), whereas only 77% of signs and symp-
toms were coded successfully. Several misspellings were
corrected for all three phrase types. Medications were most
frequently added as personal abbreviations, because many
drug trade names could not be found in the SNOMED-
CT subset of the UMLS and were coded with their generic
drug names instead. These results are summarized in Table
1.

Timing results were recorded for the five types of
searches shown in Figure 1 (i.e., personal abbreviation,
concept name, common abbreviation, normalized string,
and partial phrase). All personal abbreviation searches
took less than 1ms to complete. 75% of concept name
searches took less than 4ms, and all took less than 60ms.
95% of common abbreviation searches took less than 5ms,
but some phrases took several seconds to complete, most
likely due to abbreviations that expanded into phrases
with multiple words. Almost all (92%) of the normalized
string searches took between 1.35s and 1.75s, while partial
phrase searches often took several seconds to complete, de-
pending on the number of words in the input phrase. The
largest bottlenecks occurred when exact phrases could not
be found and wild-card characters had to be used in the
MySQL searches.

4. Discussion

The spell checking and personal abbreviation features
were shown to have a positive impact on the coding of
medications, diseases, and signs and symptoms. Both the
probability of the user finding the correct code on the first
try and the amount of time it took to code an abbreviated
phrase improved dramatically as new abbreviations were
added to the personal dictionaries. The spell checker suc-
cessfully helped to correct spelling mistakes in many in-
stances.

A possible explanation for signs and symptoms being
more difficult to code than medications and diseases is that
signs and symptoms are often subjective descriptions of a

199

patient’s state and thus have a complex structure, whereas
diseases and medications are more well-defined. How-
ever, many specific drug names could not be found in
SNOMED-CT, and instead had to be coded by searching
for the generic drug name. This extra step increased the
time required to code many medications initially, but once
they were added to the personal abbreviation list, the time
to code these medications was negligible.

Most parts of the search algorithm were performed
quickly because the lookup tables (for common and per-
sonal abbreviations) were small enough to read into mem-
ory and because the MySQL tables were indexed. The
slower searches used wild-card characters and thus could
not make use of the MySQL indices. A possible way to im-
prove some of the search times is to find a different method
to replace MySQL wild-card lookups, or leave this part
out completely, possibly sacrificing completeness for im-
proved speed.

Further methods to improve the accuracy and speed of
the coding algorithm will be investigated. For example,
adding a vocabulary of drug trade names might make the
coding of medications faster. A method to remove irrel-
evant results from searches might be to filter the search
space by semantic category (e.g., by organ systems or
diseases). Another problem to consider is that although
searching the normalized string table often helps to find an
approximate concept match, it does not consider word or-
der and thus might not capture the actual meaning of the in-
put phrase. To help preserve semantics, UMLS tools such
as part-of-speech tagging might be utilized.

5. Conclusion

The system presented for coding free-text medical
phrases into UMLS concept codes is shown to code medi-
cations and diseases very accurately, and signs and symp-
toms moderately accurately, with times ranging from un-
der 1ms to several seconds to code a concept. The interac-
tive features of the system, including personal abbreviation
lists and spell checking, had a positive impact on the cod-
ing process. Personal abbreviations were used extensively
and improved the speed of coding, even though there was
some learning time because the personal dictionaries were
initially empty. Several spelling mistakes were fixed, lead-
ing to successful coding.

The test results will be used to resolve bottlenecks and
improve the efficiency of the search algorithm. Feedback
gathered from the clinicians will be used to improve the ac-
curacy and usability of the coding software. Incorporating
new medical vocabularies and filtering results by semantic
or syntactic category are methods that might be explored
to filter out irrelevant codes. These techniques will be
helpful in developing an algorithm to automatically extract
and code clinical phrases such as medications, diseases,

symptoms, treatments, and laboratory tests from nursing
progress notes. The Java source code and a coded corpus
of text will be posted on Physionet[10, 11].

Acknowledgments

This publication was made possible by Grant Number
R01 EB001659 from the National Institute of Biomedical
Imaging and Bioengineering (NIBIB).

References

[1] Saeed M, Lieu C, Raber G, Mark R. MIMIC II: A Mas-

sive Temporal ICU Patient Database to Support Research

in Intelligent Patient Monitoring. Computers in Cardiology

2002;29:641–644.

[2] Mark RG. Integrating data, models and reasoning in critical

care, 2003. National Institute of Biomedical Imaging and

Bioengineering Proposal R01 EB001659.

[3] National Library of Medicine. UMLS Knowledge Sources,

16th Edition - July Release: 2004AB Documentation, 2004.

[4] College of American Pathologists. SNOMED Clinical

Terms Technical Specification: Revision 23, 2000.

[5] National Library of Medicine. The SPECIALIST LEXI-

CON: UMLS Documentation, 2004.

[6] Berman JJ. Pathology abbreviations and acronyms, May

2001.

[7] http://www.mysql.com.

[8] SourceForge.net. Jazzy - Java Spell Check API.

[9] ftp://metalab.unc.edu/pub/Linux/libs/linux.words.2.tar.gz.

Standard Linux dictionary on /usr/share/dict. Redhat 9.0,

2003.

[10] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM,

Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK,

Stanley HE. Physiobank, physiotoolkit, and physionet:

Components of a new research resource for complex physi-

ologic signals. Circulations 2000;101(23):e215–e220.

[11] http://www.physionet.org/.

Address for correspondence:

Jennifer Shu

Laboratory for Computational Physiology

Harvard-MIT Division of Health Sciences & Technology

Rm E25-505, 45 Carleton St.,

Cambridge MA 02142 USA

jshu@mit.edu

200

